Cordial Labeling on Few Graphs of Subdividedshell Graphs

${ }^{1}$ D. Devakirubanithi, ${ }^{2}$ J. Jeba Jesintha
${ }^{1}$ Department of Mathematics, St Thomas College of Arts and Science, University of Madras, Chennai.
Part-Time Research Scholar, PG Department of Maths, Women's Christian College, University of Madras, Chennai.
${ }^{2}$ PG Department of Mathematics, Women's Christian College, University of Madras, Chennai.
${ }^{1}$ kiruba.1980@yahoo.com, ${ }^{2}$ jjesintha _75@yahoo.com

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.

Abstract

In 1987, Cahit[1]implemented cordial labeling. Cordial labeling[1] is defined as a function $h: V(\theta) \rightarrow\{0,1\}$ in which each edge $a b$ is assigned the label $|h(a)-h(b)|$ with the conditions $\left|v_{h}(0)-v_{h}(1)\right| \leq 1$ and $\left|e_{h}(0)-e_{h}(1)\right| \leq 1$ where $v_{h}(0)$ and $v_{h}(1)$ signify the number of vertices with 0 's and 1 's, similarly $e_{h}(0)$ and $e_{h}(1)$ signify the number of edges with 0 's and 1 's. We want to show that the graphssuch as uniform sub-divided shell bow graph, uniform sub-divided shell flower graph, one point union of multiple sub-divided shell graph, sub-divided shell Graph with star graphs coupled to the apex and path vertices are cordial.

Keywords: Cordial labeling, Sub-divided Shell Graph, Sub-divided shell bow graph, Subdivided shell flower graph, Multiplesub-divided shell graph.
2010 Mathematics Subject Classification: 05C78

1. Introduction

Graph labeling is one among the most exciting areas of study. Labeling is the 3455
process of assigning values to edges or vertices. Alexander Rosa [7] pioneered the notion of graceful labeling. A few labeling
approaches were introduced later. Cahit [1] suggested cordial labeling as one such kind of labeling. Cordial labeling[1] is defined as a function $h: V(\theta) \rightarrow\{0,1\}$ in which each edge $a b$ is assigned the label $|h(a)-h(b)|$ with the conditions $\left|v_{h}(0)-v_{h}(1)\right| \leq 1 \quad$ and $\quad \mid e_{h}(0)-$ $e_{h}(1) \mid \leq 1$ where $v_{h}(0)$ and $v_{h}(1)$ signify the number of vertices with 0 's and 1 's, similarly $e_{h}(0)$ and $e_{h}(1)$ signify the number of edges with 0 's and 1 's.Cahit [2] demonstrated the cordiality for the complete graph iff $n \leq 3$, ladders, friendship graphs, paths, wheels and pinwheels. The shell graph was first introduced by Deb and Limaye [3], followed by subdivided shell graphs and subdivided shell flower graphs by Jeba Jesintha and Hilda [4][6]. For further information, refer Gallian's dynamic survey [5]. Shell graphs are used in a variety of fieldsincluding X-ray crystallography, radar communication and networks, coding theory and other domains [4].

We prove that the following graphs are cordial: uniform sub-divided shell bow graph, uniform sub-divided shell flower graph, one point union of multiple subdivided shell graph, sub-divided shell
graph with star graphs coupled to the apex and the path vertices of shell graphs.

2. Definitions

As in the literature [5], this section contains few definitions.

Definition 2.1

Create a cycle. The apex of C_{n} with $(n-3)$ chords with a shared end point is defined to be the shell graph [3]. C is used to represent shell graphs ($n, n-3$). Fan graphs are another name for shell graphs.

Definition 2.2

In each path in the shell graph is divided, we get a sub-divided shell graph [6].We denote sub-divided shell graph as SSG.

Definition 2.3

A double sub-divided shell graph of the same order is defined as sub-divided shell bow graph [6].

Definition 2.4

One vertex union of t copies of sub-divided shell graph and t copies of the complete graph K_{2} is defined as a subdivided shell flower graph [4].

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

3. Main Results

We prove few theorems about subdivided shell graphs in this section.

Theorem 3.1

The graph of a uniform sub-divided shell bow graph is cordial.

Proof.

The uniform sub-divided shell bow graph, indicated as G, is created by joining two copies of a sub-divided shell graph with a as an apex vertex. The vertices of the first copy of the shell graph are $c_{1}, c_{2}, c_{3}, \ldots c_{n}$. The vertices of the first copy of the SSG are $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, \ldots, c_{n-1}^{\prime}$. The vertices of the second copy of the shell graph are $d_{1}, d_{2}, d_{3}, \ldots, d_{n}$. The vertices of the second copy of the SSG are $d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, \ldots, d_{n-1}^{\prime}$. Figure 1 illustrates the graph G. The graph $G^{\prime} s$ vertices and edges are specified as $|V(G)|=4 n-1$, $|E(G)|=6 n-4$. The graph vertex labeling is defined as μ is from $V(G)$ to $\{0,1\}$.

