Isometric Path Partition Number of Corona Product of Graphs

R.Prabha ${ }^{1}$ and R.Kalaiyarasi ${ }^{2, *}$
${ }^{1}$ Department of Mathematics Ethiraj College for Women, Chennai, Tamilnadu, India
${ }^{2}$ Research Scholar, University of MadrasDepartment of Mathematics
SRM Institute of Science and Technology, Kattankulathur Tamilnadu-603202, India.
prabha75@gmail.com, *kalaiyar@srmist.edu.in

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract

The collection of isometric paths that partition the vertex set of a graph G is an isometric path partition of G. The minimum cardinality of an isometric path partitionis called the isometric path partition number of G. In this paper, we computed an upper bound for the isometric path partition number of corona product of $G \odot H$ and investigate the isometric path partition number of corona product of G with path, cycle,complete graph and ladder graph.

AMS Subject Classification: 05C12; 05C38; 05C70
Keywords and Phrases: Isometric path; Path partition; Corona product

1 Introduction

Harary and Frucht [5] introduced a new product of two graphs G and H called corona productdenoted by $G \odot H$. Let $G=(V, E)$ and $H=\left(V_{0}, E_{0}\right)$ be the two graphs. The corona product of G and H is the graph $G \odot H$ is obtained by taking one copy of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ called the centre graph and $|V(G)|$ copies of H , called the outer graph and by joining each vertex of the $i^{\text {th }}$ copy of H to the $i^{\text {th }}$ vertex of G, where $1 \leq i \leq|V(G)|$. In general, the corona product $G \odot H$ are neither commutative nor associative. For more properties on the corona product refer [1], [8], [9]. A block of G is a maximal subgraph without a cut-vertex. Throughout this paper, we consider an undirected connected graph without loops and multiple edges. We refer to Bondy and Murty [3] for the basic definitions and terminology.

We call a shortest path joining two vertices in a graph G as an isometric path. An isometric subgraph [7] of a graph G is defined as a subgraph H of G such that $\quad d_{H}(u, v)=d_{G}(u, v)$ for all $u, v \in V(H)$. A set of subgraphs H_{1}, \ldots, H_{k} of a graph G is an isometric cover of G if each $H_{i}, 1 \leq i \leq k$, is isometric in G and $\mathrm{U}_{i=1}^{K} V\left(H_{i}\right)=V(G)$. An isometric cover of G is called as an isometric partition of G if $V\left(H_{i}\right) \cap V\left(H_{j}\right)=\varphi$ for $i \neq j$. An isometric path partition of G is defined as a set of isometric paths that partition the vertex set V of G. The isometric path partition number, denoted by $i p_{p}(G)$ is the cardinality of a minimum isometric path partition of G. The isometric path partition problem is to find a minimum isometric path partition of G. When the length of an isometric path is equal to the diameter of the graph, we denote such path as a diametral isometric path of a graph G.

Aggarwal et al. presented a study on the isometric path problem in [2]. Paul Manuel [6] proved NP-completeness of the isometric path partition problem and Fisher et al. [4] gave the lower bound for the same. In [6], Paul Manuel presented the isometric path partition number of multi-dimensional grid, torus and Benes network. In this paper, we compute the isometric path partition number of corona product of G with path, cycle, complete graph and ladder graph and an upper bound for the isometric path partition number of corona productof G and H.

Volume 13, No. 2, 2022, p. 3286-3293
https://publishoa.com
ISSN: 1309-3452
Proposition 1.1. [4] If diam (G) denotes the diameter of a graph G, $i p_{p}(G) \geq i p_{c}(G) \geq\left\lceil\frac{|V(G)|}{\operatorname{diam}(G)+1}\right\rceil$
Proposition 1.2. Let G be a connected graph with k cut-vertices. Let $H_{1}, H_{2}, \ldots, H_{k}$ be blocks of the graph G forming an isometric partition of G. If P_{i} is an isometric path partition of $H_{i}, i \in[k]$ such that every $P_{i}{ }^{j} \in \mathrm{P}_{i}$ is a diametral isometric path and each cut-vertex in G is an internal vertex of some $P_{i}{ }^{j}$, then $i p_{p}(G)=$ $\sum_{i=1}^{k} i p_{p}\left(H_{i}\right)$.

