Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

# A New Notion of Closed Sets in Intuitionistic Topological Space

#### Dr. J. Arul Jesti

Assistant Professor, Department of Mathematics, St.Mary's College(Autonomous), Thoothukudi. Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India. aruljesti@gmail.com

#### K. Heartlin

Research Scholar, Reg No:19212212092006, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi. Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India. heartlingladson@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

#### **ABSTRACT**

In this paper is to introduce a new concept of  $I\alpha_g^{\Lambda}$ -closed set in intuitionistic topological spaces and investigate some of their basic properties and give characterizations for these spaces. We also study the relationship between  $I\alpha_g^{\Lambda}$ -closed sets and the other intuitionistic closed sets are also discussed.

**Keywords:**  $I\alpha_g^{\wedge}$ -closed,  $I\alpha_g^{\wedge}$ -open,  $I\alpha_g^{\wedge}$ -closure and  $I\alpha_g^{\wedge}$ -interior.

#### 1 INTRODUCTION

The concept of intuitionistic sets in topological spaces was first introduced by Coker[2] in 1996. He also introduced the concept of intuitionistic points and investigated some fundamental properties of closed sets in intuitionistic topological spaces. In 2009 J .Younis Yaseen and G.Asmaa Raouf [5] has given some results in intuitionistic generalized closed sets in intuitionistic topological spaces. K.Meena and V.P.Anuja,[7] was introduced the concept of alpha  $^{\land}$  generalized closed sets in topological spaces. The purpose of this paper is to develop alpha  $^{\land}$  generalized closed sets in intuitionistic topological spaces and discuss some properties related to  $I\alpha_g^{\land}$ -closed set in intuitionistic topological spaces.

#### **2 PRELIMINARIES**

**Definition 2.1** [2]. Let  $\mathcal{H}$  be a non-empty set. An intuitionistic set (IS for short)  $\mathcal{A}$  is an object having the form  $\mathcal{A} = \langle \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2 \rangle$  Where ,  $\mathcal{A}_2$  are subsets of  $\mathcal{H}$  satisfying  $\mathcal{A}_1 \cap \mathcal{A}_2 = \varphi$ . The set  $\mathcal{A}_1$  is called the set of members of  $\mathcal{A}$ , while  $\mathcal{A}_2$  is called set of non members of  $\mathcal{A}$ .

**Definition 2.2 [2]:** Let  $\mathcal{H}$  be a non-empty set and  $\mathcal{A}$  and  $\mathcal{B}$  are intuitionistic set in the form  $\mathcal{A}=<\mathcal{H},\mathcal{A}_1,\ \mathcal{A}_2>$ ,  $\mathcal{B}=<\mathcal{H},\mathcal{B}_1,\mathcal{B}_2>$  respectively. Then

- a)  $\mathcal{A} \subseteq \mathfrak{B} \text{ iff } \mathcal{A}_1 \subseteq \mathfrak{B}_1 \text{ and } \mathcal{A}_2 \supseteq \mathfrak{B}_2$
- b)  $\mathcal{A} = \mathfrak{B} \text{ iff } \mathcal{A} \subseteq \mathfrak{B} \text{ and } \mathfrak{B} \subseteq \mathcal{A}$
- c)  $\mathcal{A}^{C} = \langle \mathcal{H}, \mathcal{A}_{2}, \mathcal{A}_{1} \rangle$
- d)  $\mathcal{A} \mathfrak{B} = \mathcal{A} \cap \mathfrak{B}^{\mathcal{C}}$
- e)  $\varphi = \langle \mathcal{H}, \varphi, \mathcal{H} \rangle, \mathcal{H} = \langle \mathcal{H}, \mathcal{H}, \varphi \rangle$
- f)  $\mathcal{A} \cup \mathcal{B} = \langle \mathcal{H}, \mathcal{A}_1 \cup \mathcal{B}_1, \mathcal{A}_2 \cap \mathcal{B}_2 \rangle$

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

g) 
$$\mathcal{A} \cap \mathcal{B} = \langle \mathcal{H}, \mathcal{A}_1 \cap \mathcal{B}_1, \mathcal{A}_2 \cup \mathcal{B}_2 \rangle$$
.

Furthermore, let  $\{\mathcal{A}_{\alpha}/\alpha\epsilon\ J\}$  be an arbitrary family of intuitionistic sets in  $\mathcal{H}$ , where  $\mathcal{A}_{\alpha}=<\mathcal{H}$ ,  $\mathcal{A}_{\alpha}^{(1)}$ ,  $\mathcal{A}_{\alpha}^{(2)}>$ . Then

(i) 
$$\cap \mathcal{A}_{\alpha} = <\mathcal{H}, \cap \mathcal{A}_{\alpha}^{(1)}, \cup \mathcal{A}_{\alpha}^{(2)}>$$

$$(j) \cup \mathcal{A}_{\alpha} = <\mathcal{H}, \cup \mathcal{A}_{\alpha}^{(1)}, \cap \mathcal{A}_{\alpha}^{(2)}>.$$

**Definition 2.3 [2]:** An intuitionistic topology is (for short IT) on a non-empty set  $\mathcal{H}$  is a family  $I\tau$  of IS's in  $\mathcal{H}$  satisfying following axioms.

- 1)  $\varphi, \mathcal{H} \in I\tau$
- 2)  $G_1 \cap G_2 \in I\tau$ , for any  $G_1, G_2 \in I\tau$

 $\cup G_{\alpha} \in I\tau$  for any arbitrary family  $\{G_i : G_{\alpha}/\alpha \in J\}$  where  $(\mathcal{H}, I\tau)$  is called an **intuitionistic topological space** (for short  $ITS(\mathcal{H})$ ) and any intuitionistic set is called an **intuitionistic open set** (for short IOS) in  $\mathcal{H}$ . The complement  $\mathcal{A}^{\mathcal{C}}$  of an IOS of  $\mathcal{A}$  is called an **intuitionistic closed set** (for short ICS) in  $\mathcal{H}$ .