Case 1: When n is even

$$
\mu(a)=1
$$

Case 2: When n is odd

$$
\mu(a)=0
$$

$$
\mu\left(d_{j}^{\prime}\right) \quad \text { for } 1
$$

$$
= \begin{cases}1 ; j \equiv 1(\bmod 2) & \leq j \\ 0 ; j \equiv 0(\bmod 2) & \leq n-1\end{cases}
$$

$$
\begin{aligned}
& \mu\left(c_{j}\right) \quad \text { for } 1 \\
& =\left\{\begin{array}{l}
1 ; j \equiv 1(\bmod 2) \quad \leq j \leq n \\
0 ; j \equiv 0(\bmod 2)
\end{array}\right. \\
& \mu\left(c_{j}^{\prime}\right) \quad \text { for } 1 \\
& = \begin{cases}0 ; j \equiv 1(\bmod 2) & \leq j \\
1 ; j \equiv 0(\bmod 2) & \leq n\end{cases} \\
& \mu\left(d_{j}\right) \\
& =\left\{\begin{array}{l}
1 ; j \equiv 1(\bmod 2) \quad \leq j \leq n \\
0 ; j \equiv 0(\bmod 2)
\end{array}\right. \\
& \mu\left(d_{j}^{\prime}\right) \quad \text { for } 1 \\
& = \begin{cases}0 ; j \equiv 1(\bmod 2) & \leq j \\
1 ; j \equiv 0(\bmod 2) & \leq n-1\end{cases}
\end{aligned}
$$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

Figure 1: A graph of a uniform subdivided shell bow graph

The volume of vertices with identifiers 0 's and 1 's expressed as $v_{\mu}(0)$ and $v_{\mu}(1)$.

$$
v_{\mu}(0)=2 n
$$

$$
v_{\mu}(1)=2 n-1
$$

The volume of edges with identifiers 0 's and 1 's expressed as $e_{\mu}(0)$ and $e_{\mu}(1)$.

$$
e_{\mu}(0)=3 n-2=e_{\mu}(1)
$$

As a result, the above labeling pattern meets both the requirements $\mid v_{\mu}(0)-$ $v \mu 1 \leq 1$ and $e \mu 0-e \mu 1 \leq 1$. Thus,subdivided shell bow graph admits cordiality.

Theorem 3.2

The graph of a uniform sub-divided shell flower graph is cordial.

Proof.
Let H stand for the sub-divided shell flower graph, which is defined as the union of t copies of the sub-divided shell graph with t pendent edges at a single point. The end vertices of the pendent edges attached to the apex vertex u are $k_{1}, k_{2}, \ldots, k_{t}$. Let $l_{1}^{1}, l_{2}^{1}, l_{3}^{1}, \ldots, \quad l_{n}^{1}$ become the path vertices of the initial copy of the SSG's shell graph. Let the path vertices of the subdivided shell network of the first copy of the SSG \quad be $m_{1}^{1}, m_{2}^{1}, m_{3}^{1}, \ldots, m_{n-1}^{1}$. Similarly, let $l_{1}^{2}, l_{2}^{2}, l_{3}^{2}, \ldots, l_{n}^{2}$ be the path vertices of the second copy of SSG's shell graph and let the path vertices of the subdivided shell network of the second copy

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452
of the SSG be $m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, \ldots, m_{n-1}^{2}$. In
when $f\left(t_{j}\right)$
general, let $l_{1}^{t}, l_{2}^{t}, l_{3}^{t}, \ldots, l_{n}^{t}$ become the path vertices of the $t^{\text {th }}$ copy of the SSG's shell graph. Let the path vertices of the subdivided shell network of the $t^{\text {th }}$ copy of the SSG be $m_{1}^{t}, m_{2}^{t}, m_{3}^{t}, \ldots, m_{n-1}^{t}$. Figure 2 depicts the graph for H. The graph H^{\prime} svertices and edges be defined as
$|V(H)|=t(2 n-1)+1+k,|E(H)|=$ $t(3 n-2)+k$. The graph $H^{\prime} s v e r t e x$ labeling is specified as f is from $V(H)$ to $\{0,1\}$.
$\equiv 1(\bmod 2)$
$f\left(m_{j}^{s}\right)= \begin{cases}0 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq \\ 1 ; j \equiv 0(\bmod 2) & j \leq n\end{cases}$
$2 \leq s \leq$
$t-1$
whenf $\left(t_{j}\right)$
$\equiv 0(\bmod 2)$
$f\left(k_{j}\right)= \begin{cases}1 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq j \\ 0 ; j \equiv 0(\bmod 2) & \leq t\end{cases}$