Proof. Since $H_{1}, H_{2}, \ldots, H_{k}$ is an isometric partition of $G, i p_{p}(G) \leq \sum_{i=1}^{k} i p_{p}\left(H_{i}\right)$. Suppose $i p_{p}(G)<$ $\sum_{i=1}^{k} i p_{p}\left(H_{i}\right)$, then there exist atleast two diametral isometric paths $P_{a}^{c} \in \mathrm{P}_{a}$ and $P_{b}^{d} \in \mathrm{P}_{b}$ of H_{a} and H_{b} respectively, which may be combine to form an isometric path of G. Since each H_{i} is a block, the two cutvertices in H_{a} and H_{b} must be the end vertices of the two paths P_{a}^{c} and P_{b}^{d} respectively, which is a contradiction to our assumption that each cut-vertex is an internal vertex. Hence the proof.

Corollary 1.1. Let G be a connected graph with k cut-vertices. Let $H_{1}, H_{2}, \ldots, H_{k}$ be blocks of the graph G forming an isometric partition of G. If P_{i} is an isometric path partition of $H_{i}, i \in[k]$ such that atleast two adjacent cut-vertices of G are end vertices of some P_{i}^{j}, then $\operatorname{ip}_{p}(G)<\sum_{i=1}^{k} i p_{p}\left(H_{i}\right)$.

Observation 1. Let G and H be the two graphs of order n and m respectively. Then the corona graph $G \odot H$ of order $n(m+1)$ contains exactly n cut-vertices and also the graph induced by all n cut-vertices is the graph G.

One can easily verify that the union of the isometric path partitions of G and the n copiesof H forms an isometric path partition of $G \odot H$. Hence the following result.

Proposition 1.3. Let G and H be the two graphs of order n and m respectively. Then $i_{p}(G \odot H) \leq n$ $\left(i p_{p}(H)\right)+i p_{p}(G)$.

2 Isometric path partition of $G \odot C_{m}$ and $G \odot P_{m}$

We start this section with the computation of isometric path partition of corona product of K_{1} and a cycle graph or a path graph.

Proposition 2.1. Let G be either a cycle graph or a path graph of order $n \geq 6$. Then $i p_{p}\left(K_{1} \odot G\right)=$ $\left\lceil\frac{n+1}{3}\right\rceil$.

Figure 1: Isometric path partition of $K_{1} \odot C_{m}$

Proof. Observe that the diameter of $K_{1} \odot G$ is 2. By Proposition 1.1, ip $_{p}\left(K_{1} \odot G\right) \geq\left\lceil\frac{n+1}{3}\right\rceil$. Suppose G is a cycle C_{n}. Label the vertices of the cycle by $v_{1}, v_{2}, \ldots, v_{n}$ and the K_{1}-vertex by v_{0}. The following gives an isometric path partition of the required cardinality.

Case 1: $n \equiv 0(\bmod 3)$.
$\mathrm{P}_{n}=\left\{\left(v_{1}-v_{2}-v_{3}\right),\left(v_{4}-v_{5}-v_{6}\right), \ldots,\left(v_{n-2}-v_{n-1}-v_{n}\right), v_{0}\right\}$ (Refer figure 1(a)).
Case 2: $n \equiv 1(\bmod 3)$.
$P_{n}=\left\{\left(v_{1}-v_{2}-v_{3}\right),\left(v_{4}-v_{5}-v_{6}\right), \ldots,\left(v_{n-3}-v_{n-2}-v_{n-1}\right),\left(v_{n}-v_{0}\right)\right\}$ (Refer figure $\left.1(\mathbf{b})\right)$.
Case 3: $n \equiv 2(\bmod 3)$.
$\mathrm{P}_{n}=\left\{\left(v_{3}-v_{4}-v_{5}\right),\left(v_{6}-v_{7}-v_{8}\right), \ldots,\left(v_{n-5}-v_{n-4}-v_{n-3}\right),\left(v_{2}-v_{0}-v_{n-2}\right),\left(v_{1}-v_{n}-v_{n-1}\right)\right\}($ Refer figure $1(\mathrm{c}))$.
Suppose if G is a path P_{n}. Then for the cases $n \equiv 0,1(\bmod 3)$, the above partition attainsthe lower bound. For $n \equiv 2(\bmod 3), \mathrm{P}_{n}=\left\{\left(v_{2}-v_{3}-v_{4}\right),\left(v_{5}-v_{6}-v_{7}\right), \ldots,\left(v_{n-3}-v_{n-2}-v_{n-1}\right),\left(v_{n}-v_{0}-v_{1}\right)\right\}$ is the required partition. Hence the proof.

