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L-cumulants, L-cumulant embeddings and algebraic statis-
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Abstract. Focusing on the discrete probabilistic setting we generalize the combinatorial definition
of cumulants to L-cumulants. This generalization keeps all the desired properties of the classical
cumulants like semi-invariance and vanishing for independent blocks of random variables. These
properties make L-cumulants useful for the algebraic analysis of statistical models. We illustrate
this for general Markov models and hidden Markov processes in the case when the hidden process
is binary. The main motivation of this work is to understand cumulant-like coordinates in alge-
braic statistics and to give a more insightful explanation why tree cumulants give such an elegant
description of binary hidden tree models. Moreover, we argue that L-cumulants can be used in the
analysis of certain classical algebraic varieties.
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1. Introduction

Although moments provide a convenient summary of properties of a probability dis-
tribution, it was observed that these properties can generally be described in a simpler
way using cumulants (see for example [2, Section 2.4], [11, Chapter 2]). This is mainly
because cumulants have the ability to capture symmetries and underlying independencies
of a probability distribution. These striking features of cumulants make them an inter-
esting object of statistical study both from a theoretical and practical point of view. In
addition, as it was shown for example in [5, 16, 18], cumulants and moments can be used
to analyze the geometry of statistical models.

Recently, in [27] we have suggested using a less standard system of coordinates which
we called tree cumulants. This new coordinate system proved to be useful to analyze
Bayesian networks on trees when some of the nodes are not observed. Various results
on identifiability and geometry of these models have been obtained in [25, 26, 27], which
encouraged us to study more general coordinate systems like that. In the present paper
we propose a useful generalization of both cumulants and tree cumulants.
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We work in a simple probabilistic setting. Let X = (X1, . . . , Xn) be a random vector
such that each Xi takes ri ≥ 2 possible values, where each ri is finite. The vector X takes
values in a finite discrete set X =

∏n
i=1Xi ⊆ Rn such that |Xi| = ri for i = 1, . . . , n.

Without loss of generality we set

X = {0, . . . , r1 − 1} × · · · × {0, . . . , rn − 1}.

Any probability distribution of X can be written as a point P = [p(x)] ∈ RX such that
p(x) ≥ 0 for all x ∈ X and

∑
x∈X p(x) = 1. The set of all such points is called the

probability simplex and it is denoted by ∆X .
For any function f : X → R the expectation of f(X) is given by

E[f(X)] :=
∑
x∈X

p(x)f(x).

Let [n] := {1, . . . , n} and for any multiset A = {i1, . . . , id} of elements of [n] let

XA = (Xi1 , . . . , Xid).

In a similar way we define xA = (xi1 , . . . , xid) and XA = Xi1 × · · · × Xid . For each such a
multiset A we define the corresponding moment

µA = E[Xi1 · · ·Xid ]

and the central moment

µ′A = E[(Xi1 − µi1) · · · (Xid − µid)].

Our convention is to write µA as µi1···id , where i1 ≤ · · · ≤ id. So for example if A =
{1, 2, 4, 4, 4}, the corresponding moment is written as µ12444 = E[X1X2X

3
4 ]. The same

convention applies to central moments. In particular, for every i < j, µ′ij is the covariance
between Xi and Xj .

To show how cumulants can be naturally generalized we first define them formally
and then we discuss their basic properties. Cumulants are usually computed using the
cumulant generating function, which is defined as the logarithm of the moment generating
function. In this paper we use an alternative definition of cumulants using partitions (see
for example [11, 15, 19]). We say that π = B1| . . . |Bk is a partition (or a set partition) of
[n], if the blocks Bi 6= ∅ are disjoint sets whose union is [n]. A partition is called a split if
it consists of two blocks. Let Π([n]) be the set of all set partitions of [n]. The cumulant
of the vector X is defined as

k1···n =
∑

π∈Π([n])

(−1)|π|−1(|π| − 1)!
∏
B∈π

µB, (1)

where the sum is over all set partitions of [n], the product is over all blocks of a partition
and |π| denotes the number of blocks of π. For example, if n = 3 then there are five
partitions in Π([3]): 123, 1|23, 2|13, 12|3 and 1|2|3 and (1) gives

k123 = µ123 − µ1µ23 − µ2µ13 − µ12µ3 + 2µ1µ2µ3. (2)
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Equation (1) can be generalized for any multiset A = {i1, . . . , id} of elements of [n] to
obtain the cumulant of XA. We use the bijection between A and [d] and write

kA =
∑

π∈Π([d])

(−1)|π|−1(|π| − 1)!
∏
B∈π

µiB , (3)

where iB = {ij : j ∈ B}. Hence for instance

k112 = µ112 − 2µ1µ12 − µ11µ2 + 2µ2
1µ2.

For each x = (x1, . . . , xn) ∈ X define a multiset A(x) as

A(x) = {1, . . . , 1︸ ︷︷ ︸
x1 times

, . . . , n, . . . , n︸ ︷︷ ︸
xn times

} (4)

and let A(X ) = {A(x) : x ∈ X}. By the moment aliasing principle (see [12, Lemma 3])
there exists a polynomial isomorphism between P = [p(x)]x∈X and two other systems
of coordinates of RA(X ) ' RX given by moments M = [µA(x)]x∈X and by cumulants
K = [kA(x)]x∈X . In particular, every model M ⊆ ∆X , after a change of coordinates, can
be equivalently expressed in terms of M or K.