**Definition 2.4 [2]:** Let  $(\mathcal{H}, I\tau)$  be an intuitionistic topological space (for short  $ITS(\mathcal{H})$ ) and  $\mathcal{A} = \langle \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2 \rangle$  be an *IS* in  $\mathcal{H}$ . Then the interior and closure of  $\mathcal{A}$  are defined by

- 1)  $Icl(\mathcal{A}) = \bigcap \{K: K \text{ is an } ICS \text{ in } \mathcal{H} \text{ and } \mathcal{A} \subseteq K\}$
- 2)  $Iint(\mathcal{A}) = \bigcup \{G: G \text{ is an } IOS \text{ in } \mathcal{H} \text{ and } G \subseteq \mathcal{A}\}.$

It can be shown that  $Icl(\mathcal{A})$  is an ICS and  $Iint(\mathcal{A})$  is an IOS in  $\mathcal{H}$  and  $\mathcal{A}$  is an ICS in  $\mathcal{H}$  iff  $Icl(\mathcal{A}) = \mathcal{A}$  and  $\mathcal{A}$  is an  $I_{ntu}OS$  in  $\mathcal{H}$  iff  $Iint(\mathcal{A}) = \mathcal{A}$ .

**Definition 2.5** [2]: Let  $(\mathcal{H}, I\tau)$  be an  $ITS(\mathcal{H})$ . An intuitionistic set  $\mathcal{A}$  of  $\mathcal{H}$  is said to be

- (i) Intuitionistic semi-open if  $A \subseteq Icl(Iint(A))$ .
- (ii) Intuitionistic pre-open if  $A \subseteq Iint(Icl(A))$ .
- (iii) Intuitionistic  $\alpha$ -open if  $A \subseteq Iint(Icl(Iint(A)))$ .
- (iv) Intuitionistic β-open if  $\mathcal{A} \subseteq Icl (Iint(Icl (\mathcal{A})))$ .
- (v) Intuitionistic regular-open if A = Iint(Icl(A)).

The family of all intuitionistic semi-open, intuitionistic pre-open, intuitionistic  $\alpha$ -open, intuitionistic  $\beta$ -open and intuitionistic regular-open sets of  $(\mathcal{H}, I\tau)$  are denoted by *IS*-OS, *IP*-OS, *I\alpha*-OS, *I\beta*-OS and *Ir*-OS respectively.

**Lemma 2.6[2]** Let  $(\mathcal{H}, I\tau)$  be an ITS and  $\mathcal{A}$  and  $\mathfrak{B}$  be an intuitionistic subset of  $\mathcal{H}$ . Then the following hold.

- (i)  $Icl(\emptyset) = \emptyset$  and  $Icl(\mathcal{H}) = \mathcal{H}$ .
- (ii)  $\mathcal{A}$  is ICS if and only iff  $\mathcal{A} = Icl(\mathcal{A})$ .
- (iii)  $Icl(Icl(\mathcal{A})) = Icl(\mathcal{A}).$
- (iv)  $\mathcal{A} \subseteq \mathfrak{B}$  implies that  $Icl(\mathcal{A}) \subseteq Icl(\mathfrak{B})$
- (v)  $Icl(\mathcal{A} \cap \mathfrak{B}) = Icl(\mathcal{A}) \cap Icl(\mathfrak{B}).$
- (vi)  $Icl(\mathcal{A} \cup \mathfrak{B}) = Icl(\mathcal{A}) \cup Icl(\mathfrak{B})$

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

**Lemma 2.7[2]** Let  $(\mathcal{H}, I\tau)$  be an ITS and  $\mathcal{A}$  and  $\mathfrak{B}$  be an intuitionistic subset of  $\mathcal{H}$ . Then the following hold.

- (i)  $Iint(\emptyset) = \emptyset$  and  $Iint(\mathcal{H}) = \mathcal{H}$ .
- (ii)  $\mathcal{A}$  is IO set if and only iff  $\mathcal{A} = Iint(\mathcal{A})$ .
- (iii) Iint(Iint(A)) = Iint(A).
- (iv)  $\mathcal{A} \subseteq \mathfrak{B}$  implies that  $Iint(\mathcal{A}) \subseteq Iint(\mathfrak{B})$
- (v)  $Iint(A \cap B) = Iint(A) \cap Iint(B)$ .
- (vi)  $Iint(\mathcal{A} \cup \mathfrak{B}) = Iint(\mathcal{A}) \cup Iint(\mathfrak{B})$

**Definition 2.8 [5]:** A subset  $\mathcal{A}$  of ITS ( $\mathcal{H}$ ,  $I\tau$ ) is called an intuitionistic semi-generalized closed set (briefly Isg-C) if Iscl ( $\mathcal{A}$ )  $\subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is Is-O in  $\mathcal{H}$ .

**Definition 2.9 [5]:** A subset  $\mathcal{A}$  of  $ITS(\mathcal{H}, I\tau)$  is called an intuitionistic generalized semi-closed set (briefly Igs -C) if  $Iscl(\mathcal{A}) \subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is I-O in  $\mathcal{H}$ .

**Definition 2.10 [5]:** A subset  $\mathcal{A}$  of ITS ( $\mathcal{H}$ ,  $I\tau$ ) is called an intuitionistic generalized-CS (briefly Ig-C) if Icl ( $\mathcal{A}$ )  $\subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is I-O in  $\mathcal{H}$ .

**Definition 2.11 [4]:** A subset  $\mathcal{A}$  of  $ITS(\mathcal{H}, I\tau)$  is called an intuitionistic generalized star-CS (briefly I  $g^*$ -C) if Icl  $(\mathcal{A})$   $\subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is Ig-O in  $\mathcal{H}$ .

**Definition 2.12 [3]:** Let  $(\mathcal{H}, I\tau)$  be an *ITS* and  $\mathcal{A} = \langle X, \mathcal{A}_1, \mathcal{A}_2 \rangle$  be an *IS* in  $\mathcal{H}$ . Then the semi interior and semi closure of  $\mathcal{A}$  are defined by

- 1)  $Iscl(\mathcal{A}) = \bigcap \{K: K \text{ is an } ISC \text{ in } \mathcal{H} \text{ and } \mathcal{A} \subseteq K\}$
- 2) Isint  $(A) = \bigcup \{G: G \text{ is an } ISO \text{ in } \mathcal{H} \text{ and } G \subseteq A\}.$

It can be established that  $Iscl(\mathcal{A})$  is the smallest an ISC set contained in all ISC sets containing  $\mathcal{A}$  and  $Isint(\mathcal{A})$  is the largest ISO set contained in  $\mathcal{A}$ ,  $\mathcal{A}$  is an ISC set in  $\mathcal{H}$  iff  $Iscl(\mathcal{A}) = \mathcal{A}$  and  $\mathcal{A}$  is an ISO in  $\mathcal{H}$  iff  $Isint(\mathcal{A}) = \mathcal{A}$ .