Proposition 2.2. Let G be a connected graph of order n. Then

$$
i p_{p}\left(G \odot C_{m}\right)= \begin{cases}n+\left\lceil\frac{n}{2}\right\rceil, & m=3 \\ n\left\lceil\frac{m}{3}\right\rceil+i p_{p}(G), & m>3 \text { and } m \equiv 0(\bmod 3) \\ \left.n \left\lvert\, \frac{m}{3}\right.\right\rceil+\left\lceil\frac{n}{2}\right\rceil, & m \equiv 1(\bmod 3) \\ 2 n+i p_{p}(G), & m=5 \\ n\left\lceil\frac{m}{3}\right\rceil, & m>5 \text { and } m \equiv 2(\bmod 3)\end{cases}
$$

Proof. Let $H_{1}, H_{2}, \ldots, H_{n}$ be an isometric partition of $G \odot C_{m}$ which are n copies of $K_{1} \odot C_{m}$. Let P_{i} be the isometric path partition of $H_{i}, 1 \leq i \leq n$. Then by Proposition 2.1, ip $\left(K_{1} \odot C_{m}\right)=\left\lceil\frac{m+1}{3}\right\rceil$ for $m \geq 6$. Observe that each H_{i} is an isometric subgraph of diameter 2, hence by Proposition 1.5, it requires atmost $n\left\lceil\frac{m}{3}\right\rceil+i p_{p}(G)$ number of isometric paths to cover $G \odot C_{m}$. Now, we compute the isometric path partition number of $G \odot C_{m}$ in the following cases.

Case 1: $m \equiv 0(\bmod 3)$.
Subcase 1.1: $m=3$.
Clearly $i p_{p}\left(K_{1} \odot C_{3}\right)=2$. Observe that each H_{i} is a K_{4} that can be partitioned with P_{2} - paths (Refer figure 2(a)). A P_{2}-path through the cut-vertex of a H_{i} can be combined witha P_{2}-path of an adjacent H_{j}. Hence a

Volume 13, No. 2, 2022, p. 3286-3293
https://publishoa.com
ISSN: 1309-3452
minimum of $n+\left\lceil\frac{n}{2}\right\rceil$ isometric paths are required to cover the $V\left(G \odot C_{3}\right)$ (Refer figure 2(a)).

Subcase 1.2: $m>3$

Observe that the elements of each $\mathrm{P}_{i}, 1 \leq i \leq n$ are $\left\lceil\frac{m}{3}\right\rceil$ diametral isometric paths and an
isolated vertex (Refer Case 1 of Proposition 2.1). Therefore $i p_{p}\left(G \odot C_{m}\right)=n\left\lceil\frac{m}{3}\right\rceil+i p_{p}(G)$ (Refer figure 2(b)).

Figure 2: Isometric path partition of $G \odot C_{3}$ and $G \odot C_{6}$

Case 2: $m \equiv 1(\bmod 3)$

In this case, the elements of each $\mathrm{P}_{i}, 1 \leq i \leq n$ are $\left\lfloor\frac{m}{3}\right\rfloor$ diametral isometric paths and a
P_{2}-path (Refer Case 2 of Proposition 2.1). Following the same lines of argument of Subcase 1.1, we obtain ip $\left(G \odot C_{m}\right)=n\left\lfloor\frac{m}{3}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil$ (Refer figure 3).

Figure 3: Isometric path partition of $G \odot C_{7}$
Case 3: $m \equiv 2(\bmod 3)$.
Subcase 3.1: $m=5$

Volume 13, No. 2, 2022, p. 3286-3293
https://publishoa.com
ISSN: 1309-3452
Clearly $i p_{p}\left(K_{1} \odot C_{5}\right)=3$, where the isometric path partition includes a P_{3}-path, a P_{2}-path and an isolated vertex. In $G \odot C_{5}$, none of the P_{2}-paths belonging to H_{i} passes through the cut-vertex. Hence $i p_{p}\left(G \odot C_{m}\right)=2 n+i p_{p}(G)$ (Refer figure 4(a)).

