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Abstract. In this work we have studied an backlog model for damaged  products with 

logarthimic stipulation rate for the optimal stock of commodities which may be either constant or 

vary with time. This paradigmatic is developed to find the fuzzy total cost of the inventory 

system so as to get the lower expenditure. Time dependent deterioration of time is considered. 

For defuzzification the proposed model is dealt with heptagonal fuzzy numbers .Numeric 

illustration is dispensed to exhibit the evaluation of suggested layout. 
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1.Introduction: 

Inventory management is a critical resource 

for every activities because it determines 

how much    inventory to keep on hand and 

how regularly to          reorder. Stockpile 

refers to the commodities or      resources 

used by a commercial organisation for        

inventory            purposes. The impact of 

degradation on the inventory process is 

critical. When developing appropriate     

inventory suggestions for merchandise such 

as fruits, vegetables, chemicals, and so on, 

the deprivation of reserve due to degradation 

cannot be          ignored. Manish Pande and 

Gautam[11]           developed an stock 

management pattern using a         cost-

cutting technique for determining the best 

stock, time, and total cost for fixed 

degradation and  integrated sales rates. By 

tolerating a scarcity, deterministic demand 

instances were considered. They were given 
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beginning inventory, total number of 

deteriorating pieces, and approximate 

expression. They came up with a rough 

formula for initial           inventory and 

overall variety of deteriorated units. Dutta 

and Kumar[2] created a backlog model with 

no         deficiency using trapezoidal fuzzy 

numbers in a hazy environment. The best 

overall cost and order quantity were defined 

utilising trapezoidal fuzzy numbers. The 

signed distance method was used for 

defuzzification.Ranganathan and 

Thirunavukarasu[14] developed a fuzzy 

resource type with continuous           

depreciation. Balarama Murthy, Kartigeyan, 

and Pragathi[1] investigated a fuzzy backlog 

control problem with logarithmic         

demand  and weibull deterioration rate. 

Karthigeyan, Balarama murthy, and Saranya 

[8] developed a fuzzy-optimized            

production pattern that accounts for 

economic order quantity and allows for 

shortages. Senbagam and Kokilamani [16] 

investigated an inventory model in a fuzzy 

setting for gompertz degrading commodities 

with quadratic demand and constant holding 

cost.Meenakshi Sundaram ,Harikrishnan and             

Sivan[12] introduced an deteriorating  

inventory  model of EOQ with  

betadistributed quadratic time function 

demand and fully backlogged with 

shortages. 

In this article, we looked at the logarithmic 

ratio of demand and damage over time. The 

end goal is to find a fuzzy optimal solution 

by differential mean integration using  

heptagonal fuzzy number . To         represent 

the estimations of the proposed model,       

numerical examples were used. 

 

2.Premise and Symbols: 

The presumptions for the arithmetical representation are  

(a)The stockpile ratio is logarithmic behaviour of time (i.e) D(t)= log(1+ t ) 

(b) The delivery time is nil.  

(c) The reload rate is interminable.  

(d)  Rate of decline is time dependent.  

(e) I (t) is the supply  at spell . 

(f) H is the possibility price in step with unit price. 

(g) A is the rarity value per order unit.  
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(h) C is the per unit value of deterioration.  

(i) Q is the overall quantity of stock on the begin of every period.  

(j) S is the starting stock after fulfillment of back orders. 

 (k) 𝐴  is the fuzzy shortage cost. 

(l) 𝐻  is the fuzzy opportunity cost. 

(m) 𝐶  is the fuzzy deteriorated cost. 

3.Concepts of fuzzy[17]: 

(i) The trapezoidal fuzzy number is 

defined as A = (𝑎1, 𝑎2 , 𝑎3, 𝑎4) where 𝑎1, 𝑎2 

, 𝑎3, 𝑎4are defined on R, if the membership 

function of A is given by 

                                
𝑥−𝑎1

𝑎2−𝑎1
 ,  𝑎1 ≤ 𝑥 ≤  𝑎2 

                               1  , 𝑎2 ≤ 𝑥 ≤  𝑎3 

   𝜇𝐴    =                   
𝑥−𝑎3

𝑎4−𝑎3
 ,  𝑎3 ≤ 𝑥 ≤  𝑎4 

                                0    ,  𝑥 ≥ 𝑎4 

 

