
JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 2, 2022, p. 3294-3299 
https://publishoa.com 
ISSN: 1309-3452 
 

3294 

General Position Problem of Middle, Splitting and Shadow Graph of Path, 

Cycle and Star 

R. Prabha1, Sabreen Nazia G. 

1Department of Mathematics  Ethiraj College for Women, Chennai – 8 

e-mail: prabha75@gmail.com     e-mail: naziasabreen@gmail.com 

Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15. 
 

Abstract 

For a given graph G, the general position problem is to find the general position number of G which is the maximum 

number of vertices of G such that no three vertices lie on a common geodesic and is denoted by 𝑔𝑝(𝐺). In this paper, 

the general position number for Middle, Splitting and Shadow graph of path, cycle and star are computed. 
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1   Introduction 

A set 𝑆 ⊆ 𝑉(𝐺) is called a general position set of G if S contains no three vertices of G that lie on a common geodesic. 

The general position number of G is the cardinality of the maximum general position set of G and is denoted by 𝑔𝑝(𝐺). 

The classical no-three-in-line problem was first introduced by Dudeney [1] and the general position problem was first 

introduced in [4] motivated by the General Position Subset Selection Problem in Discrete Geometry [3, 8] which is a 

problem to find a largest subset of point in general position. The general position problem was also proven to be NP-

complete in [4]. In this paper, we compute the gp-number of Middle, Splitting and Shadow graph of Path, Cycle and 

Star. 

2   Preliminaries 

In this paper, we use simple connected graphs. The shortest path between any two vertices u and v of a graph G is 

known as geodesic or isometric path. A general position set is a set 𝑆 ⊆ 𝑉(𝐺) such that no three vertices of S lie on a 

common isometric path in G. A max-gp set of G is a general position set of maximum cardinality and this cardinality is 

called the gp-number of G and is denoted by 𝑔𝑝(𝐺). In [4], it is proved that 𝑔𝑝(𝑃𝑛) = 2 for 𝑛 ≥ 2 and                   

𝑔𝑝(𝐶3) = 3, 𝑔𝑝(𝐶4) = 2 and 𝑔𝑝(𝐶𝑛) = 3 for 𝑛 ≥ 5. 

3   General Position Number of Middle Graph of 𝑷𝒏, 𝑪𝒏 and 𝑲𝟏,𝒏 

Definition 3.1 (Middle Graph) The Middle graph of a connected graph G is denoted by 𝑀(𝐺) and is a graph whose 

vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) and any two vertices in 𝑉[𝑀(𝐺)] are adjacent if 

(i) They are adjacent edges of G or 

(ii) One is a vertex of G and the other is an edge incident with it. 

Theorem 3.2 Let 𝑀(𝑃𝑛) be the Middle graph of a path 𝑃𝑛, 𝑛 ≥ 2. Then, 𝑔𝑝[𝑀(𝑃𝑛)] = 𝑛. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛−1 be the vertices of 𝑀(𝑃𝑛) corresponding to the vertices and edges of 𝑃𝑛 

respectively.  
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Figure 4.1 Middle graph of path 𝑷𝟓 

Consider the set 𝑆 = {𝑣1, 𝑣2, … 𝑣𝑛}. Clearly, this set is a general position set of 𝑀(𝑃𝑛). Hence, 𝑔𝑝[𝑀(𝑃𝑛)] ≥ 𝑛. If T is 

any general position set of 𝑀(𝑃𝑛) such that 𝑇 ∩ 𝑆 ≠ ∅ then                |𝑇 ∩ {𝑢1, 𝑢2, … 𝑢𝑛−1}| ≤ 1. If 𝑢𝑖 ∈ 𝑇, 1 ≤  𝑖 ≤

 𝑛 − 1, then obviously either 𝑇 ∩ {𝑣1, 𝑣2, … 𝑣𝑖} = ∅ or 𝑇 ∩ {𝑣𝑖+1, 𝑣𝑖+2, … 𝑣𝑛} = ∅. Hence, 𝑔𝑝[𝑀(𝑃𝑛)] ≤ 𝑛. This 

completes the proof. 