Case 2. When n is an odd

Case 1. When n is an number

evennumber

$$
\begin{aligned}
& f(u)=0 \\
& f\left(l_{j}^{s}\right)= \begin{cases}1 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq \\
0 ; j \equiv 0(\bmod 2) & j \leq n\end{cases} \\
& f(u)=0 \\
& f\left(l_{j}^{s}\right)= \begin{cases}1 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq j \leq \\
0 ; j \equiv 0(\bmod 2) & n, 1 \leq s \leq t\end{cases} \\
& 1 \leq s \leq t \quad f\left(m_{j}^{s}\right)= \begin{cases}1 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq j \leq \\
0 ; j \equiv 0(\bmod 2) & n-1\end{cases} \\
& f\left(m_{j}^{s}\right)=\left\{\begin{array}{ll}
1 ; j \equiv 1(\bmod 2) & \text { for } 1 \leq \\
0 ; j \equiv 0(\bmod 2) & j \leq n-1 \\
& 1 \leq s \leq t
\end{array}, \quad f\left(k_{j}\right)=\left\{\begin{array}{ll}
1 ; j \equiv 1(\bmod 2) \\
0 ; j \equiv 0(\bmod 2)
\end{array} \quad \text { for } 1 \leq j \leq t\right.\right.
\end{aligned}
$$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

Figure 2: Subdivided shell flower graph

Label the number of vertices and edges as follows:

Case a. When n, t even; n odd

$$
\begin{array}{r}
e_{f}(0)=(3 n-2) \frac{t}{2} \\
=e_{f}(1)
\end{array}
$$

and t even

$$
\begin{gathered}
v_{f}(0)=(n-1) t+\frac{t}{2} \\
+1 \\
v_{f}(1)=(n-1) t+\frac{t}{2}
\end{gathered}
$$

$$
v_{f}(0)=(n-1) t+\left\lfloor\frac{t}{2}\right\rfloor+1=v_{f}(1)
$$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

$$
e_{f}(0)=(3 n-2) \frac{t}{2}=e_{f}(1) \text { Joining } m \text { number of SSG to the apex } u
$$

Case c. When n, t is odd

$$
\begin{gathered}
\begin{array}{r}
v_{f}(0)=(n-1) t+\left\lfloor\frac{t}{2}\right\rfloor \\
+1 \\
=v_{f}(1)
\end{array} \\
e_{f}(0)=\left\lfloor\frac{3 n-2}{2}\right\rfloor t \\
+\left\lfloor\frac{t}{2}\right\rfloor
\end{gathered} e^{e_{f}(1)=\left\lfloor\frac{3 n-2}{2}\right\rfloor t+\left\lfloor\frac{t}{2}\right\rfloor}+1
$$

As a result, the above labeling pattern meets the conditions $\mid v_{f}(0)-$ vf $1 \leq 1$ and ef0-ef $1 \leq 1$. Thus, Subdivided shell flower graph admits cordial labeling.

Theorem 3.3

One point union of multiple sub-divided shell graph of same order is cordial.
Proof.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

$$
g(u)
$$

$=\left\{\begin{array}{c}1 ; \text { when } n, \text { m even } ; n, m \text { odd } ; n \text { odd and } m \text { even } \\ 0 ; \quad \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& g\left(a_{k}^{h}\right)=\left\{\begin{array}{l}
1 ; k \equiv 1(\bmod 2) \\
0 ;
\end{array} \quad k \equiv 0(\bmod 2)\right. \\
& \text { for } 1 \leq k \leq n, 1 \leq h \leq m \text {, } \\
& \text { when } g\left(a_{k}^{h}\right) \equiv 1(\bmod 2) \\
& \begin{array}{l}
g\left(a_{k}^{h}\right)= \begin{cases}0 ; & k \equiv 1(\bmod 2) \\
1 ; & k \equiv 0(\bmod 2)\end{cases} \\
g\left(b_{k}^{h}\right)= \begin{cases}0 ; & k \equiv 1(\bmod 2) \\
1 ; & k \equiv 0(\bmod 2)\end{cases}
\end{array} \\
& g\left(b_{k}^{h}\right)=\left\{\begin{array}{cc}
1 ; & k \equiv 1(\bmod 2) \\
0 ; & k \equiv 0(\bmod 2)
\end{array}\right. \\
& \text { for } 1 \leq k \leq n-1,2 \leq h \leq m-1 \text {, } \\
& \text { when } g\left(a_{k}^{h}\right) \equiv 0(\bmod 2) \\
& \text { for } 1 \leq k \leq n, 1 \leq h \leq m \text {, } \\
& g\left(a_{k}^{h}\right) \equiv 1(\bmod 2) \\
& \text { for } 1 \leq k \leq n-1,2 \leq h \leq m-1 \text {, } \\
& g\left(a_{k}^{h}\right) \equiv 0(\bmod 2)
\end{aligned}
$$

