# General Position Problem of Middle, Splitting and Shadow Graph of Path, Cycle and Star 

R. Prabha ${ }^{1}$, Sabreen Nazia G.<br>${ }^{1}$ Department of Mathematics Ethiraj College for Women, Chennai - 8<br>e-mail: prabha75@gmail.com e-mail: naziasabreen@gmail.com

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.


#### Abstract

For a given graph $G$, the general position problem is to find the general position number of $G$ which is the maximum number of vertices of $G$ such that no three vertices lie on a common geodesic and is denoted by $g p(G)$. In this paper, the general position number for Middle, Splitting and Shadow graph of path, cycle and star are computed.


## AMS Subject Classification: 05C12

Keywords: General position problem, Middle graph, Splitting Graph, Shadow graph

## 1 Introduction

A set $S \subseteq V(G)$ is called a general position set of $G$ if $S$ contains no three vertices of $G$ that lie on a common geodesic. The general position number of $G$ is the cardinality of the maximum general position set of $G$ and is denoted by $g p(G)$. The classical no-three-in-line problem was first introduced by Dudeney [1] and the general position problem was first introduced in [4] motivated by the General Position Subset Selection Problem in Discrete Geometry [3, 8] which is a problem to find a largest subset of point in general position. The general position problem was also proven to be NPcomplete in [4]. In this paper, we compute the gp-number of Middle, Splitting and Shadow graph of Path, Cycle and Star.

## 2 Preliminaries

In this paper, we use simple connected graphs. The shortest path between any two vertices $u$ and $v$ of a graph $G$ is known as geodesic or isometric path. A general position set is a set $S \subseteq V(G)$ such that no three vertices of $S$ lie on a common isometric path in $G$. A max-gp set of $G$ is a general position set of maximum cardinality and this cardinality is called the $g p$-number of $G$ and is denoted by $g p(G)$. In [4], it is proved that $g p\left(P_{n}\right)=2$ for $n \geq 2$ and $g p\left(C_{3}\right)=3, g p\left(C_{4}\right)=2$ and $g p\left(C_{n}\right)=3$ for $n \geq 5$.

## 3 General Position Number of Middle Graph of $P_{n}, C_{n}$ and $K_{1, n}$

Definition 3.1 (Middle Graph) The Middle graph of a connected graph $G$ is denoted by $M(G)$ and is a graph whose vertex set is $V(G) \cup E(G)$ and any two vertices in $V[M(G)]$ are adjacent if
(i) They are adjacent edges of $G$ or
(ii) One is a vertex of $G$ and the other is an edge incident with it.

Theorem 3.2 Let $M\left(P_{n}\right)$ be the Middle graph of a path $P_{n}, n \geq 2$. Then, $g p\left[M\left(P_{n}\right)\right]=n$.
Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n-1}$ be the vertices of $M\left(P_{n}\right)$ corresponding to the vertices and edges of $P_{n}$ respectively.


Figure 4.1 Middle graph of path $\boldsymbol{P}_{\mathbf{5}}$
Consider the set $S=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$. Clearly, this set is a general position set of $M\left(P_{n}\right)$. Hence, $g p\left[M\left(P_{n}\right)\right] \geq n$. If $T$ is any general position set of $M\left(P_{n}\right)$ such that $T \cap S \neq \emptyset$ then $\quad\left|T \cap\left\{u_{1}, u_{2}, \ldots u_{n-1}\right\}\right| \leq 1$. If $u_{i} \in T, 1 \leq i \leq$ $n-1$, then obviously either $T \cap\left\{v_{1}, v_{2}, \ldots v_{i}\right\}=\emptyset$ or $T \cap\left\{v_{i+1}, v_{i+2}, \ldots v_{n}\right\}=\emptyset$. Hence, $g p\left[M\left(P_{n}\right)\right] \leq n$. This completes the proof.

Theorem 3.3 Let $M\left(C_{n}\right)$ be the Middle graph of a cycle $C_{n}, n \geq 3$. Then, $g p\left[M\left(C_{n}\right)\right]=n$.
Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $M\left(C_{n}\right)$ corresponding to the vertices and edges of $C_{n}$ respectively. Consider the set $S=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$. Hence, $g p\left[M\left(C_{n}\right)\right] \geq n$ follows from the fact that $S$ is a general position set.