Subcase 3.2: $m>5$

In this case, the elements of each $\mathrm{P}_{i}, 1 \leq i \leq n$ are $\left\lceil\frac{m}{3}\right\rceil$ diametral isometric paths. It is clear that each cutvertex of $G \odot C_{m}$ is an internal vertex of some diametral isometric path. Hence, by Proposition $1.2, i p_{p}(G)=$ $\sum_{i=1}^{k} i p_{p}\left(H_{i}\right)=n\left\lceil\frac{m}{3}\right\rceil($ Refer figure 4(b)).

Figure 4: Isometric path partition of $G \odot C_{5}$ and $G \odot C_{8}$
By a similar argument for $G \odot P_{m}$, we obtain the following result.
Proposition 2.3. Let G be a connected graph of order n. Then

$$
i p_{p}\left(G \odot P_{m}\right)= \begin{cases}n\left\lceil\frac{m}{3}\right\rceil+i p_{p}(G), & m \equiv 0(\bmod 3) \\ n\left\lfloor\frac{m}{3}\right\rceil+\left\lceil\frac{n}{2}\right\rceil, & m \equiv 1(\bmod 3) \\ n\left\lceil\frac{m}{3}\right\rceil, & m \equiv 2(\bmod 3)\end{cases}
$$

3 Isometric path partition of $G \odot K_{m}$

In this section, we study the isometric path partition of the corona graph $G \odot K_{m}$. Observe that $K_{1} \odot K_{m}$ is K_{m+1}. Clearly $i p_{p}\left(K_{m}\right)=\left\lceil\frac{m}{2}\right\rceil$ and the elements of the isometric path partition of K_{m} includes diametral isometric path (P_{2}-path) and an isolated vertex.

Proposition 3.1. Let G be a connected graph of order n. Then

$$
i p_{p}\left(G \odot K_{m}\right)= \begin{cases}n\left\lceil\frac{m}{2}\right\rceil+i p_{p}(G), & \text { m is even } \\ n\left\lfloor\frac{m}{2}\right\rceil+\left\lceil\frac{n}{2}\right\rceil, & \text { m is odd }\end{cases}
$$

Proof. Let $H_{1}, H_{2}, \ldots, H_{n}$ be an isometric partition of $G \odot K_{m}$, where each H_{i} is a complete graph K_{m} and P_{i}, the isometric path partition of H_{i}. When m is even, P_{i} includes $\left\lceil\frac{m}{2}\right\rceil P_{2}$-paths and an isolated vertex, then it is clear that $i p_{p}\left(G \odot K_{m}\right)=n\left\lceil\frac{m}{2}\right\rceil+i p_{p}(G)$ (Refer figure 5(b)). Otherwise, P_{i} includes $\left\lfloor\frac{m}{2}\right\rfloor P_{2}$-paths and observe that the cut-vertices of $G \odot K_{m}$ are end vertices of some P_{2}-paths. Therefore following the same lines of arguments of Subcase 1.1 of Proposition 2.2, we get $\operatorname{ip}_{p}\left(G \odot K_{m}\right)=n\left\lfloor\frac{m}{2}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil$ (Refer figure 5(a)). Hence the proof.

Figure 5: Isometric path partition of $G \odot K_{3}$ and $G \odot K_{4}$

4 Isometric path partition of $G \odot L_{m}$

We begin with the computation of isometric path partition of corona product of K_{1} and aladder graph.
Proposition 4.1. Let L_{n} be the ladder graph of order $2 n$. Then ip $\left(K_{1} \odot L_{n}\right)=\left\lceil\frac{2 n+1}{3}\right\rceil$.
Proof. Diameter of $K_{1} \odot L_{n}$ is 2 and hence $i p_{p}\left(K_{1} \odot L_{n}\right) \geq\left\lceil\frac{2 n+1}{3}\right\rceil$ by Proposition 1.1. Let us now label the vertices of the ladder graph by $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}$ and the K_{1}-vertexby x_{0}. We now construct an isometric path partition of the required cardinality to complete the proof.