Theorem 3.3 Let 𝑀(𝐶𝑛) be the Middle graph of a cycle 𝐶𝑛, 𝑛 ≥ 3. Then, 𝑔𝑝[𝑀(𝐶𝑛)] = 𝑛. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝑀(𝐶𝑛) corresponding to the vertices and edges of 𝐶𝑛 

respectively. Consider the set 𝑆 = {𝑣1,𝑣2, … 𝑣𝑛}. Hence, 𝑔𝑝[𝑀(𝐶𝑛)] ≥ 𝑛 follows from the fact that 𝑆 is a general 

position set. 

 

Figure 4.2 Middle graph of cycle 𝑪𝟓 

If T is any general position set of 𝑀(𝐶𝑛) then |𝑇 ∩ {𝑢1, 𝑢2, … 𝑢𝑛}| ≤ 3, since 𝑔𝑝(𝐶𝑛) = 3 for 𝑛 ≥ 5. Further we 

observe that if 𝑢𝑖 ∈ 𝑇, then either 𝑣𝑖 ∉ 𝑇 or 𝑣𝑖+1 ∉ 𝑇, 1 ≤  𝑖 ≤  𝑛. Hence, 𝑔𝑝[𝑀(𝐶𝑛)] ≤ 𝑛, which completes the proof.  

Theorem 3.4 Let 𝑀(𝐾1,𝑛) be the Middle graph of a star 𝐾1,𝑛, 𝑛 ≥ 2. Then,            𝑔𝑝[𝑀(𝐾1,𝑛)] = 𝑛 + 1. 

Proof. Let 𝑣, 𝑣1, 𝑣2, … 𝑣𝑛  and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝑀(𝐾1,𝑛) corresponding to the vertices and edges of 𝐾1,𝑛 

respectively.  

 

Figure 4.3 Middle graph of star 𝑲𝟏,𝟒  

Consider the set 𝑆 = {𝑣, 𝑣1, 𝑣2, … 𝑣𝑛}. It follows that the set S is a general position set of 𝑀(𝐾1,𝑛). Hence, 

𝑔𝑝[𝑀(𝐾1,𝑛)] ≥ 𝑛 + 1. Observe that no more vertices can be added to S since each 𝑢𝑖 lies in (𝑣 − 𝑣𝑖) and (𝑣𝑖 − 𝑣𝑖+1) 

geodesic, 1 ≤  𝑖 ≤  𝑛. Hence, 𝑔𝑝[𝑀(𝐾1,𝑛)] = 𝑛 + 1, which completes the proof. 
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4   General Position Number of Splitting Graph of 𝑷𝒏, 𝑪𝒏 and 𝑲𝟏,𝒏 

Definition 4.1 (Splitting Graph) The Splitting graph of a connected graph G is obtained by adding a new vertex 𝑢𝑖 for 

each vertex  𝑣𝑖 ∈ 𝑉(𝐺) and joining 𝑢𝑖 to all 𝑣𝑗 ∈ 𝑉(𝐺) that are adjacent to 𝑣𝑖. It is denoted by 𝑆(𝐺). 

Theorem 4.2 Let 𝑆(𝑃𝑛) be the Splitting graph of a path 𝑃𝑛, 𝑛 ≥ 3. Then, 𝑔𝑝[𝑆(𝑃𝑛)] = 4. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝑆(𝑃𝑛) corresponding to the vertices of 𝑃𝑛 and the newly added 

vertices respectively. 

 

Figure 4.4 Splitting graph of path 𝑷𝟓 

For 𝑛 = 3, {𝑣1, 𝑣3, 𝑢1, 𝑢3} is the required general position set. Now, let 𝑛 ≥ 4. Consider the set 𝑆 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. We 

observe that S is a general position set of 𝑆(𝑃𝑛). Hence, 𝑔𝑝[𝑆(𝑃𝑛)] ≥ 4. Consider the three isometric paths 𝒫1 = 𝑣1 −

𝑣2 − ⋯ 𝑣𝑛, 𝒫2 = 𝑢1 − 𝑣2 − 𝑢3 − 𝑣4 … − 𝑢𝑛/ 𝒫2 = 𝑢1 − 𝑣2 − 𝑢3 − 𝑣4 … − 𝑣𝑛 if n is odd/even and 𝒫3 = 𝑣1 − 𝑢2 −

𝑣3 − 𝑢4 … 𝑣𝑛/𝒫3 = 𝑣1 − 𝑢2 − 𝑣3 − 𝑢4 … 𝑢𝑛 if n is odd/even in 𝑆(𝑃𝑛). Let T be any general position set of 𝑆(𝑃𝑛). 