**Definition 2.13 [4]:** A subset  $\mathcal{A}$  of ITS ( $\mathcal{H}$ ,  $I\tau$ ) is called an intuitionistic w-closed set (briefly Iw-C) if Icl ( $\mathcal{A}$ )  $\subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is Is-open in  $\mathcal{H}$ .

**Definition 2.14 [4]:** A subset  $\mathcal{A}$  of *ITS* ( $\mathcal{H}$ ,  $I\tau$ ) is called an intuitionistic generalized α-closed set (briefly Igα-C) if Iαcl ( $\mathcal{A}$ )  $\subseteq \mathcal{F}$  whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is I-open in  $\mathcal{H}$ .

## 3. INTUITIONISTIC $\alpha_g^{\wedge}$ -CLOSED SETS

**Definition 3.1:** A subset  $\mathcal{A}$  of  $(\mathcal{H}, I\tau)$  is called an **intuitionistic alpha**  $^{\wedge}$  **generalized closed** (briefly  $I\alpha_g^{\wedge}$ -CS) if  $Igcl(\mathcal{A}) \subseteq \mathcal{F}$ , whenever  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is  $I\alpha$ -O in  $\mathcal{H}$ . We denote the family of all  $I\alpha_g^{\wedge}$ -CS in space  $\mathcal{H}$  by  $I\alpha_g^{\wedge}$ -CS  $(\mathcal{H}, I\tau)$ .

**Example 3.2:** Let  $\mathcal{H} = \{s,t\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2\}$  where  $\mathcal{A}_1 = <\mathcal{H}, \varphi, \{t\} >$ ,  $\mathcal{A}_2 = <\mathcal{H}, \{s\}, \varphi >$ . Then intuitionistic generalized closed set (briefly IgCS) =  $<\mathcal{H}, \{t\}, \ \varphi >, <\mathcal{H}, \varphi, \{s\} >, <\mathcal{H}, \{t\}, \{s\} >$ . Then  $I\alpha_g^{\wedge}$ -CS  $(\mathcal{H}, I\tau) = <\mathcal{H}, \{t\}, \varphi >, <\mathcal{H}, \varphi, \{s\} >, <\mathcal{H}, \{t\}, \{s\} >$ .

**Theorem 3.3:** Every *ICS* of an *ITS*  $(\mathcal{H}, I\tau)$  is  $I\alpha_g^{\wedge}$ -*CS*, but not conversely.

**Proof:** Let  $\mathcal{A} \subseteq \mathcal{H}$  be an ICS and  $\mathcal{A} \subseteq \mathcal{F}$  where  $\mathcal{F}$  is  $I\alpha$ -O. Since  $\mathcal{A}$  is ICS and every ICS is Ig-CS,  $Igcl(\mathcal{A}) \subseteq Icl(\mathcal{A})$ 

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

 $=\mathcal{A}\subseteq\mathcal{F}$ . Hence  $\mathcal{A}$  is an  $I\alpha_{\mathsf{g}}^{\wedge}$ - CS.

**Example 3.4:** Let  $\mathcal{H} = \{p,q\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{q\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \varphi, \varphi \rangle$ . Then intuitionistic subset  $\{\langle \mathcal{H}, \{p\}, \{q\} \rangle\}$  is an  $I\alpha_q^{\wedge}$ -CS but it is not an ICS.

**Theorem 3.5:** Every  $I\alpha_g^{\wedge}$ -CS is  $Ig\alpha$ -CS, but not conversely.

**Proof:** Let  $\mathcal{A}$  be  $I\alpha_g^{\wedge}$ -C. Let  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathcal{F}$  is I-O. Since every IOS is  $I\alpha$ -OS and  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -CS,  $I\alpha cl(\mathcal{A}) \subseteq \mathcal{F}$ , Hence  $\mathcal{A}$  is  $Ig\alpha$ -CS.

**Example 3.6:** Let  $X = \{l, m, n\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{l, n\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{l\}, \varphi \rangle, \mathcal{A}_3 = \langle \mathcal{H}, \{l\}, \{m\} \rangle, \mathcal{A}_4 = \langle \mathcal{H}, \varphi, \{m\} \rangle \mathcal{A}_5 = \langle \mathcal{H}, \varphi, \varphi \rangle \mathcal{A}_6 = \langle \mathcal{H}, \{n\}, \varphi \rangle$ . Here intuitionistic subset  $\{\langle \mathcal{H}, \varphi, \varphi \rangle, \langle \mathcal{H}, \varphi, \{l, m\} \rangle \text{ is } Ig\alpha$ - CS but it is not an  $I\alpha_g^{\alpha}$ -CS.

**Theorem 3.7:** Every *Ir-CS* is  $I\alpha_g^{\wedge}$ - *CS*, but not conversely.

**Proof:** Let  $\mathcal{A}$  be Ir-C in  $(\mathcal{H}, \tau)$ . Let  $\mathcal{A} \subseteq \mathcal{F}$  where  $\mathcal{F}$  is an  $I\alpha$ -O. Since  $\mathcal{A}$  is Ir-C,  $Ircl(\mathcal{A}) = \mathcal{A} \subseteq \mathcal{F}$ . Every Ir-CS is I-C and Every ICS is Ig-C, then  $Igcl(\mathcal{A}) \subseteq Ircl(\mathcal{A}) \subseteq \mathcal{F}$ . Therefore  $Igcl(\mathcal{A}) \subseteq \mathcal{F}$  and hence  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -CS.

**Example 3.8:** Let  $\mathcal{H}=\{3,4\}$  and the family  $I\tau=\{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3,\mathcal{A}_4\}$  where  $\mathcal{A}_1=<\mathcal{H},\varphi,~\{4\}>,\mathcal{A}_2=<\mathcal{H},\{3\},\{4\},>,\mathcal{A}_3=<\mathcal{H},\{3\},\varphi>,\mathcal{A}_4=<\mathcal{H},\varphi,\varphi>$ . Then intuitionistic subset  $\{<\mathcal{H},\varphi,\{4\}>\}$  are an  $I\alpha_{\rm g}^{\Lambda}$ -closed set but it is not a Ir-CS

**Theorem 3.9:** Every  $Ig^*$ -CS is  $I\alpha_g^{\wedge}$ -C, but not conversely.

**Proof:** Let  $\mathcal{A}$  be  $Ig^*$ -C in  $(\mathcal{H}, \tau)$ . Let  $\mathcal{A} \subseteq \mathcal{F}$  where  $\mathcal{F}$  is  $I\alpha$ -O. Since every  $I\alpha$ -OS is Ig-O and  $\mathcal{A}$  is  $Ig^*$ -C,  $Icl(\mathcal{A}) \subseteq \mathcal{F}$ . Every I-CS is Ig-C, then  $Igcl(\mathcal{A}) \subseteq Icl(A) \subseteq \mathcal{F}$ . Hence  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -C.