In our discussion of cumulants the central concept is that of independence. Let B ⊆ [n]
and define the function 11xB on X by 11xB (X) = 1 if XB = xB and 11xB (X) = 0 otherwise.
By pB denote the marginal distribution of XB defined by

pB(xB) = E[11xB (X)] for every xB ∈ XB.

For any two disjoint subsets I, J ⊆ [n] we say that XI and XJ are independent, which we
denote by I ⊥⊥ J (or XI ⊥⊥ XJ), if and only if

pI∪J(xI∪J) = pI(xI)pJ(xJ) for all x ∈ X .

The following formulation of independence in terms of moments will be helpful.

Lemma 1. We have I ⊥⊥ J for some disjoint sets I, J ⊆ [n] if and only if

µA∪B = µAµB for all nonempty A ∈ A(XI), B ∈ A(XJ),

where A(XI) = {A(x) : x ∈ XI}.

Proof. We use an alternative definition of independence (see [4, page 136]) which states
that XI and XJ are independent if and only if for any two L2-functions f, g we have

E[f(XI)g(XJ)] = E[f(XI)]E[g(XJ)].

Now the ’if’ direction of the lemma is immediate. The ’only if’ direction uses the fact that
the set of values of X is discrete and finite. In this case any function of X is a polynomial
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function (can be represented as a polynomial in the entries of X), where the terms of these
polynomials are

∏
i∈AXi for all A ∈ A(X ). Thus, to check if I ⊥⊥ J , it remains to check if

E[f(XI)g(XJ)] = E[f(XI)]E[g(XJ)]

for all polynomials f, g such that each f has only terms
∏
i∈AXi for all nonemptyA ∈ A(XI)

and g has only terms
∏
i∈BXi for all B ∈ A(XJ). By expanding the terms of f and g it

suffices to check that this property holds for each monomial, which is true by assumption.
�

Example 2. Let m = 2, r1 = 2 and r2 = 3. Then X = {0, 1} × {0, 1, 2} and

A(X ) = {∅, {2}, {2, 2}, {1}, {1, 2}, {1, 2, 2}}.

Since A(X1) = {∅, {1}} and A(X2) = {∅, {2}, {2, 2}}, by Lemma 1, we have 1 ⊥⊥ 2 if and
only if µ12 = µ1µ2, µ122 = µ1µ22, where µ122 = E[X1X

2
2 ].

Lemma 1 generalizes and we have I1 ⊥⊥ I2 ⊥⊥ · · · ⊥⊥ Ir for some disjoint sets I1, . . . , Ir ⊆
[n] if and only if

µA1···Ar =

r∏
i=1

µAi , for all Ai ∈ A(XIi), i = 1, . . . , r, (5)

where A1 · · ·Ar is a shorthand notation for A1 ∪ · · · ∪Ar.
Cumulants satisfy the following four basic properties, which make them useful for

statistical modelling.

(P1) Whenever there exists a split of the set of indices [n] of X into two block A|B such
that A ⊥⊥ B then k1···n = 0.

(P2) For any a ∈ Rn define X̃ = X + a and for any multiset A by k̃A denote the corre-
sponding cumulant of X̃A. Then k̃i = ki + ai for every i = 1, . . . , n, and k̃A = kA
whenever |A| ≥ 2.

(P3) Let Q = [qij ] ∈ Rm×n, X ∈ Rn and let X̃ = QX ∈ Rm. Define k̃A as the cumulant

of X̃A, where A is a multiset of elements of [m]. Let K(d) = [ki1···id ] denote the
(n× · · · × n)-tensor indexed by all multisets of elements of [n] of size d ≥ 1; and let
K̃(d) = [k̃i1···id ] be the (m × · · · ×m)-tensor indexed by all multisets of elements of
[m]. Then,

K̃(d) = Q ·K(d), for every d ≥ 1

where for every multiset {i1, . . . , id} of elements of [m]:

(Q ·K(d))i1···id :=

n∑
j1=1

· · ·
n∑

jd=1

qi1j1 · · · qidjdkj1···jd .

In other words cumulants under linear mappings transform as contravariant tensors.
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(P4) For two random vectors X, Y of dimension n denote by kA(X), kA(Y ) and kA(X+Y )
the cumulants of X, Y and X + Y respectively. If X ⊥⊥ Y then kA(X + Y ) =
kA(X) + kA(Y ) for every multiset A of elements of [n].

In this paper we generalize cumulants by changing the set Π([n]) in (1) for other set
partition lattices. The term (−1)|π|(|π|−1)! in each summand of (1) is replaced by another
function of π which will be specified later. These generalized cumulants keep usually all
properties (P1)-(P4) of classical cumulants. Also the Brillinger’s conditional cumulants
formula derived in [1] can be generalized under additional conditions.