Suppose  |𝑇| > 4, then obviously at least three vertices of T will lie on any one of the isometric paths 𝒫1, 𝒫2 or 𝒫3, 

which is a contradiction since 𝑔𝑝(𝑃𝑛) = 2,  𝑛 ≥ 2. Hence, 𝑔𝑝[𝑆(𝑃𝑛)] ≤ 4. This completes the proof. 

Theorem 4.3 Let 𝑆(𝐶𝑛) be the Splitting graph of a cycle 𝐶𝑛 , 𝑛 ≥ 3. Then, 𝑔𝑝[𝑆(𝐶𝑛)] = 𝑛. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝑆(𝐶𝑛) corresponding to the vertices of 𝐶𝑛 and the newly 

added vertices respectively. Consider the set 𝑆 = {𝑢1,𝑢2, … 𝑢𝑛}. Clearly, this set is a general position set of 𝑆(𝐶𝑛). 

Hence, 𝑔𝑝[𝑆(𝐶𝑛)] ≥ 𝑛. Let T be any general position set of 𝑆(𝐶𝑛) then |𝑇 ∩ {𝑣1, 𝑣2, … 𝑣𝑛}| ≤ 3, since 𝑔𝑝(𝐶𝑛) = 3 for 

𝑛 ≥ 5. Further we observe that if 𝑣𝑖 ∈ 𝑇, then either 𝑢𝑖 ∉ 𝑇 or 𝑢𝑖+1 ∉ 𝑇, 1 ≤  𝑖 ≤  𝑛. Hence, 𝑔𝑝[𝑆(𝐶𝑛)] ≤ 𝑛, which 

completes the proof. 

 

Figure 4.5 Splitting graph of cycle 𝑪𝟓 

Theorem 4.4 Let 𝑆(𝐾1,𝑛) be the Splitting graph of a star 𝐾1,𝑛, 𝑛 ≥ 2. Then, 𝑔𝑝[𝑆(𝐾1,𝑛)] = 2𝑛. 

Proof. Let 𝑣, 𝑣1, 𝑣2, … 𝑣𝑛  and 𝑢, 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝑆(𝐾1,𝑛) corresponding to the vertices of 𝐾1,𝑛 and the 

newly added vertices respectively. 
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Figure 4.6 Splitting graph of star 𝑲𝟏,𝟒 

Consider the set 𝑆 = {𝑣1, 𝑣2, … 𝑣𝑛 , 𝑢1,𝑢2, … 𝑢𝑛}. This set is a general position set of 𝑆(𝐾1,𝑛). Hence, 𝑔𝑝[𝑆(𝐾1,𝑛)] ≥ 2𝑛. 

Consider the isometric paths 𝒫𝑖 = 𝑢𝑖 − 𝑣 − 𝑣𝑖 − 𝑢, 1 ≤  𝑖 ≤  𝑛 in 𝑆(𝐾1,𝑛). Let T be any general position set of 

𝑆(𝐾1,𝑛). Suppose |𝑇| > 2𝑛, then at least three vertices of T will lie on any one of the isometric paths 𝒫𝑖 , which is a 

contradiction. Hence, 𝑔𝑝[𝑆(𝐾1,𝑛)] ≤ 2𝑛. This completes the proof. 

5   General Position Number of Shadow Graph of 𝑷𝒏, 𝑪𝒏 and 𝑲𝟏,𝒏 

Definition 5.1 (Shadow Graph) The Shadow graph of a connected graph G is constructed from G by taking two copies 

of G namely G and G' and by joining each vertex v in G to the neighbors of the corresponding vertex u in G'. It is 

denoted by 𝐷2(𝐺) 

Theorem 5.2 Let 𝐷2(𝑃𝑛) be the Shadow graph of a path 𝑃𝑛 , 𝑛 ≥ 3. Then, 𝑔𝑝[𝐷2(𝑃𝑛)] = 4. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝐷2(𝑃𝑛) corresponding to the vertices of 𝑃𝑛 and the newly 

added vertices respectively. 