**Example 3.10:** Let  $\mathcal{H} = \{f,g\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{f\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{g\}, \{f\}, \rangle$ . Then intuitionistic subsets  $\{\langle \mathcal{H}, \varphi, \{g\} \rangle\}$  is an  $I\alpha_g^{\wedge}$ -CS but it is not a  $Ig^*$ -CS.

**Theorem 3.11:** Every Iw-CS is  $I\alpha_g^{\wedge}$ -C, but not conversely.

**Proof:** Let  $\mathcal{A}$  be a Iw-CS. Let  $\mathcal{A} \subseteq \mathcal{F}$  where  $\mathcal{F}$  is  $I\alpha$ -O. Since every  $I\alpha$ -OS is ISC and  $\mathcal{A}$  is Iw-C, Icl( $\mathcal{A}$ )  $\subseteq \mathcal{F}$ . Every I-CS is Ig-C. Therefore I-gcl( $\mathcal{A}$ )  $\subseteq I$ -cl( $\mathcal{A}$ )  $\subseteq \mathcal{F}$ . Hence  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -C.

**Example 3.12:** Let  $\mathcal{H} = \{e, i, j\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{e, j\}, \varphi \rangle, \mathcal{A}_2 = \langle \mathcal{H}, \{e\}, \varphi \rangle, \mathcal{A}_3 = \langle \mathcal{H}, \{e\}, \{i\} \rangle \mathcal{A}_4 = \langle \mathcal{H}, \varphi, \{i\} \rangle \mathcal{A}_5 = \langle \mathcal{H}, \varphi, \varphi \rangle, \mathcal{A}_6 = \langle \mathcal{H}, \{j\}, \varphi \rangle.$  Here intuitionistic subset  $\{\langle \mathcal{H}, \{e, i\}, \{j\} \rangle\}$  is  $I\alpha_g^{\mathsf{h}}$ - CS but it is not an Iw-CS.

**Remark 3.13:**  $I\alpha_q^{\wedge}$ -CS and Is-CS are independent as shown by the following examples.

**Example 3.14:** Let  $\mathcal{H} = \{a,b\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{b\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{a\}, \varphi \rangle$ . Here I subset  $\{\langle \mathcal{H}, \varphi, \{b\} \rangle\}$  is an Is-CS but not an  $I\alpha_q^{\wedge}$ -CS.

**Example 3.15:** Let  $\mathcal{H} = \{14,15\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle X, \varphi, \{14\} \rangle$ ,  $\mathcal{A}_2 = \langle X, \{15\}, \{14\}, \rangle$ . Then intuitionistic subset  $\{\langle \mathcal{H}, \{15\}, \varphi \rangle\}$  is an  $I\alpha_q^{\wedge}$ -CS but not an Is-CS.

**Remark 3.16:**  $I\alpha_q^{\wedge}$ -CS and Ip-CS are independent as shown by the following examples.

**Example 3.17:** Let  $\mathcal{H} = \{d, r, c\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{d, c\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{d, r\}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{d\}, \{c\} \rangle$ . Here intuitionistic subset  $\{\langle \mathcal{H}, \varphi, \{r\} \rangle\}$  is an Ip-C but not an  $I\alpha_q^{\wedge}$ -CS.

**Example 3.18:** Let  $\mathcal{H} = \{w,b\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle \mathcal{H},\varphi,\{w\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H},\varphi,\{w\} \rangle$ 

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

 $\mathcal{H}, \{b\}, \{w\}, >$ . Then I subset  $\{\langle \mathcal{H}, \{b\}, \varphi \rangle\}$  is an  $I\alpha_q^{\wedge}$ - CS but not an Ip- CS.

**Remark 3.19:**  $I\alpha_a^{\wedge}$ -CS and  $I\alpha$ -CS are independent as shown by the following examples.

**Example 3.20:** Let  $\mathcal{H} = \{u, v, h\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4\}$  where  $A_1 = \langle \mathcal{H}, \{u, h\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{u\}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{u\}, \{v\} \rangle \mathcal{A}_4 = \langle \mathcal{H}, \varphi, \{v\} \rangle$ . Here intuitionistic subset  $\{\langle \mathcal{H}, \varphi, \{u, v\} \rangle\}$  is an  $I\alpha$ -C but not an  $I\alpha_{\alpha}^{\wedge}$ - CS.

**Example 3.21:** Let  $\mathcal{H} = \{1,2\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{2\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{1\}, \varphi \rangle$ . Then intuitionistic subsets  $\{\langle \mathcal{H}, \{2\}, \{1\} \rangle\}$  is an  $I\alpha_q^{\wedge}$ -CS but not an  $I\alpha_q$  set.

**Remark 3.22:**  $I\alpha_q^{\wedge}$ - CS and  $I\beta$ - CS are independent as shown by the following examples.

**Example 3.23:** Let  $\mathcal{H} = \{6,7,8\}$  and the family  $\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3,\mathcal{A}_4\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{6,8\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{6\}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{6\}, \{7\} \rangle$ ,  $\mathcal{A}_4 = \langle \mathcal{H}, \varphi, \{7\} \rangle$ . Here intuitionistic subset  $\{\langle \mathcal{H}, \varphi, \{7,8\} \}$  is an  $I\beta$ -C but not an  $I\alpha_{\alpha}^{\beta}$ -CS.

**Example 3.24:** Let  $\mathcal{H} = \{x, y, z\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{x, y\}, \{z\} \rangle, \mathcal{A}_2 = \langle \mathcal{H}, \{x\}, \{y, z\} \rangle, \mathcal{A}_3 = \langle \mathcal{H}, \{x\}, \{y\} \rangle$ . Then intuitionistic subset  $\{\langle \mathcal{H}, \{x\}, \varphi \rangle\}$  is an  $I\alpha_{\alpha}^{\Lambda}$ - CS but not an  $I\beta$ - CS.