Figure 4.2 Middle graph of cycle $\boldsymbol{C}_{5}$
If $T$ is any general position set of $M\left(C_{n}\right)$ then $\left|T \cap\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\right| \leq 3$, since $g p\left(C_{n}\right)=3$ for $n \geq 5$. Further we observe that if $u_{i} \in T$, then either $v_{i} \notin T$ or $v_{i+1} \notin T, 1 \leq i \leq n$. Hence, $g p\left[M\left(C_{n}\right)\right] \leq n$, which completes the proof.

Theorem 3.4 Let $M\left(K_{1, n}\right)$ be the Middle graph of a star $K_{1, n}, n \geq 2$. Then, $\quad g p\left[M\left(K_{1, n}\right)\right]=n+1$.
Proof. Let $v, v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $M\left(K_{1, n}\right)$ corresponding to the vertices and edges of $K_{1, n}$ respectively.


Figure 4.3 Middle graph of star $\boldsymbol{K}_{1,4}$
Consider the set $S=\left\{v, v_{1}, v_{2}, \ldots v_{n}\right\}$. It follows that the set $S$ is a general position set of $M\left(K_{1, n}\right)$. Hence, $g p\left[M\left(K_{1, n}\right)\right] \geq n+1$. Observe that no more vertices can be added to $S$ since each $u_{i}$ lies in $\left(v-v_{i}\right)$ and $\left(v_{i}-v_{i+1}\right)$ geodesic, $1 \leq i \leq n$. Hence, $g p\left[M\left(K_{1, n}\right)\right]=n+1$, which completes the proof.

## 4 General Position Number of Splitting Graph of $\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{C}_{\boldsymbol{n}}$ and $\boldsymbol{K}_{1, n}$

Definition 4.1 (Splitting Graph) The Splitting graph of a connected graph $G$ is obtained by adding a new vertex $u_{i}$ for each vertex $v_{i} \in V(G)$ and joining $u_{i}$ to all $v_{j} \in V(G)$ that are adjacent to $v_{i}$. It is denoted by $S(G)$.

Theorem 4.2 Let $S\left(P_{n}\right)$ be the Splitting graph of a path $P_{n}, n \geq 3$. Then, $g p\left[S\left(P_{n}\right)\right]=4$.
Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $S\left(P_{n}\right)$ corresponding to the vertices of $P_{n}$ and the newly added vertices respectively.


Figure 4.4 Splitting graph of path $\boldsymbol{P}_{\mathbf{5}}$
For $n=3,\left\{v_{1}, v_{3}, u_{1}, u_{3}\right\}$ is the required general position set. Now, let $n \geq 4$. Consider the set $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. We observe that $S$ is a general position set of $S\left(P_{n}\right)$. Hence, $g p\left[S\left(P_{n}\right)\right] \geq 4$. Consider the three isometric paths $\mathcal{P}_{1}=v_{1}-$ $v_{2}-\cdots v_{n}, \mathcal{P}_{2}=u_{1}-v_{2}-u_{3}-v_{4} \ldots-u_{n} / \mathcal{P}_{2}=u_{1}-v_{2}-u_{3}-v_{4} \ldots-v_{n}$ if $n$ is odd/even and $\mathcal{P}_{3}=v_{1}-u_{2}-$ $v_{3}-u_{4} \ldots v_{n} / \mathcal{P}_{3}=v_{1}-u_{2}-v_{3}-u_{4} \ldots u_{n}$ if $n$ is odd/even in $S\left(P_{n}\right)$. Let $T$ be any general position set of $S\left(P_{n}\right)$. Suppose $|T|>4$, then obviously at least three vertices of $T$ will lie on any one of the isometric paths $\mathcal{P}_{1}, \mathcal{P}_{2}$ or $\mathcal{P}_{3}$, which is a contradiction since $g p\left(P_{n}\right)=2, n \geq 2$. Hence, $g p\left[S\left(P_{n}\right)\right] \leq 4$. This completes the proof.