Figure 3: One point union of multiple sub-divided shell graph

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

Labeling the quantity of vertices and edges be

$$
\begin{gathered}
\text { Case 1. When } \boldsymbol{n}, \boldsymbol{m} \text { is odd } \\
\begin{array}{l}
v_{g}(0)=n(m+1)-\left\lfloor\frac{n}{2}\right\rfloor=v_{g}(1) \\
e_{g}(0)=\left\lfloor\frac{n}{2}\right\rfloor(3 m+1)=e_{g}(1)
\end{array}
\end{gathered}
$$

As a result, the above labeling pattern meets the conditions $\mid v_{g}(0)-$ $v_{g}(1) \mid \leq 1$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Thus, Cordial labeling is possible with the multiple sub-divided shell graph.

Theorem 3.4

Sub-divided shell Graph with uniform star graphs coupled to the apex and path vertices admits cordiality.
Proof.

Let X be the graph formed byconnecting the apex and path vertices of the shell graph with uniform star graphs [8]. The following is a description of the graph X.Let v represent the graph's apex.Let $c_{1}, c_{2}, \ldots, c_{n}$ denote the path vertices of the SSG's shell graph, and let $d_{1}, d_{2}, \ldots, d_{n-1}$ denote the path vertices of the SSG's split shell graph.The star graph associated to the vertex c_{1} is $s_{1}^{1}, s_{2}^{1}, s_{3}^{1}, \ldots, s_{r}^{1}$. Similarly, the star graph associated to the vertex c_{2} is $s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, \ldots, s_{r}^{2}$. In general, the star associated to the vertex c_{n} is $s_{1}^{n}, s_{2}^{n}, s_{3}^{n}, \ldots, s_{r}^{n}$. The star graph associated to the apex vertex v is $t_{1}, t_{2}, \ldots, t_{r}$. The $\operatorname{graph} X$ has $|V(X)|=2 n+r(n+1)$,

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452
$|E(X)|=3 n+r(n+1)-2$. The graph's

$$
\varnothing\left(t_{k}\right)=\left\{\begin{array}{ll}
0 ; k \equiv 1(\bmod 2) \\
1 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 1 \leq i \leq r\right.
$$

vertexlabelingis definedas
\varnothing is from $V(X)$ to $\{0,1\}$.
Case 2. When n, s is odd and n
Case 1. When n, r is even and n odd, r even

even, r odd

$$
\phi(v)=0
$$

$$
\emptyset\left(c_{k}\right)=\left\{\begin{array}{l}
1 ; k \equiv 1(\bmod 2) \\
0 ; k \equiv 0(\bmod 2)
\end{array}\right.
$$

for $1 \leq \underline{\text { When }} \bar{i} \underline{\underline{=}} \underset{1}{<}, 2(\bmod 4)$

$$
\emptyset\left(d_{k}\right)=\left\{\begin{array}{c}
0 ; k \equiv 1(\bmod 2) \\
1 ; k \equiv 0(\bmod 2)
\end{array}\right.
$$

$$
\text { for } 1 \leq \not \subset\left(s s_{k}\right)=\left\{\begin{array}{l}
1 ; k \equiv 1(\bmod 2) \\
0 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 1 \leq k \leq r-1\right.
$$

When $i \equiv 0, \overline{3}(\bmod 4)$

$$
\emptyset\left(s_{k}^{i}\right)=\left\{\begin{array}{ll}
0 ; k \equiv 1(\bmod 2) \\
1 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 2 \leq k \leq r\right.
$$

$$
\text { for } 1 \leq k \leq r . \quad \begin{aligned}
& 0 ; k \equiv 1(\bmod 2) \\
& 1 ; k \equiv 0(\bmod 2)
\end{aligned} \quad \text { for } 1 \leq k \leq r
$$

When $i \equiv 0(\bmod 2)$

$$
\emptyset\left(s_{k}^{i}\right)=\left\{\begin{array}{l}
0 ; k \equiv 1(\bmod 2) \\
1 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 2 \leq k \leq r\right.
$$