**Remark 3.25:**  $I\alpha_g^{\wedge}$ - CS and Isg- CS are independent as shown by the following examples.

**Example 3.26:** Let  $\mathcal{H} = \{ k, \ell, m \}$  and the family  $I\tau = \{ \varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6 \}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{ k, m \}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{ k \}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{ k \}, \{ \ell \} \rangle$ ,  $\mathcal{A}_4 = \langle \mathcal{H}, \varphi, \{ \ell \} \rangle$ ,  $\mathcal{A}_5 = \langle \mathcal{H}, \varphi, \varphi \rangle$ ,  $\mathcal{A}_6 = \langle \mathcal{H}, \{ m \}, \varphi \rangle$ . Here intuitionistic subset  $\{ \langle \mathcal{H}, \varphi, \{ \ell, m \} \rangle \}$  is an Isg- CS but not an  $I\alpha_q^{\beta}$ - CS.

**Example 3.27:** Let  $X = \{\$, \#, @\}$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{\$, @\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{\$\}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{\$\}, \{\#\} \rangle$  and the family  $I\tau = \{\varphi, \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5, \mathcal{A}_6\}$  where  $\mathcal{A}_1 = \langle \mathcal{H}, \{\$\}, \varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H}, \{\$\}, \varphi \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H}, \{\$\}, \{\#\} \rangle$ . Then intuitionistic subset  $\{\langle \mathcal{H}, \{@\}, \{\#\} \rangle\}$  is an  $I\alpha_A^{\wedge}$ - CS but not an Isg- CS.

**Remark 3.28:**  $I\alpha_q^{\Lambda}$ - CS and Igs- CS are independent as shown by the following examples.

**Example 3.29:** Let  $\mathcal{H}=\{3,4,5\}$  and the family  $I\tau=\{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2\}$  where  $\mathcal{A}_1=<\mathcal{H},\{3,5\},\varphi>$ ,  $\mathcal{A}_2=<\mathcal{H},\varphi,\{4,5\}>$ . Here intuitionistic subset  $\{<\mathcal{H},\{3,5\},\varphi>\}$  is an Igs-C, but not an  $I\alpha_g^{\wedge}$ -CS. Here intuitionistic subset  $\{<\mathcal{H},\{4\},\varphi>\}$  is an  $I\alpha_g^{\wedge}$ -CS but not an Igs-C.

**Theorem 3.30:** Let  $\mathcal{A}$  be an  $I\alpha_q^{\wedge}$ - CS in a ITS of  $\mathcal{H}$ . Then  $Igcl(\mathcal{A})$ -  $\mathcal{A}$  contains no non-empty  $I\alpha$ - CS in  $\mathcal{H}$ .

**Proof:** Let F be a  $I\alpha$ - CS such that  $F \subseteq Igcl(\mathcal{A})$ -  $\mathcal{A}$ . Then  $F \subseteq \mathcal{H}$  -  $\mathcal{A}$  implies  $\mathcal{A} \subseteq \mathcal{H}$  -F. Since  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ - CS and  $\mathcal{H}$  -F is  $I\alpha$ -OS, then  $Igcl(\mathcal{A}) \subseteq \mathcal{H}$  - F. That is  $F \subseteq \mathcal{H}$  -  $Igcl(\mathcal{A})$ . Hence  $F \subseteq (Igcl(\mathcal{A})$ -A)  $\cap \mathcal{H}$  -  $Igcl(\mathcal{A}) = \varphi$ . Thus  $F = \varphi$ .

**Remark 3.31:** The converse of the above theorem need not be true, that means if Igcl(A)- A contains no non-empty  $I\alpha$ -CS.

**Example 3.32:** Let  $\mathcal{H} = \{8,9,10\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3\}$  where  $\mathcal{A}_1 = <\mathcal{H}, \{8,9\}, \{10\} >$ ,  $\mathcal{A}_2 = <\mathcal{H}, \{8\}, \{9,10\} >$ ,  $\mathcal{A}_3 = <\mathcal{H}, \{8,10\}, \{9\} >$ . Let  $\mathcal{A} = <\mathcal{H}, \{10\}, \{9\} >$  then  $Igcl(\mathcal{A})$ -  $\mathcal{A} = <\mathcal{H}, \{0\} >$ , it does not contains non-empty  $I\alpha$ - Iacksymm CS in Iacksymm CS in Iacksymm CS in Iacksymm CS in Iacksymm CS is not an Iacksymm CS.

**Corollary 3.33:** Let  $\mathcal{A}$  be an  $I\alpha_q^{\wedge}$ - CS. Then  $\mathcal{A}$  is  $I\alpha$ -C if and only if  $Igcl(\mathcal{A})$ -  $\mathcal{A}$  is I-C.

**Proof:** Let  $\mathcal{A}$  be  $I\alpha_g^{\wedge}$ - CS. If  $\mathcal{A}$  is  $I\alpha$ -C, then we have  $Igcl(\mathcal{A})$ -  $\mathcal{A} = \varphi$  which is I CS. Conversely, let  $Igcl(\mathcal{A})$ -  $\mathcal{A}$  is IC. Then, by theorem 3.30,  $Igcl(\mathcal{A})$ -  $\mathcal{A}$  does not contain any non-empty I-C subset and since  $Igcl(\mathcal{A})$ -  $\mathcal{A}$  is I-C subset of itself, then  $Igcl(\mathcal{A})$ -  $\mathcal{A} = \varphi$ . This implies that  $Igcl(\mathcal{A}) = \mathcal{A}$  and so  $\mathcal{A}$  is  $I\alpha$ - CS.

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

**Remark 3.34:** Union of any two  $I\alpha_q^{\wedge}$ - *CS* is  $I\alpha_q^{\wedge}$ -C.

**Proof:** Let  $\mathcal{A}$  and  $\mathfrak{B}$  are any two  $I\alpha_g^{\wedge}$ - CS. Let  $\mathcal{A} \cup \mathfrak{B} \subseteq \mathcal{F}$  where  $\mathcal{F}$  is  $I\alpha$ -O. Then  $\mathcal{A} \subseteq \mathcal{F}$  and  $\mathfrak{B} \subseteq \mathcal{F}$ . Since  $\mathcal{A}$  and  $\mathfrak{B}$  are  $I\alpha_g^{\wedge}$ - CS,  $I\gcd(\mathcal{A}) \subseteq \mathcal{F}$  and  $I\gcd(\mathfrak{B}) \subseteq \mathcal{F}$ . Then  $I\gcd(\mathcal{A} \cup \mathfrak{B}) = I\gcd(\mathcal{A}) \cup I\gcd(\mathfrak{B}) \subseteq \mathcal{F}$ . Hence  $\mathcal{A} \cup \mathfrak{B}$  is  $I\alpha_g^{\wedge}$ - CS.