Theorem 4.3 Let $S\left(C_{n}\right)$ be the Splitting graph of a cycle $C_{n}, n \geq 3$. Then, $g p\left[S\left(C_{n}\right)\right]=n$.
Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $S\left(C_{n}\right)$ corresponding to the vertices of $C_{n}$ and the newly added vertices respectively. Consider the set $S=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$. Clearly, this set is a general position set of $S\left(C_{n}\right)$. Hence, $g p\left[S\left(C_{n}\right)\right] \geq n$. Let $T$ be any general position set of $S\left(C_{n}\right)$ then $\left|T \cap\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\right| \leq 3$, since $g p\left(C_{n}\right)=3$ for $n \geq 5$. Further we observe that if $v_{i} \in T$, then either $u_{i} \notin T$ or $u_{i+1} \notin T, 1 \leq i \leq n$. Hence, $g p\left[S\left(C_{n}\right)\right] \leq n$, which completes the proof.


## Figure 4.5 Splitting graph of cycle $\boldsymbol{C}_{5}$

Theorem 4.4 Let $S\left(K_{1, n}\right)$ be the Splitting graph of a star $K_{1, n}, n \geq 2$. Then, $g p\left[S\left(K_{1, n}\right)\right]=2 n$.
Proof. Let $v, v_{1}, v_{2}, \ldots v_{n}$ and $u, u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $S\left(K_{1, n}\right)$ corresponding to the vertices of $K_{1, n}$ and the newly added vertices respectively.


Figure 4.6 Splitting graph of star $\boldsymbol{K}_{1,4}$
Consider the set $S=\left\{v_{1}, v_{2}, \ldots v_{n}, u_{1}, u_{2}, \ldots u_{n}\right\}$. This set is a general position set of $S\left(K_{1, n}\right)$. Hence, $g p\left[S\left(K_{1, n}\right)\right] \geq 2 n$. Consider the isometric paths $\mathcal{P}_{i}=u_{i}-v-v_{i}-u, 1 \leq i \leq n$ in $S\left(K_{1, n}\right)$. Let $T$ be any general position set of $S\left(K_{1, n}\right)$. Suppose $|T|>2 n$, then at least three vertices of $T$ will lie on any one of the isometric paths $\mathcal{P}_{i}$, which is a contradiction. Hence, $g p\left[S\left(K_{1, n}\right)\right] \leq 2 n$. This completes the proof.

## 5 General Position Number of Shadow Graph of $P_{n}, C_{n}$ and $K_{1, n}$

Definition 5.1 (Shadow Graph) The Shadow graph of a connected graph $G$ is constructed from $G$ by taking two copies of $G$ namely $G$ and $G^{\prime}$ and by joining each vertex $v$ in $G$ to the neighbors of the corresponding vertex $u$ in $G^{\prime}$. It is denoted by $D_{2}(G)$

Theorem 5.2 Let $D_{2}\left(P_{n}\right)$ be the Shadow graph of a path $P_{n}, n \geq 3$. Then, $g p\left[D_{2}\left(P_{n}\right)\right]=4$.
Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $D_{2}\left(P_{n}\right)$ corresponding to the vertices of $P_{n}$ and the newly added vertices respectively.


Figure 4.7 Shadow graph of path $\boldsymbol{P}_{\mathbf{5}}$
Consider the set $S=\left\{v_{1}, v_{n}, u_{1}, u_{n}\right\}$. We can clearly observe that $S$ is a general position set of $D_{2}\left(P_{n}\right)$. Hence, $g p\left[D_{2}\left(P_{n}\right)\right] \geq 4$. Consider the isometric paths $\mathcal{P}_{1}=v_{1}-v_{2}-\cdots v_{n}, \quad \mathcal{P}_{2}=u_{1}-u_{2}-\cdots u_{n}$ in $D_{2}\left(P_{n}\right)$. It can be observed that $\left|S \cap \mathcal{P}_{1}\right|=2$ and $\left|S \cap \mathcal{P}_{2}\right|=2$. Let $T$ be any general position set of $D_{2}\left(P_{n}\right)$. Suppose, $|T|>4$, then $\left|T \cap \mathcal{P}_{1}\right|>2$ and $\left|T \cap \mathcal{P}_{2}\right|>2$, which is a contradiction. Hence, $g p\left[D_{2}\left(P_{n}\right)\right] \leq 4$, which completes the proof.