(ii).A heptagonal fuzzy number 𝐴  = 

(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) are represented 

with membership function  𝜇𝐴  (x) as: 

 

                                 
𝑥−𝑎1

𝑎2−𝑎1
 ,  𝑎1 ≤ 𝑥 ≤  𝑎2 

                                 
𝑥−𝑎2

𝑎3−𝑎2
 ,  𝑎2 ≤ 𝑥 ≤ 𝑎3 

                                
𝑥−𝑎4

𝑎4−𝑎3
 ,  𝑎3 ≤ 𝑥 ≤ 𝑎4 

      𝜇𝐴  (𝑥)  =                   1  , 𝑥 =  𝑎4 

                               
𝑎5−𝑥

𝑎5−𝑎4
 ,  𝑎4 ≤ 𝑥 ≤ 𝑎5 

                               
𝑎6  −𝑥

𝑎6−𝑎5
 ,  𝑎5 ≤ 𝑥 ≤ 𝑎6 

                               
𝑎7  −𝑥

𝑎7−𝑎6
 ,  𝑎6 ≤ 𝑥 ≤ 𝑎7 

                                 0        otherwise. 

 

(iii).Graded Mean Representation 

integration: 

A generalized heptagonal fuzzy number 𝐴  = 

(𝑎1, 𝑎2 , 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) is defuzzified by 

graded mean integration representation [17] 

and is defined by 

P(𝐴 )= 
𝑎1+3𝑎2+3𝑎3  + 4𝑎4+ 3𝑎5+ 3𝑎6+ 𝑎7

18
 

4. Mathematical Formulation  

   Let I(t) denote on-hand inventory at time (0,T) then the differential equation below determines 

the inventory of variation with regard to time T is 

  
𝑑𝐼(𝑡)

𝑑𝑡
 + t I(t)= -log(1+t)  ,0≤ t ≤ t1         (1) 

      
𝑑𝐼(𝑡)

𝑑𝑡
 = -log(1+t)   ,t1 ≤ t ≤ T               (2)                                                                   
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The result of equation  (1) is  

I(t)= [ 
𝑡3

6
 - 

𝑡2

2
 - 

𝑡4

12
 - ( 

𝑡4

8
 - 

𝑡5

20
 + 

𝑡6

36
 )]𝑒

−𝜃𝑡2

2  +   C𝑒
−𝜃𝑡2

2       

      With the limiting condition t=0,  I(t)=S implies S=C,therefore 

I(t)= [ 
𝑡3

6
 - 

𝑡2

2
 - 

𝑡4

12
 - ( 

𝑡4

8
 - 

𝑡5

20
 + 

𝑡6

36
 )]𝑒

−𝜃𝑡2

2  +     S𝑒
−𝜃𝑡2

2              (3) 

The result of (2) is given by the limiting condition t= t1, I(t)=0, 

I(t)= (1+ t1) log(1+ t1) – (1+t)log(1+t) + t - t1     (4) 

From (3) we obtain 

S= 
𝑡1

2

2
 - 

𝑡1
3

6
 + 

𝑡1
4

12
 + ( 

𝑡1
4

8
 - 

𝑡1
5

20
 + 

𝑡1
6

36
 )                   (5) 

Hence the unit deteriorated is given by  

D= S-  log(1 + t)
𝑡1

0
dt 

   = 
𝑡1

2

2
 - 

𝑡1
3

6
 + 

𝑡1
4

12
 + ( 

𝑡1
4

8
 - 

𝑡1
5

20
 + 

𝑡1
6

36
 ) -  (1+ t1)   log(1+ t1) +t1     (6) 

Total average inventory is given by 

𝐼1( 𝑡1) = 
1

𝑇
  𝐼 𝑡 𝑑𝑡

𝑡1

0
 

= 
1

𝑇
 [ 

𝑡1
3

3
 - 

𝑡1
4

8
 - 

𝑡1
5

15
  - ( 

𝑡1
4

40
 - 

11𝑡1
5

120
 + 

𝑡1
6

36
 - 

𝑡1
7

63
)]                           (7) 

