Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

$(\alpha, \beta) - Q$ —Fuzzy Subgroup and Its Properties

Dr. R. Jahir Hussain¹, S.Palaniyandi²

Jamal Mohamed College (Autonomous),

Affiliated to Bharathidasan University

Tiruchirappalli, Tamilnadu, India.

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.

ABSTRACT:

In this paper, we introduce the concept of $(\alpha, \beta) - Q$ -fuzzy subgroup of a group, $(\alpha, \beta) - Q$ -fuzzy normal subgroup and both right and left cosets and discuss some of its properties. The main objective of this paper, we extend the concept of Q-fuzzy subgroup.

Keywords:-Fuzzy set, fuzzy subgroup, Q-fuzzy subgroup, $\alpha - Q$ -fuzzy subgroup, $(\alpha, \beta) - Q$ -fuzzy set, $(\alpha, \beta) - Q$ -fuzzy subgroup.

1. INTRODUCTION

The concept of fuzzy set was coined by Zadeh.L.A [8].The fuzzy set hasused in many research area.In the view of group theory, Rosenfeld [5] invented the idea of the fuzzy subgroups. Biswas.R [1] gave the concept of anti-fuzzy subgroups.Solairaju.A and Nagarajan.R [7] were introduced the new structure of Q-fuzzy groups. Sharma .P.K.[6] was introduced the concept of (α, β) –fuzzy subgroup.Muwafaq M. Salih and Delbrin H. Ahmed [3] were initiated the idea of α -Q-fuzzy Subgroups. In this paper, we introduce the concept of (α, β) – Q –fuzzy subgroup and (α, β) – Q –fuzzy subgroup and (α, β) – Q –fuzzy 3479

both left and right cosets and discuss some of its properties.

2. PRELIMINARIES

2.1 Definition [8]

Let X be a non-empty set. A fuzzy subset A of Xis $A: X \to [0, 1]$.

2.2 Definition [5]

Let G be a group and Abe a fuzzy subset of a group G. Then A is called fuzzy subgroup of a group G if for all $x, y \in G$,

i)
$$A(xy) \ge \min \{A(x), A(y)\}$$

¹ Associate Professor,PG & Research Department of Mathematics,

² Research Scholar, PG & Research Department of Mathematics,

Volume 13, No. 2, 2022, p. 3479-3487 https://publishoa.com

ISSN: 1309-3452

ii)
$$A(x^{-1}) = A(x)$$

2.3 Definition [1]

Let G be a group and Abe a fuzzy subset of a group G. Then A is called anti fuzzy subgroup of a group G if for all $x, y \in G$,

i)
$$A(xy) \leq max \{A(x), A(y)\}$$

ii)
$$A(x^{-1}) = A(x)$$

2.4Definition [7]

A Q- fuzzy set A is called Q-fuzzy group of a group G if for all $x, y \in G$, and $q \in Q$

i)
$$A(xy,q) \ge \min\{A(x,q),A(y,q)\}$$

ii)
$$A(x^{-1}, q) = A(x, q)$$

2.5 Definition [3]

Let A be a Q-fuzzy subgroup of a group G and $\alpha \in [0, 1]$. Then, A^{α} is called α -Q-fuzzy subgroup of G, if for all $x, y \in G$, and $q \in Q$ the following conditions hold:

(i)
$$A^{\alpha}(xy,q) \ge \min\{A^{\alpha}(x,q), A^{\alpha}(y,q)\}$$

(ii)
$$A^{\alpha}(x^{-1},q) = A^{\alpha}(x,q)$$

2.6Definition [6]

 A^{α} and A_{β} are α -fuzzy set and β - anti fuzzy set of the set X (w.r.t. the fuzzy set A), then the fuzzy set $A^{(\alpha, \beta)}$ defined by $A^{(\alpha, \beta)}(x) = \min\{A^{\alpha}(x), A^{c}_{\beta}(x)\}$ for every $x \in X$ is called (α, β) - fuzzy set of X(w.r.t. the fuzzy set A) where $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta \leq 1$.