**Example 3.35:** Let  $\mathcal{H} = \{12,13\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3,\mathcal{A}_4\}$  where  $\mathcal{A}_1 = \langle \mathcal{H},\varphi,\varphi \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H},\{12\},\{13\}\rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H},\{12\},\varphi \rangle$ ,  $\mathcal{A}_4 = \langle \mathcal{H},\varphi,\{13\}\rangle$ . Then intuitionistic subsets  $\langle \mathcal{H},\varphi,\{12\}\rangle$  and  $\langle \mathcal{H},\{13\},\{12\}\rangle$  are  $I\alpha_g^A$ -C and their union is also  $I\alpha_g^A$ -C.

**Remark 3.36:** Intersection of any two  $I\alpha_q^{\wedge}$ -CS is  $I\alpha_q^{\wedge}$ -CS which is seen from the following example.

**Example 3.37:** Let  $\mathcal{H} = \{p,q,c\}$  and the family  $I\tau = \{\varphi,\mathcal{H},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3\}$  where  $\mathcal{A}_1 = \langle \mathcal{H},\varphi,\{p,c\} \rangle$ ,  $\mathcal{A}_2 = \langle \mathcal{H},\{p\},\{c\} \rangle$ ,  $\mathcal{A}_3 = \langle \mathcal{H},\{p,q\},\varphi \rangle$ . Then the intuitionistic subsets  $\langle \mathcal{H},\varphi,\{p,q\} \rangle$  and  $\langle \mathcal{H},\{p,c\},\varphi \rangle$  are  $I\alpha_g^{\wedge}$ -C and their intersection is also  $I\alpha_g^{\wedge}$ -C.

**Remark 3.38:** In an *ITS*  $(\mathcal{H}, I\tau)$  if  $Igcl(\mathcal{A}) = \mathcal{A}$  then  $\mathcal{A}$  is  $I\alpha_q^{\wedge}$ -C.

**Theorem 3.39:** Let  $\mathcal{A}$  be an  $I\alpha_g^{\wedge}$ -CS of an ITS  $(\mathcal{H}, I\tau)$  and  $\mathcal{A} \subseteq \mathfrak{B} \subseteq Igcl(\mathcal{A})$ , then  $\mathfrak{B}$  is  $I\alpha_g^{\wedge}$ -C in  $\mathcal{H}$ .

**Proof:** Let A be an  $I\alpha_g^{\wedge}$ - CS of an ITS  $(\mathcal{H}, \tau)$  and  $\mathcal{A} \subseteq \mathfrak{B} \subseteq Igcl(\mathcal{A})$ . Let  $\mathfrak{B} \subseteq \mathcal{F}$  where  $\mathcal{F}$  be an  $I\alpha$ -O. Then  $\mathcal{A} \subseteq \mathfrak{B}$  implies  $\mathcal{A} \subseteq \mathcal{F}$  and since  $\mathcal{A}$  is an  $I\alpha_g^{\wedge}$ -C, we have  $Igcl(\mathcal{A}) \subseteq \mathcal{F}$ . Now  $\mathfrak{B} \subseteq Igcl(\mathcal{A})$  which implies  $Igcl(\mathfrak{B}) \subseteq Igcl(\mathcal{A}) = Igcl(\mathcal{A}) \subseteq \mathcal{F}$ . Hence  $\mathfrak{B}$  is  $I\alpha_g^{\wedge}$ -C in  $\mathcal{H}$ .

#### **Inter-Relationship 3.40:**



**Relationship 3.41:** The above theorems, we have the following diagram.

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452



## 4. INTUITIONISTIC $\alpha_g^{\wedge}$ -OPEN SETS

**Definition 4.1:** A subset  $\mathcal{A}$  of  $(X, I\tau)$  is called an *intuitionistic alpha*  $^{\wedge}$  *generalized open set* (briefly  $I\alpha_g^{\wedge} - OS$ ) if  $\mathcal{H}$   $\mathcal{A}$  is  $I\alpha_g^{\wedge} - C$ . The collection of all  $I\alpha_g^{\wedge} - OS$  in  $(\mathcal{H}, I\tau)$  is denoted by  $I\alpha_g^{\wedge} O(\mathcal{H}, I\tau)$ .

**Theorem 4.2:** Every *I*-OS of an *I*TS  $(\mathcal{H}, I\tau)$  is  $I\alpha_g^{\wedge}$ -OS.

**Theorem 4.3:** Every  $I\alpha_g^{\wedge}$ -OS is  $Ig\alpha$ -O.

**Theorem 4.4:** Every  $Ig^*$ -OS is  $I\alpha_g^{\wedge}$ -O.

**Theorem 4.5:** Every *Iw-OS* is  $I\alpha_g^{\wedge}$ -O.

**Theorem 4.6:** Every *I*r-OS is  $I\alpha_g^{\wedge}$ -O.

**Remark 4.7:**  $I\alpha_g^{\wedge}$ -OS and Is-OP are independent.

**Remark 4.8:**  $I\alpha_g^{\wedge}$ -OS and Ip-OS are independent.

**Remark 4.9:**  $I\alpha_q^{\wedge}$ -OS and  $I\alpha$ -OS are independent.

**Remark 4.10:**  $I\alpha_g^{\wedge}$ -OS and  $I\beta$ -OS are independent.

**Remark 4.11:**  $I\alpha_g^{\wedge}$ -OS and Isg-OS are independent.

**Remark 4.12:**  $I\alpha_q^{\wedge}$ -OS and Igs-OS are independent.

**Proof:** The proof follows from theorem 3.2 to 3.29

**Theorem 4.13:** Let  $\mathcal{A}$  be an intuitionistic subset of an *I*TS  $(\mathcal{H}, I\tau)$  then  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -O if and only if  $\mathcal{F} \subseteq Igint(\mathcal{A})$  whenever  $\mathcal{F}$  is *I*-C and  $\mathcal{F} \subseteq \mathcal{A}$ .