Average shortage cost is given by 

𝐼2( 𝑡1) = 
1

𝑇
  𝐼 𝑡 𝑑𝑡

𝑇

𝑡1
 

= 
1

𝑇
 [  

(1+𝑇)2

2
  (log(1+T) -  

1

2
 )+  (1+ t1) log(1+ t1) (

𝑡1−1

2
   -T)+ 

(1+t1)2

4
 - 

𝑡1
2

2
 - 

𝑇2

2
 +T t1]  (8) 

Therefore the total cost per unit time is given by  

TC= 
1

𝑇
 [ Carrying cost + Deficit cost +Depreciation cost] 

     = 
1

𝑇
 [H(

𝑡1
3

3
 - 

𝑡1
4

8
 - 

𝑡1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +A(

(1+𝑇 )2

2
  (log(1+T) -  

1

2
 )+  (1+ t1) log(1+ t1)  (

𝑡 1−1

2
 

– T)   + 
(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+C(

𝑡 1
2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 ) – (1+ t1) log(1+ t1) +t1)]       (9) 

The conditions required to minimize the total cost are as follows 

       
𝜕 (𝑇𝐶 )

𝜕 t1
= 0                                (10) 
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 Subject to the competent situation    
𝜕 2(𝑇𝐶 )

𝜕 𝑡 1
2 > 0  

𝐻

𝑇
 [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝐴

𝑇
 [ log(1+ t1)( t1-T)]+ 

𝐶

𝑇
 [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
  + 

𝑡 1
5

6
) + 

log(1+t1)] = 0                             (11) 

 

5.Fuzzy Model: 

Let 𝐴  = (𝑎 1
  , 𝑎 2

  , 𝑎 3
   , 𝑎 4

   , 𝑎 5
 ,𝑎 6

 , 𝑎 7
 ) , 𝐶  = (𝑐 1

  , 𝑐 2
  , 𝑐 3

   , 𝑐 4
 , 𝑐 5

  , 𝑐 6
  , 𝑐 7

 ) ,  𝐻  = (ℎ1
  , 

ℎ2
  , ℎ3

   , ℎ4,   ℎ5
  , ℎ6

   , ℎ7
 )  are the heptagonal  fuzzy numbers. The total cost per unit time in a fuzzy 

context is calculated using the above  heptagonal  fuzzy numbers  

   𝑇𝐶  =  
1

18𝑇
{ [ℎ1

 ⊗ (
𝑡 1

3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 1

  ⊗ (
(1+𝑇 )2

2
  (log(1+T) -  

1

2
 ) +  (1+ 

t1)  log(1+  t1)  (
𝑡 1−1

2
 – T)   + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+ 𝑐 1

  ⊗ (
𝑡 1

2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 ) - (1+ t1) 

log(1+ t1) +t1)] + 3 ⊗ [ℎ2
 ⊗ (

𝑡 1
3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 2

  ⊗ (
(1+𝑇 )2

2
  (log(1+T) -  

1

2
 ) 

+  (1+ t1) log(1+  t1) (
𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+  𝑐 2

 ⊗ (
𝑡 1

2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 )   - 

(1+ t1) log(1+ t1) +t1)] +3 ⊗ [ℎ3
 ⊗ (

𝑡 1
3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 3

  ⊗ (
(1+𝑇 )2

2
  

(log(1+T) -  
1

2
 ) +  (1+ t1) log(1+  t1) (

𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+ 𝑐 3

  ⊗ (
𝑡 1

2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 )  - (1+ t1) log(1+ t1) +t1)]+4⊗  [ℎ4

 ⊗ (
𝑡 1

3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 4

  ⊗ 

(
(1+𝑇 )2

2
  (log(1+T) - 

1

2
 ) +  (1+ t1) log(1+  t1) (

𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+ 𝑐 4

  ⊗ (
𝑡 1

2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 ) - (1+ t1) log(1+ t1) +t1)]+ 3 ⊗ [ℎ5

 ⊗ (
𝑡 1

3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) 

+𝑎 5
  ⊗ (

(1+𝑇 )2

2
  (log(1+T) -  

1

2
 ) + (1+ t1) log(1+  t1) (

𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T t1)+  𝑐 5

 ⊗ 

(
𝑡 1

2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 )  -  (1+ t1) log(1+ t1) +t1)] +3 ⊗ [ℎ6