3. $(\alpha, \beta) - Q$ -FUZZY SUBGROUP AND ITS PROPERTIES

3.1 Definition

 A^{α} and A_{β} are $\alpha - Q$ —fuzzy set and β - anti Q —fuzzy set of the set X (w.r.t. the fuzzy set A), then the Q —fuzzy set $A^{(\alpha,\beta)}$ is defined by $A^{(\alpha,\beta)}(x,q) = \min\{A^{\alpha}(x,q), A^{c}_{\beta}(x,q)\}$ for all $x \in X$ and $q \in Q$ is called α , $\beta - Q$ —fuzzy set of X

Remark

(i)
$$A^{(1,0)}(x, q) = \min\{A^1(x, q, A0cx, q)\}$$

= $\min\{A(x, q), 0\}$
= 0

(ii)
$$A^{(0,1)}(x, q) = \min \mathbb{A}^0(x, q, A1cx, q)$$

= $\min \mathbb{A}^0, A^c(x, q)$
= 0

3.2 Definition

Let A be a $(\alpha, \beta) - Q$ -fuzzy set of a group G(w.r.t.) the fuzzy set A), A is said to be $(\alpha, \beta) - Q$ -fuzzy subgroup $[(\alpha, \beta) - QFSG]$ of the group G if it is satisfied the following conditions

(i)
$$A^{(\alpha,\beta)}(xy, q) \ge \min\{A^{(\alpha,\beta)}(x, q), A^{(\alpha,\beta)}(y, q)\}$$

(ii)
$$A^{(\alpha,\beta)}(x^{-1}, q) = A^{(\alpha,\beta)}(x, q), \forall x, y \in G \text{ and } q \in Q$$

3480

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

Equivalently, we have $A^{(\alpha,\beta)}(xy^{-1}, q) \ge \min\{A^{(\alpha,\beta)}(x, q), A^{(\alpha,\beta)}(y, q)\}$, $\forall x, y \in G \text{ and } q \in Q$

3.3 Theorem

If A is a $(\alpha, \beta) - Q$ —fuzzy subgroup of a group G, then we have

(i) $A^{(\alpha,\beta)}(e, q) \ge A^{(\alpha,\beta)}(x, q)$, where e is the identity of the group G and

(ii) If
$$A^{(\alpha,\beta)}(xy^{-1}, q) = A^{(\alpha,\beta)}(e, q) \Rightarrow A^{(\alpha,\beta)}(x, q) = A^{(\alpha,\beta)}(y, q)$$

Proof:

(i)
$$A^{(\alpha,\beta)}(e,q) = \min\{A^{\alpha}(e,q), A^{c}_{\beta}(e,q)\}$$

$$\geq \min\{A^{\alpha}(x,q), A^{c}_{\beta}(x,q)\}$$

$$= A^{(\alpha,\beta)}(x,q)$$

$$A^{(\alpha,\beta)}(x,q) = A^{(\alpha,\beta)}(xy^{-1}y,q)$$

$$\geq \min\{A^{(\alpha,\beta)}(xy^{-1},q), A^{(\alpha,\beta)}(y,q)\}$$

$$= \min\{A^{(\alpha,\beta)}(e,q), A^{(\alpha,\beta)}(y,q)\}$$

$$= A^{(\alpha,\beta)}(y,q)$$

$$(ii)A^{(\alpha,\beta)}(y,q) = A^{(\alpha,\beta)}(yxx^{-1},q)$$

$$\geq \min\{A^{(\alpha,\beta)}(yx^{-1},q), A^{(\alpha,\beta)}(x,q)\}$$

$$= \min\{A^{(\alpha,\beta)}((xy^{-1})^{-1},q), A^{(\alpha,\beta)}(x,q)\}$$

$$= \min\{A^{(\alpha,\beta)}(xy^{-1},q), A^{(\alpha,\beta)}(x,q)\}$$

$$= \min\{A^{(\alpha,\beta)}(e,q), A^{(\alpha,\beta)}(x,q)\}$$

$$= A^{(\alpha,\beta)}(x,q)$$

Hence $A^{(\alpha,\beta)}(x,q) = A^{(\alpha,\beta)}(y,q)$

3.4 Theorem

Let A be a $\alpha-Q-$ fuzzy subgroup as well as $\beta-$ anti Q- fuzzy subgroup of a group G, then A is also $(\alpha,\beta)-Q-$ fuzzy subgroup of a group G.

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

Proof:

Let x, y be any element of the group G and $q \in Q$

Then
$$A^{(\alpha,\beta)}(xy^{-1},q) = \min\{A^{\alpha}(xy^{-1}, q), A^{c}_{\beta}(xy^{-1}, q)\}$$

$$\geq \min\{\min\{A^{\alpha}(x, q), A^{\alpha}(y, q)\}, \min\{A^{c}_{\beta}(x, q), A^{c}_{\beta}(y, q)\}\}$$

$$= \min\{\min\{A^{\alpha}(x, q), A^{c}_{\beta}(x, q)\}, \min\{A^{\alpha}(y, q), A^{c}_{\beta}(y, q)\}\}$$

$$= \min\{A^{(\alpha,\beta)}(x,q), A^{(\alpha,\beta)}(y,q)\}$$

Thus
$$A^{(\alpha,\beta)}(xy^{-1},q) \ge \min \{A^{(\alpha,\beta)}(x,q), A^{(\alpha,\beta)}(y,q)\}$$

Hence A is a $(\alpha, \beta) - Q$ – fuzzy subgroup of a group G.