Case 1: $n \equiv 0(\bmod 3)$.
$\mathrm{P}_{n}=\left\{\left(x_{1}-x_{2}-x_{3}\right),\left(x_{4}-x_{5}-x_{6}\right), \ldots,\left(x_{2 n-2}-x_{2 n-1}-x_{2 n}\right), x_{0}\right\}$ (Refer figure 6(a)).

Case 2: $n \equiv 1(\bmod 3)$.

$\mathrm{P}_{n}=\left\{\left(x_{2}-x_{3}-x_{4}\right),\left(x_{5}-x_{6}-x_{7}\right), \ldots,\left(x_{n-2}-x_{n-1}-x_{n}\right),\left(x_{1}-x_{0}-x_{2 n}\right),\left(x_{n+1}-x_{n+2}-x_{n+3}\right),\left(x_{n+4}-x_{n+5}-\right.\right.$ $\left.\left.x_{n+6}\right), \ldots,\left(x_{2 n-3}-x_{2 n-2}-x_{2 n-1}\right)\right\}$ (Refer figure 6(b)).

Case 3: $n \equiv 2(\bmod 3)$.
$\mathrm{P}_{n}=\left\{\left(x_{2 n}-x_{n}-x_{n-1}\right),\left(x_{2 n-3}-x_{n-3}-x_{n-4}\right), \ldots,\left(x_{2 n-(n-2)}-x_{2}-x_{1}\right),\left(x_{2 n-1}-x_{2 n-2}-x_{n-2}\right)\right.$, $\left.\left(x_{2 n-4}-x_{2 n-5}-x_{n-5}\right), \ldots,\left(x_{2 n-(n-4)}-x_{2 n-(n-3)}-x_{3}\right),\left(x_{n+1}-x_{0}\right)\right\}$ (Refer figure 6(c)).

Volume 13, No. 2, 2022, p. 3286-3293
https://publishoa.com
ISSN: 1309-3452

(a)

(b)

(c)

Figure 6: Isometric path partition of $K_{1} \odot L_{m}$
Proposition 4.2. Let G be a connected graph of order n. Then

$$
i p_{p}\left(G \odot L_{m}\right)= \begin{cases}n\left\lceil\frac{2 m}{3}\right\rceil+i p_{p}(G), & m \equiv 0(\bmod 3) \\ n\left\lceil\frac{2 m}{3}\right\rceil, & m \equiv 1(\bmod 3) \\ n\left\lfloor\frac{2 m}{3}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil & m \equiv 2(\bmod 3)\end{cases}
$$

Proof. The proof follows from Propositions 2.2 and 4.1 (Refer figure 7).

(a)

(b)

Figure 7: Isometric path partition of $K_{1} \odot L_{m}$

References

[1] A. ELrokh, M. M. Ali Al-Shamiri, and A. El-hay, A Novel Problem to Solve the Logically Labeling of Corona between Paths and Cycles, Journal of Mathematics (2022), https://doi.org/10.1155/2022/2312206
[2] A. Aggarwal, J. M. Kleinbergy and D. P. Williamson, Node-disjoint Paths on The Mesh and A New Trade-off in VLSI Layout SIAM J. Comput. 29 (2000) 321-1333.
[3] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244: Springer; 2008.
[4] D. C. Fisher and S. L. Fitzpatrick The Isometric Path Number of A Graph, Journal combinatorial Mathematics and combinatorial computing 38 (2001) 97-110.
[5] R. Frucht and F. Harary, On the Coronas of Two Graphs, Aequationes Math., 4(1970),322-324.
[6] P. Manuel, On the Isometric Path Partition Problem, Discussiones Mathematicae 41(2019), 1077-1089.

Volume 13, No. 2, 2022, p. 3286-3293
https://publishoa.com
ISSN: 1309-3452
[7] P. Manuel , S. Klavzar, A General Position Problem in Graph Theory, Bulletin of the Australian Mathematical Society, 98(2018), 177-187.
[8] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Studying The Corona Product of Graphs Under Some Graph Invariants, Trans. Combin., 3(2014), 43-49.
[9] V. N. Mishra, S. Delen, and I. N. Cangul, Degree Sequences of Join and Corona Products of Graphs, Electr. Journal of Mathematical Analysis and Applications 7(2019), 5-13.