**Proof:** Necessity: Let  $\mathcal{A}$  be an  $I\alpha_g^{\wedge}$ -O in  $\mathcal{H}$  and  $\mathcal{F}$  be I-C in  $\mathcal{H}$  such that  $\mathcal{F} \subseteq \mathcal{A}$ , then  $\mathcal{F}^c$  is an I-O in  $\mathcal{H}$  such that  $\mathcal{A}^c \subseteq \mathcal{F}^c$ ,  $\mathcal{A}^c$  is an  $I\alpha_g^{\wedge}$ -C so  $Igcl(\mathcal{A}^c) \subseteq \mathcal{F}^c$  but  $Igcl(\mathcal{A}^c) = (Igint(\mathcal{A}))^c \subseteq \mathcal{F}^c$  implies  $\mathcal{F} \subseteq Igint(\mathcal{A})$ .

Sufficiency: Let F be an I-O in  $\mathcal H$  such that  $\mathcal A^c\subseteq F$ . Then  $F^c$  is I-C in  $\mathcal H$  and  $F^c\subseteq \mathcal A$ .

To

Prove:  $\mathcal{A}^c$  is an  $I\alpha_g^{\wedge}$ -C.

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

Now  $F^c \subseteq Igint(\mathcal{A})$  which implies  $Igcl(\mathcal{A}^c) = (Igint(\mathcal{A}))^c \subseteq F$ . Hence  $\mathcal{A}^c$  is an  $I\alpha_g^{\wedge}$ -C which implies  $\mathcal{A}$  is an  $I\alpha_g^{\wedge}$ -O in  $\mathcal{H}$ .

## 5. $I\alpha_q^{\wedge}$ -closure and $I\alpha_q^{\wedge}$ -interior

**Definition 5.1:** Let  $\mathcal{A}$  be a subset of an *ITS* of  $\mathcal{H}$ . Then  $I\alpha_g^{\wedge}$ -closure of  $\mathcal{A}$  is defined as the intersection of all  $I\alpha_g^{\wedge}$ -CS of  $\mathcal{H}$  containing  $\mathcal{A}$ . It is denoted by  $I\alpha_g^{\wedge}cl(\mathcal{A})$ .

**Theorem 5.2:** If  $\mathcal{A}$  is any subset of  $\mathcal{H}$ ,  $I\alpha_g^{\wedge}cl(\mathcal{A})$  is  $I\alpha_g^{\wedge}$ -C. In fact  $I\alpha_g^{\wedge}cl(\mathcal{A})$  is the smallest  $I\alpha_g^{\wedge}$ -CS in  $\mathcal{H}$  Containing  $\mathcal{A}$ 

**Proof:** Follows from Definition 5.1 and Theorem 3.3.

**Theorem 5.3:** A subset  $\mathcal{A}$  of  $\mathcal{H}$  is  $I\alpha_a^{\wedge}$ -C iff  $I\alpha_a^{\wedge}cl(\mathcal{A}) = \mathcal{A}$ .

**Proof:** Suppose  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -C implies  $I\alpha_g^{\wedge}cl(\mathcal{A}) = \mathcal{A}$  is obvious. Conversely, suppose  $I\alpha_g^{\wedge}cl(\mathcal{A}) = \mathcal{A}$ . By Theorem 5.2,  $I\alpha_g^{\wedge}cl(\mathcal{A})$  is  $I\alpha_g^{\wedge}$ -C and hence  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -C.

**Theorem 5.4:** If  $\mathcal{A}$  and  $\mathfrak{B}$  be subsets of an *ITS*  $(\mathcal{H}, I\tau)$ , then the following results hold:

- (i)  $I\alpha_a^{\wedge}cl(\varphi) = \varphi$ .
- (ii)  $I\alpha_a^{\wedge} cl(\mathcal{H}) = \mathcal{H}$ .
- (iii)  $\mathcal{A} \subseteq I\alpha_q^{\wedge} cl(\mathcal{A}).$
- (iv)  $\mathcal{A} \subseteq \mathfrak{B} \Longrightarrow I\alpha_g^{\wedge} cl(\mathcal{A}) \subseteq I\alpha_g^{\wedge} cl(\mathfrak{B}).$
- (v)  $I\alpha_a^{\wedge} cl(I\alpha_a^{\wedge} cl(\mathcal{A})) = I\alpha_a^{\wedge} cl(\mathcal{A}).$
- (vi)  $I\alpha_a^{\wedge} cl(\mathcal{A} \cup \mathcal{B}) \supseteq I\alpha_a^{\wedge} cl(\mathcal{A}) \cup I\alpha_a^{\wedge} cl(\mathcal{B}).$
- (vii)  $I\alpha_a^{\wedge} cl(\mathcal{A} \cap \mathfrak{B}) \subseteq I\alpha_a^{\wedge} cl(\mathcal{A}) \cap I\alpha_a^{\wedge} cl(\mathfrak{B}).$

**Proof:** (i), (ii), (iii) and (iv) follows from Definition 5.1. (v) Follows from Theorem 5.2 and Theorem 5.3 (vi) from (iv)  $I\alpha_{g}^{\wedge}cl(\mathcal{A}) \subseteq I\alpha_{g}^{\wedge}cl(\mathcal{A} \cup \mathcal{B})$  and  $I\alpha_{g}^{\wedge}cl(\mathcal{B}) \subseteq I\alpha_{g}^{\wedge}cl(\mathcal{A} \cup \mathcal{B})$  which implies  $I\alpha_{g}^{\wedge}cl(\mathcal{A} \cup \mathcal{B}) \supseteq I\alpha_{g}^{\wedge}cl(\mathcal{A}) \cup I\alpha_{g}^{\wedge}cl(\mathcal{B})$ . (vii) Again, from (iv)  $I\alpha_{g}^{\wedge}cl(\mathcal{A}) \supseteq I\alpha_{g}^{\wedge}cl(\mathcal{A} \cap \mathcal{B})$  and  $I\alpha_{g}^{\wedge}cl(\mathcal{B}) \supseteq I\alpha_{g}^{\wedge}cl(\mathcal{A} \cap \mathcal{B}) \Rightarrow I\alpha_{g}^{\wedge}cl(\mathcal{A} \cap \mathcal{B}) \subseteq I\alpha_{g}^{\wedge}cl(\mathcal{A} \cap \mathcal{B})$ .