3.5Example

Let $G = \{e, a, b, ab\}$, where $a^2 = b^2 = e$ and ab = ba be the Klein four group.

Q —fuzzy set A of G is defined by

$$A = \{<(e,a), 0.1>, <(a,q), 0.4>, <(b,q), 0.4>, <(ab,q), 0.3>\}$$

Clearly, A is not a Q – fuzzy subgroup of a group G.

Take $\alpha = 0.05$

Then
$$(x,q) > \alpha$$
, $\forall x \in G \text{ and } q \in Q$

So that
$$A^{\alpha}(x, q) \ge \min\{A(x, q), \alpha\} = \alpha, \forall x \in G \text{ and } q \in Q$$

Therefore $A^{\alpha}(xy^{-1}, q) \ge \min\{A(x,q), A(y,q)\}$ hold.

Therefore A is a $\alpha - Q$ – fuzzy subgroup of a group G.

Again Let $\beta = 0.4$

Then
$$A_{\beta}(x,q) = \max\{A(x,q), 1-\beta\}$$

$$= \max\{A(x,q), 0.6\}$$

$$= 0.6, \forall \quad x \in G \text{ and } q \in Q.$$

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

Thus $A_{\beta}(xy^{-1},q) \leq \max\{A(x,q),A(y,q)\}$ hold.

Therefore A is a β – anti Q – fuzzy subgroup of a group G.

Further

$$A^{(0.05,0.4)}(x,q) = \min\{A^{0.05}(x,q), A^c_{0.4}(x,q)\}$$

$$= \min\{0.05, 0.4\}$$

$$= 0.05, \forall \quad x \in G \text{ and } q \in Q$$

Hence A is (0.05, 0.4) - Q – fuzzy subgroup of a group G.

3.6 Theorem

The intersection of two $(\alpha, \beta) - Q$ – fuzzy subgroups of a group G is also $(\alpha, \beta) - Q$ –fuzzy subgroup of a group G.

Proof:

Let A and B be two $(\alpha, \beta) - Q$ – fuzzy subgroups of a group G and for all $x \in G$ and $q \in Q$

$$(A \cap B)^{(\alpha,\beta)}(xy,q) = (A^{(\alpha,\beta)} \cap B^{(\alpha,\beta)})(xy,q)$$

$$= \min \{A^{(\alpha,\beta)}(xy,q), B^{(\alpha,\beta)})(xy,q)\}$$

$$\geq \min \{\min \{A^{(\alpha,\beta)}(x,q), A^{(\alpha,\beta)}(y,q)\}, \min \{B^{(\alpha,\beta)}(x,q), B^{(\alpha,\beta)}(y,q)\}$$

$$= \min \{A^{(\alpha,\beta)}(x,q), B^{(\alpha,\beta)}(x,q), A^{(\alpha,\beta)}(y,q), B^{(\alpha,\beta)}(y,q)\}$$

$$= \min \{(A \cap B)^{(\alpha,\beta)}(x,q), (A \cap B)^{(\alpha,\beta)}(y,q)\}$$

Thus

$$(A \cap B)^{(\alpha,\beta)}(xy,q) \ge \min\{(A \cap B)^{(\alpha,\beta)}(x,q), (A \cap B)^{(\alpha,\beta)}(y,q)\}$$

Moreover

$$(A \cap B)^{(\alpha,\beta)}(x^{-1},q) = (A^{(\alpha,\beta)} \cap B^{(\alpha,\beta)})(x^{-1},q)$$

$$= \min\{(A^{(\alpha,\beta)}(x^{-1},q), B^{(\alpha,\beta)})(x^{-1},q)$$

$$= \min\{(A^{(\alpha,\beta)}(x,q), B^{(\alpha,\beta)})(x,q)$$

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

Hence
$$(A \cap B)^{(\alpha,\beta)}(x^{-1},q) = (A \cap B)^{(\alpha,\beta)}(x,q)$$

Consequently $A \cap B$ is $(\alpha, \beta) - Q$ – fuzzy subgroups of a group G.