 

Figure 4.7 Shadow graph of path 𝑷𝟓 

Consider the set 𝑆 = {𝑣1, 𝑣𝑛 , 𝑢1, 𝑢𝑛}. We can clearly observe that 𝑆 is a general position set of 𝐷2(𝑃𝑛). Hence, 

𝑔𝑝[𝐷2(𝑃𝑛)] ≥ 4. Consider the isometric paths 𝒫1 = 𝑣1 − 𝑣2 − ⋯ 𝑣𝑛,             𝒫2 = 𝑢1 − 𝑢2 − ⋯ 𝑢𝑛  in 𝐷2(𝑃𝑛). It can be 

observed that |𝑆 ∩ 𝒫1| = 2 and |𝑆 ∩ 𝒫2| = 2. Let T be any general position set of 𝐷2(𝑃𝑛). Suppose, |𝑇| > 4, then 

|𝑇 ∩ 𝒫1| > 2 and |𝑇 ∩ 𝒫2| > 2, which is a contradiction. Hence, 𝑔𝑝[𝐷2(𝑃𝑛)] ≤ 4, which completes the proof. 

Theorem 5.3 Let 𝐷2(𝐶𝑛) be the Shadow graph of a cycle 𝐶𝑛. Then, 𝑔𝑝[𝐷2(𝐶3)] = 3, 𝑔𝑝[𝐷2(𝐶4)] = 4 and 

𝑔𝑝[𝐷2(𝐶𝑛)] = 6 for 𝑛 ≥ 5. 

Proof. Let 𝑣1, 𝑣2, … 𝑣𝑛 and 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝐷2(𝐶𝑛) corresponding to the vertices of 𝐶𝑛 and the newly 

added vertices respectively. For 𝑛 = 3,4, the proof is obvious. Consider the case when 𝑛 ≥ 5. Let 𝑆 =

{𝑣1, 𝑣3, 𝑣𝑛−1, 𝑢1,𝑢3, 𝑢𝑛−1}. This set is a general position set of 𝐷2(𝐶𝑛). Hence, 𝑔𝑝[𝐷2(𝐶𝑛)] ≥ 6. Consider the isometric 

cycles 𝐶1 = {𝑣1, 𝑣2, … 𝑣𝑛} and                       𝐶2 = {𝑢1, 𝑢2, … 𝑢𝑛}  in 𝐷2(𝐶𝑛). Let T be an arbitrary general position set of 

𝐷2(𝐶𝑛). Suppose |𝑇| > 6, then obviously at least three vertices of T will lie on any one of the isometric paths in 𝐶1 or 

𝐶2, which is a contradiction. Hence, 𝑔𝑝[𝐷2(𝐶𝑛)] ≤ 6. This completes the proof.  
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Figure 4.8 Shadow graph of cycle 𝑪𝟓 

Theorem 5.4 Let 𝐷2(𝐾1,𝑛) be the Shadow graph of a star 𝐾1,𝑛, 𝑛 ≥ 2. Then, 𝑔𝑝[𝐷2(𝐾1,𝑛)] = 2𝑛. 

Proof. Let 𝑣, 𝑣1, 𝑣2, … 𝑣𝑛  and 𝑢, 𝑢1, 𝑢2, … 𝑢𝑛 be the vertices of 𝐷2(𝐾1,𝑛) corresponding to the vertices of 𝐾1,𝑛 and the 

newly added vertices respectively. 

 

Figure 4.9 Shadow graph of star 𝑲𝟏,𝟒 

Consider the set 𝑆 = {𝑣1, 𝑣2, … 𝑣𝑛 , 𝑢1,𝑢2, … 𝑢𝑛}. Clearly, this set is a general position set of 𝐷2(𝐾1,𝑛). Hence, 

𝑔𝑝[𝐷2(𝐾1,𝑛)] ≥ 2𝑛. Let 𝑇 ⊆ 𝑉[𝐷2(𝐾1,𝑛)]. Suppose |𝑇| > 2𝑛, then obviously either 𝑣 ∈ 𝑇 or 𝑢 ∈ 𝑇, in which case 

|𝑇 ∩ 𝑆| ≤ 1. Hence, 𝑔𝑝[𝐷2(𝐾1,𝑛)] ≤ 2𝑛. This completes the proof. 
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