**Definition 5.5:** Let  $\mathcal{A}$  be a subset of an ITS of  $\mathcal{H}$ . Then  $I\alpha_g^{\wedge}$ -interior of  $\mathcal{A}$  is defined as the union of all  $I\alpha_g^{\wedge}$ -OS of  $\mathcal{H}$  contained in  $\mathcal{A}$ . It is denoted by  $I\alpha_g^{\wedge}$ int( $\mathcal{A}$ ).

**Theorem 5.6:** If  $\mathcal{A}$  is any subset of  $\mathcal{H}$ ,  $I\alpha_g^{\wedge}int(\mathcal{A})$  is  $I\alpha_g^{\wedge}$ -O. In fact  $I\alpha_g^{\wedge}int(\mathcal{A})$  is the largest  $I\alpha_g^{\wedge}$ -OS contained in  $\mathcal{A}$ .

**Proof:** Follows from Definition 5.5 and Theorem 4.2.

**Theorem 5.7:** Let  $\mathcal{A}$  be subset  $\mathcal{A}$  of  $\mathcal{H}$ . Then A is  $I\alpha_q^{\wedge}$ -O if and only if  $I\alpha_q^{\wedge}$  int $(\mathcal{A}) = \mathcal{A}$ .

**Proof:**  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -O implies  $I\alpha_g^{\wedge}int(\mathcal{A}) = \mathcal{A}$  is obvious. Conversely, let  $I\alpha_g^{\wedge}int(\mathcal{A}) = \mathcal{A}$ . By Theorem 5.6,  $I\alpha_g^{\wedge}int(\mathcal{A})$  is  $I\alpha_g^{\wedge}$ -O and hence  $\mathcal{A}$  is  $I\alpha_g^{\wedge}$ -O.

**Theorem 5.8:** If  $\mathcal{A}$  and  $\mathfrak{B}$  are subsets of an *ITS*  $(\mathcal{H}, I\tau)$ , then the following results hold:

(i)  $I\alpha_a^{\wedge} int(\varphi) = \varphi$ .

Volume 13, No. 2, 2022, p. 3188-3196

https://publishoa.com ISSN: 1309-3452

- (ii)  $I\alpha_q^{\wedge} int(\mathcal{H}) = \mathcal{H}$ .
- (iii)  $I\alpha_q^{\wedge}int(\mathcal{A})\subseteq \mathcal{A}$ .
- (iv) If  $\mathcal{A} \subseteq \mathcal{B}$ , then  $I\alpha_q^{\wedge}int(\mathcal{A}) \subseteq I\alpha_q^{\wedge}int(\mathcal{B})$ .
- (v)  $I\alpha_a^{\wedge}int(I\alpha_a^{\wedge}int(\mathcal{A})) = I\alpha_a^{\wedge}int(\mathcal{A}).$
- (vi)  $I\alpha_a^{\wedge}int(\mathcal{A} \cup \mathcal{B}) \supseteq I\alpha_a^{\wedge}int(\mathcal{A}) \cup I\alpha_a^{\wedge}int(\mathcal{B})$ .
- (vii)  $I\alpha_a^{\wedge}int(\mathcal{A} \cap \mathfrak{B}) \subseteq I\alpha_a^{\wedge}int(\mathcal{A}) \cap I\alpha_a^{\wedge}int(\mathfrak{B}).$

**Proof:** (i), (ii), (iii) and (iv) follows from Definition 5.5 (v) follows from Theorem 5.6 and Theorem 5.7 (vi) from (iv)  $I\alpha_g^{\wedge}int(\mathcal{A}) \subseteq I\alpha_g^{\wedge}int(\mathcal{A} \cup \mathfrak{B})$  and  $I\alpha_g^{\wedge}int(\mathfrak{B}) \subseteq I\alpha_g^{\wedge}int(\mathcal{A} \cup \mathfrak{B})$  which implies  $I\alpha_g^{\wedge}int(\mathcal{A} \cup \mathfrak{B}) \supseteq I\alpha_g^{\wedge}int(\mathcal{A}) \cup I\alpha_g^{\wedge}int(\mathfrak{B})$ . Again, from (iv)  $I\alpha_g^{\wedge}int(\mathcal{A}) \supseteq I_{ntu}\alpha_g^{\wedge}int(\mathcal{A} \cap \mathfrak{B})$  and  $I\alpha_g^{\wedge}int(\mathfrak{B}) \supseteq I\alpha_g^{\wedge}int(\mathcal{A} \cap \mathfrak{B}) \Rightarrow I\alpha_g^{\wedge}int(\mathcal{A} \cap \mathfrak{B}) \subseteq I\alpha_g^{\wedge}int(\mathcal{A}) \cap I\alpha_g^{\wedge}int(\mathfrak{B})$ .

#### **References:**

- 1. D. Coker, An introduction to intuitionistic topological spaces. Busefal. 2000; 81: 51-
- 2. D. Coker, A Note On Intuitionistic Sets and Intuitionistic Points, Turkish Journal of Mathematics 20(3) (1996), 343-351
- 3. G. Sasikala, M. Navaneetha Krishnan Study on intuitionistic semi-open sets, IOSR Journal of Mathematics, vol 12, (2016), pp 79-84.
- 4. H.Taha Jassim, R. Samer Yaseen and S. Luma Abdual Baqi, some Generalized sets and Mappings in intuitionistic topological space, Journal of AL. Qadisiyah for computer science and Mathematices 7(2)(2015), 80-96.
- 5. J. Younis Yaseen, G.Asmaa Raouf(2009) On Generalized Closed Sets and Generalized Continuity On Intuitionistic Topological spaces, Journal of al-anbar University for pure Science, 3(1), (2009).
- 6. K. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20 (1986),87-96.56.
- 7. K.Meena and V.P.Anuja, On alpha <sup>∧</sup> generalized closed sets in topological spaces, Journal of xi's an shiyou University, Natural Science Edition vol 16 Issue 7, 184-193.
- $8. \hspace{0.5cm} L. \hspace{0.1cm} A. \hspace{0.1cm} Zadeh \hspace{0.1cm}, \hspace{0.1cm} Fuzzy \hspace{0.1cm} sets, \hspace{0.1cm} Information \hspace{0.1cm} and \hspace{0.1cm} control, \hspace{0.1cm} 8(1965) \hspace{0.1cm} 338\text{-}353.$