Figure 4. Sub-divided shell graph with star attached coupled at the apex and path vertices.

$$
\begin{aligned}
& \phi(v)=\left\{\begin{array}{c}
1 ; \text { if } n, s \text { is even } \\
0 ; \text { otherwise }
\end{array}\right. \\
& \begin{array}{lr}
\varnothing\left(c_{k}\right)=\left\{\begin{array}{l}
1 ; k \equiv 1(\bmod 2) \\
0 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 1 \leq k \leq n\right. \\
\emptyset\left(d_{k}\right)=\left\{\begin{array}{l}
0 ; k \equiv 1(\bmod 2) \\
1 ; k \equiv 0(\bmod 2)
\end{array} \quad \text { for } 1 \leq k \leq n-1\right.
\end{array}
\end{aligned}
$$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452

Label the number of vertices and edges as follows:

Case a. When n, r is even

$$
\begin{gathered}
v_{\varnothing}(0)=n+\frac{r}{2}(n+1)=v_{\varnothing}(1) \\
e_{\varnothing}(0)=\frac{3 n}{2}+\frac{r}{2}(n+1)-1=e_{\varnothing}(1)
\end{gathered}
$$

Case b. When n, r is odd

$$
v_{\varnothing}(0)=n+\frac{r}{2}(n+1)=v_{\varnothing}(1)
$$

Subcase:1When $n=$
5 and $r=2 i-1$

$$
\begin{gathered}
e_{\varnothing}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1) \\
e_{\varnothing}(1)=\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1)-1
\end{gathered}
$$

Subcase:2When $n \geq 3$

$$
\begin{gathered}
e_{\varnothing}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1)-1 \\
e_{\varnothing}(1)=\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1)
\end{gathered}
$$

Case c. When nisodd , r is even

$$
v_{\varnothing}(0)=n+\frac{r}{2}(n+1)=v_{\varnothing}(1)
$$

$$
\begin{aligned}
e_{\varnothing}(0) & =\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1)-1 \\
e_{\varnothing}(1) & =\left\lfloor\frac{3 n}{2}\right\rfloor+\frac{r}{2}(n+1)
\end{aligned}
$$

Case d. When niseven, risodd

$$
v_{\varnothing}(0)=n+\left\lfloor\frac{r(n+1)}{2}\right\rfloor+1
$$

$$
v_{\varnothing}(1)=n+\left\lfloor\frac{r(n+1)}{2}\right\rfloor
$$

$$
\begin{gathered}
e_{\varnothing}(0)=\frac{3 n}{2}+\left\lfloor\frac{r(n+1)}{2}\right] \\
e_{\varnothing}(1)=\frac{3 n}{2}+\left[\frac{r(n+1)}{2}\right\rfloor-1
\end{gathered}
$$

As a result, the above labeling pattern meets the requirements $\mid v_{\varnothing}(0)-$ $\nu \varnothing 1 \leq 1$ and $e \varnothing-e \varnothing 1 \leq 1$. Thus, subdivided shell graph with uniform star graphs coupled to the apex and path vertices admits cordiality.

4. Conclusion

We showed that the uniform subdivided shell bow graphs, uniform sub-

Volume 13, No. 2, 2022, p. 3455-3466
https://publishoa.com
ISSN: 1309-3452
divided shell flower graphs, one point union of multiple sub-divided shell graphs, sub-divided shell graphs with star graphs coupled to the apex and path vertices are cordial in this work.

References

[1] Cahit I,

CordialGraphs:"AweakerVersionofGra cefulandHarmoniousGraphs", Ars Combin, 1987, Vol 23, pp. 201-207.
[2] Cahit I, "On cordial and 3-equitable labelings of graphs", Util. Math., 37(1990)189-198.
[3] Deb P, Limaye NB, "On Harmonious Labeling of some cycle relatedgraphs",Ars Combinatoria, 65(2002), 177-197.
[4] Ezhilarasi HildaK, Jeba JesinthaJ, "Subdivided Shell Flower Graphs: ρ labeling", South East Asian Journal of Maths \& Math. Sci. Vol.14. No.3(2018), pp. 79-88.
[5] Gallian J A, "A dynamic survey of Graph labeling", The Electronic Journal of Combinatorics, (2020), pp. 77-81.
[6] Jeba Jesintha J and K. Ezhilarasi Hilda K, "Sub divided uniform shell bow graphs and subdivided shell graphs are odd graceful", (2014),

Eduventure, Vol.7, No. 13. pp. 103 105.
[7] RosaA, "On certain valuation of graph", Theory of graphs, Gordon and Breach. NY and Paris, (1967), pp. 349-355.