3.7 Example

Let $Z = \{0, \pm 1, \pm 2, ...\}$ be a greoup under addition and $q \in Q$. Define the two Q – fuzzy subsets A and B of Z as follows

$$A(x,q) = \begin{cases} 0.6 & if \ x \in 3Z \\ 0.04 & otherwise \end{cases} \text{ and } B(x,q) = \begin{cases} 0.4 & if \ x \in 2Z \\ 0.06 & otherwise \end{cases}$$

Taking $\alpha = 0.4$ and $\beta = 0.6$

Now
$$(A \cup B)(x,q) = \max\{A(x,q), B(x,q)\}$$

Therefore

$$A \cup B = \begin{cases} 0.6 & if \ x \in 3Z \\ 0.4 & if \ x \in 2Z \\ 0.06 & if \ x \notin 2Z \ or \ x \notin 3Z \end{cases}$$

Take x = 21 and v = 4

Then $(A \cup B)(x, q) = 0.6$ and $(A \cup B)(y, q) = 0.4$

But
$$(A \cup B)(x - y, q) = 0.04$$

In addition, $\min\{(A \cup B)(x, q), (A \cup B)(y, q)\} = \min\{0.6, 0.4\} = 0.4$

Clearly
$$(A \cup B)(x - y, q) < \min\{(A \cup B)(x, q), (A \cup B)(y, q)\}$$

Consequently $A \cup B$ is not (0.4, 0.6)- Q – fuzzy subgroup of Z.

Hence the union of two $(\alpha, \beta) - Q$ – fuzzy subgroups of Z is not $(\alpha, \beta) - Q$ – fuzzy subgroups of Z.

3.8 Definition

Let A and B be two $(\alpha, \beta) - Q$ – fuzzy subgroups of a group G_1 and G_2 respectively. Then the product of A and B is defined as $A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x,y),q) = \min \{A^{(\alpha,\beta)}(x,q), B^{(\alpha,\beta)}(y,q)\}$ for all $x \in G_1$ and $y \in G_2$ and $q \in Q$.

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

3.9Theorem

Let A and B be two $(\alpha, \beta) - Q$ – fuzzy subgroups of a group G_1 and G_2 respectively. Then $A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}$ is $(\alpha,\beta) - Q$ – fuzzy subgroup of $G_1 \times G_2$.

Proof:

Let
$$x_1, x_2 \in G_1$$
 and $y_1, y_2 \in G_2$ then $(x_1, y_1), (x_2, y_2) \in G_1 \times G_2$ and $q \in Q$
Now $A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_1, y_1)(x_2^{-1}, y_2^{-1}), q) = A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_1x_2^{-1}, y_1y_2^{-1}), q)$

$$= \min\{A^{(\alpha,\beta)}(x_1x_2^{-1}, q), B^{(\alpha,\beta)}(y_1y_2^{-1}, q)\}$$

$$\geq \min\{\min\{A^{(\alpha,\beta)}(x_1, q), A^{(\alpha,\beta)}(x_2^{-1}, q)\}, \min\{B^{(\alpha,\beta)}(y_1, q), B^{(\alpha,\beta)}(y_2^{-1}, q)\}\}$$

$$= \min\{\min\{A^{(\alpha,\beta)}(x_1, q), A^{(\alpha,\beta)}(x_2, q)\}, \min\{B^{(\alpha,\beta)}(y_1, q), B^{(\alpha,\beta)}(y_2, q)\}\}$$

$$= \min\{\min\{A^{(\alpha,\beta)}(x_1, q), B^{(\alpha,\beta)}(y_1, q)\}, \min\{A^{(\alpha,\beta)}(x_2, q), B^{(\alpha,\beta)}(y_2, q)\}\}$$

$$= \min\{A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_1, y_1), q), A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_2, y_2), q)\}$$

Hence

$$A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_1,y_1)(x_2^{-1},y_2^{-1}),q)$$

$$\geq \min\{A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_1,y_1),q), A^{(\alpha,\beta)} \times B^{(\alpha,\beta)}((x_2,y_2),q)\}$$

3.10 Definition

Let A be a $(\alpha, \beta) - Q$ – fuzzy subgroup of a group G and $\alpha, \beta \in [0, 1]$. For any

 $m \in G$ and $q \in Q$. The $(\alpha, \beta) - Q$ – fuzzy left coset of A in G is represented by $mA^{(\alpha,\beta)}$ as defined as $mA^{(\alpha,\beta)}(x,q) = t_n\{A(m^{-1}x,q),(\alpha,\beta)\}$ for all $m,x \in G$ and $q \in Q$.