Theorem 5.3 Let $D_{2}\left(C_{n}\right)$ be the Shadow graph of a cycle $C_{n}$. Then, $g p\left[D_{2}\left(C_{3}\right)\right]=3, g p\left[D_{2}\left(C_{4}\right)\right]=4$ and $g p\left[D_{2}\left(C_{n}\right)\right]=6$ for $n \geq 5$.

Proof. Let $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $D_{2}\left(C_{n}\right)$ corresponding to the vertices of $C_{n}$ and the newly added vertices respectively. For $n=3,4$, the proof is obvious. Consider the case when $n \geq 5$. Let $S=$ $\left\{v_{1}, v_{3}, v_{n-1}, u_{1}, u_{3}, u_{n-1}\right\}$. This set is a general position set of $D_{2}\left(C_{n}\right)$. Hence, $g p\left[D_{2}\left(C_{n}\right)\right] \geq 6$. Consider the isometric cycles $C_{1}=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and $C_{2}=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ in $D_{2}\left(C_{n}\right)$. Let $T$ be an arbitrary general position set of $D_{2}\left(C_{n}\right)$. Suppose $|T|>6$, then obviously at least three vertices of $T$ will lie on any one of the isometric paths in $C_{1}$ or $C_{2}$, which is a contradiction. Hence, $g p\left[D_{2}\left(C_{n}\right)\right] \leq 6$. This completes the proof.


Figure 4.8 Shadow graph of cycle $\boldsymbol{C}_{5}$
Theorem 5.4 Let $D_{2}\left(K_{1, n}\right)$ be the Shadow graph of a star $K_{1, n}, n \geq 2$. Then, $g p\left[D_{2}\left(K_{1, n}\right)\right]=2 n$.
Proof. Let $v, v_{1}, v_{2}, \ldots v_{n}$ and $u, u_{1}, u_{2}, \ldots u_{n}$ be the vertices of $D_{2}\left(K_{1, n}\right)$ corresponding to the vertices of $K_{1, n}$ and the newly added vertices respectively.


Figure 4.9 Shadow graph of star $\boldsymbol{K}_{1,4}$
Consider the set $S=\left\{v_{1}, v_{2}, \ldots v_{n}, u_{1}, u_{2}, \ldots u_{n}\right\}$. Clearly, this set is a general position set of $D_{2}\left(K_{1, n}\right)$. Hence, $g p\left[D_{2}\left(K_{1, n}\right)\right] \geq 2 n$. Let $T \subseteq V\left[D_{2}\left(K_{1, n}\right)\right]$. Suppose $|T|>2 n$, then obviously either $v \in T$ or $u \in T$, in which case $|T \cap S| \leq 1$. Hence, $g p\left[D_{2}\left(K_{1, n}\right)\right] \leq 2 n$. This completes the proof.

## References

1. H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
2. S. L. Fitzpatrick, The isometric path number of the Cartesian product of paths, Congr. Numer. 137 (1999) 109 119.
3. V. Ferose, I. Kanj, A. Niedermeier, Finding points in general position, International Journal of Computational Geometry and Applications, 27(4) (2017), 277 - 296.
4. P. Manuel, S. Klavžar, Graph Theory general position problem, Bulletin of the Australian Mathematical Society, 98(2) (2017), 177 - 187.
5. P. Manuel and S. Klavžar, The graph Theory general position problem on some interconnection networks, Fund. Inform, (2018) 163 pp. $339-350$.
A. Misiak, Z. Stepien, A. Szymaskiewicz, L. Szymaskiewicz, M. Zwierzchowski, A note on the no-three-in-line problem on torus, Discrete Math. 339 (2016) 217 -221.

Volume 13, No. 2, 2022, p. 3294-3299
https://publishoa.com
ISSN: 1309-3452
6. J. -J. Pan. G. J. Chang, Isometric path numbers of graphs, Discretre Math. 306 (2006) 2091 - 2096.
7. M. Payne, D. R. Wood, On the general position subset selection problem, SIAM J. Discrete Math, 27 (2013) 1727 - 1733.
8. Por, D. R. Wood, No-Three-in-Line-3D, Algorithmica 47 (2007) 481-488.
9. Thenmozhi, R. Prabha, Power domination of Middle graph of path, cycle and star, International Journal of Pure and Applied Mathematics, 114 (2017) , 13-19.