 ⊗ (
𝑡 1

3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 

11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 6

  ⊗ (
(1+𝑇 )2

2
  (log(1+T) -  

1

2
)+  (1+ t1) log(1+  t1) (

𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 +T 

t1)+ 𝑐 6
  ⊗ (

𝑡 1
2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 ) -    (1+ t1) log(1+ t1) +t1)]+  [ℎ7

 ⊗ (
𝑡 1

3

3
 - 

𝑡 1
4

8
 - 

𝑡 1
5

15
  - ( 

𝑡 1
4

40
 - 
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11𝑡 1
5

120
 + 

𝑡 1
6

36
 - 

𝑡 1
7

63
)) +𝑎 7

  ⊗ (
(1+𝑇 )2

2
  (log(1+T) - 

1

2
 ) +  (1+ t1) log(1+  t1) (

𝑡 1−1

2
 – T)  + 

(1+t1)2

4
 - 

𝑡 1
2

2
 - 

𝑇 2

2
 

+T t1)+ 𝑐 7
  ⊗ (

𝑡 1
2

2
 - 

𝑡 1
3

6
 + 

𝑡 1
4

12
 + ( 

𝑡 1
4

8
 - 

𝑡 1
5

20
 + 

𝑡 1
6

36
 ) - (1+ t1) log(1+ t1) +t1)]} }            (9) 

for minimization of the entire cost ,the optimal value of t1   can be obtained by solving  

1

18
{[ 

ℎ1
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 1 

𝑇
 ⊗ [ log(1+ t1)( t1-T)]+ 

𝑐 1 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ t1)]]+ 3 ⊗ [ 

ℎ2
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 2 

𝑇
 ⊗ [ 

log(1+ t1)( t1-T)]+ 
𝑐 2 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ t1)]]+3⊗ {[ 

ℎ3
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- 

(
𝑡 1

3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 3 

𝑇
 ⊗ [ log(1+ t1)( t1-T)]+ 

𝑐 3 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ 

t1)]]+4⊗ {[ 
ℎ4
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 4 

𝑇
 ⊗ [ log(1+ t1)( t1-T)]+ 

𝑐 4 

𝑇
⊗ [t1-

𝑡 1
2

2
 

+ 
𝑡 1

3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ t1)]]+3 ⊗ [ 

ℎ5
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 5 

𝑇
 ⊗ [ 

log(1+ t1)( t1-T)]+ 
𝑐 5 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ t1)]]+ 3 ⊗ [ 

ℎ6
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- 

(
𝑡 1

3

10
 - 

11𝑡 1
4

24
 + 

𝑡 1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 6 

𝑇
 ⊗ [ log(1+ t1)( t1-T)]+ 

𝑐 6 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ 

t1)]]+[ 
ℎ7
 

𝑇
 ⊗ [(𝑡 1

2 - 
𝑡 1

3

2
 - 

𝑡 1
4

3
 )- (

𝑡 1
3

10
 - 

11𝑡 1
4

24
 + 

𝑡1
5

6
 + 

𝑡 1
6

9
 )]+ 

𝑎 7 

𝑇
 ⊗ [ log(1+ t1)( t1-T)]+ 

𝑐 7 

𝑇
⊗ [t1-

𝑡 1
2

2
 + 

𝑡 1
3

3
+(

𝑡 1
3

2
 - 

𝑡 1
4

4
 +  

𝑡 1
5

6
 )+log(1+ t1)]]}=0   

 

6.Numerical Example: 

Crisp Model: Let H= 40, A=200 ,C=400, 𝛾  = 0.9,  T= 12 we get  𝑡 1 = 1.6516,TC = 1557.4. 

Fuzzy model: Let 𝐻  = (20,40,60,80,100,120,140)    𝐴  = (40,80,120,160,200,240,280),  

𝐶  = (200,400,600,800,1000,1200,1400), 𝛾  = 0.9,  T= 12, we get  𝑡 1 = 0.6123 ,TC =1347. 

7.Conclusion: 

 A fuzzy resource model for time-varying 

degradation for logarthimic sale rate is 

discussed in this work. The framework is 

constructed in a precise and fuzzy 

environment. The optimal cost is defuzzified 

using heptagonal fuzzy integers and graded 

mean integration representation approach. 

The evaluation of the suggested model can 

be extended as nonlinear demand ,weibull 

deterioration rate, price discounts etc. 
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