Similarly, we define the $(\alpha, \beta) - Q$ – fuzzy right coset of A in G is represented by $A^{(\alpha,\beta)}m$ as defined as $A^{(\alpha,\beta)}m(x,q) = t_p\{A(xm^{-1},q),(\alpha,\beta)\}$ for all $m,x \in G$ and $q \in Q$.

Remarks

Let A be a $(\alpha, \beta) - Q$ - fuzzy subgroup of a group G and $\alpha, \beta \in [0, 1]$. Then A is called $(\alpha, \beta) - Q$ - fuzzy normal subgroup of a group G if and only if $mA^{(\alpha, \beta)} = A^{(\alpha, \beta)}m$, for all $m, \in G$.

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

3.11 Theorem

If *A* is $(\alpha, \beta) - Q$ – fuzzy normal subgroup of a group *G*.

Then
$$A^{(\alpha,\beta)}(y^{-1}xy,q) = A^{(\alpha,\beta)}(x,q)$$
 or equivalently $A^{(\alpha,\beta)}(xy,q) = A^{(\alpha,\beta)}(yx,q)$,

For all $x, y \in G$ and $q \in Q$.

Proof:

Since A is $(\alpha, \beta) - Q$ – fuzzy normal subgroup of a group G, $mA^{(\alpha,\beta)} = A^{(\alpha,\beta)}m$, for all $m \in G$ and $q \in Q$.

Thus
$$(mA^{(\alpha,\beta)})(y^{-1},q) = (A^{(\alpha,\beta)}m)(y^{-1},q)$$

$$\Rightarrow t_n\{A(x^{-1}y^{-1},q),(\alpha,\beta)\} = t_n\{A(y^{-1}x^{-1},q),(\alpha,\beta)\}$$

Which implies that

 $A^{(\alpha,\beta)}((yx)^{-1},q) = A^{(\alpha,\beta)}((xy)^{-1},q)$ as A is $(\alpha,\beta) - Q$ – fuzzy normal subgroup of a group G.

So
$$A^{(\alpha,\beta)}(g^{-1},q)=A^{(\alpha,\beta)}(g,q)$$
, for all $g\in G$ and $q\in Q$.

Consequently $A^{(\alpha,\beta)}(xy,q) = A^{(\alpha,\beta)}(yx,q)$.

3.12 Theorem

Every Q – fuzzy normal subgroup of a group G is a (α, β) – Q – fuzzy normal subgroup of a group G.

Proof:

Let A be a Q — fuzzy normal subgroup of a group G.

Then for all $m \in G$, we have mA = Am

This implies (mA)(x,q) = Am(x,q) for all $x \in G$ and $q \in Q$.

So
$$A(m^{-1}x, q) = A(xm^{-1}, q)$$

Hence
$$t_p\{A(m^{-1}x, q), (\alpha, \beta)\} = t_p\{A(xm^{-1}, q), (\alpha, \beta)\}$$

i.e
$$mA^{(\alpha,\beta)} = A^{(\alpha,\beta)}m$$
 for all $m \in G$

3486

Volume 13, No. 2, 2022, p. 3479-3487

https://publishoa.com

ISSN: 1309-3452

consequently A is a $(\alpha, \beta) - Q$ – fuzzy normal subgroup of a group G.

Remark

The converse of the above theorem may not be true.

4. CONCLUSION

In this paper, the concepts of (α,β) -Q-fuzzy subset and (α,β) -Q-fuzzy subgroup have been defined and related properties are proven. Also (α,β) -Q-fuzzy left and right cosets are defined with some results.

REFERENCES:

- [1] Biswas .R, Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and Systems, 35(1990) 121-124.
- [2]Mohamed Asaad, Groups and Fuzzy subgroups Fuzzy sets and systems 39(1991) 323-328.
- [3] Muwafaq M. Salih and Delbrin H. Ahmed, α-Q-fuzzy Subgroups,

- Academic Journal of Nawroz University (AJNU). 26-31.
- [4] Palaniappan .N.Muthuraj. R, Anti fuzzy group and Lower level subgroups, AntarticaJ.Math, 1 (1) (2004), 71-76.
- [5] Rosenfeld. A, fuzzy groups, J. math.Anal.Appl. 35 (1971), 512-517.
- [6]. Sharma .P.K., (α,β)- Fuzzy subgroups, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications Vol. 4, No. 2, (July-December 2012): 59–71
- [7] Solairaju A. and Nagarajan R., A new Structure and construction of Q-Fuzzy Groups, Advances in Fuzzy Mathematics, Volume 4, Number 1 (2009) pp. 23-29
- [8]. Zadeh. L.A., Fuzzy Set, Information and Control 8(1965), 338-353