Different forms of cumulants are known to researchers in non-commutative probability.
For example free cumulants are used in the theory of random matrices [9, 20] and Boolean
cumulants are applied to stochastic differential equations [10]. All those cumulants fall
under our general definition. In Proposition 27 we show that central moments can be
also represented as generalized cumulants. As an interesting implication we get a simple
computationally efficient formula for central moments in terms of moments (see Lemma
28). The proof of this formula is straightforward.

As it has been already pointed out in [23], cumulants and cumulant-like quantities are
also useful in algebraic geometry. The coordinate system given by cumulants has a number
of useful properties. For example, the tangential variety Tan((P1)n), when expressed in
binary cumulants, becomes toric. Also, the study of the secant variety Sec((P1)n) becomes
easier when we change coordinates to binary tree cumulants. This happens because the
induced parametrization in this new coordinate system becomes nearly monomial (see
Section 3.3).

There are two main reasons why cumulants can be successfully used in algebraic ge-
ometry and in the geometric study in statistics. First, many interesting algebraic varieties
coincide with some statistical models. Second, the whole machinery of cumulants is purely
algebraic in the sense that nonnegativity of probabilities does not play any role. In fact the
only condition which we impose on probabilities is that they sum to one. For that reason
the same techniques can be applied to any complex tensor with coordinates summing to
one. This observation links our work to the theory of umbral calculus [14].

This paper is organized as follows. In Section 2 we introduce some basic concepts of
the theory of partially ordered sets. In Section 3 we define binary L-cumulants, which
form a rather straightforward generalization of binary cumulants introduced in [23]. In
Section 3.2 we present how binary L-cumulants may be used in algebraic geometry. This
is then exemplified with a basic study of secant varieties in Section 3.3. The general
definition of L-cumulants is provided in Section 4. In Section 5 we show that, under some
mild conditions, all the basic properties (P1)-(P4) of classical cumulants hold also for L-
cumulants. Moreover, in Section 5.3 we generalize the Brillinger’s formula for cumulants in
terms of conditional cumulants. In Section 6 we show how the results of this paper explain
why tree cumulants work so well for tree models. We also provide a simple analysis of
processes with an underlying hidden two-state Markov chain, which in particular gives a
very simple parametrization of homogeneous binary hidden Markov models.
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2. Basic combinatorics

In this section we introduce basic combinatorial concepts used later in the paper. For
a more detailed treatment see [22]. Recall that π = B1| . . . |Bk is a partition of [n], if
the blocks Bi 6= ∅ are disjoint sets whose union is [n]. Equivalently, a partition of [n]
corresponds to an equivalence relation ∼π on [n] where i ∼π j if i and j lie in the same
block. Let now A be a multiset A = {i1, . . . , id} of elements of [n]. We define a partition
π of A using a partition π of [d] by ij ∼π ik if j ∼π k in Π([d]). The set of all partitions
of A is denoted by Π(A) and by definition it is isomorphic to Π([d]).

A partially ordered set P (or poset) is a set together with an ordering ≤ such that:
π ≤ π for all π ∈ P; if π ≤ ν and ν ≤ π then π = ν; and if π ≤ ν and ν ≤ δ then π ≤ δ
for all π, ν, δ ∈ P. A subposet of P is any subset of P with the same ordering. As an
important example of a poset consider the set Π([n]) with the poset structure given by
refinement ordering such that π ≤ ν in Π([n]) if and only if every block of π is contained
in a block of ν. For instance let n = 5, π = 13|4|25 and ν = 1235|4 then π ≤ ν.

We say that P has a 0̂ if there exists an element 0̂ ∈ P such that π ≥ 0̂ for all π ∈ P.
Similarly, P has a 1̂ if there exists 1̂ ∈ P such that π ≤ 1̂ for all π ∈ P. If π and ν belong
to a poset P, then an upper bound of π and ν is an element δ ∈ P satisfying δ ≥ π and
δ ≥ ν. A least upper bound of π and ν is an upper bound δ of π and ν such that every
upper bound γ of π and ν satisfies γ ≥ δ. If a least upper bound of π and ν exists, then
it is clearly unique and it is denoted by π ∨ ν. Dually one can define the greatest lower
bound π ∧ ν when it exists. We call ∨ the join operator and ∧ the meet operator.

A lattice is a poset L for which every pair of elements has a least upper bound and
greatest lower bound. A sublattice of a lattice L is a nonempty subset of L which is a
lattice with the same meet and join operations as L. Clearly all finite lattices have a 0̂
and 1̂. In particular Π([n]) forms a lattice where the n-block partition 1|2| · · · |n is the 0̂,
and the one-block partition [n] is the 1̂ of this lattice. A meet semilattice is a poset S for
which every pair of elements has a least upper bound. A meet subsemilattice of S is a
subposet of S which forms a meet semilattice with the same meet operator as S. Dually
we define a join semilattice and a join subsemilattice.

Definition 3. By a partition lattice of a set [n] we mean any lattice L which forms a
subposet of Π([n]) and both the one block partition [n] and the minimal partition 1|2| · · · |n
lie in L.

Note that we do not require that a partition lattice forms a sublattice of Π([n]).

Definition 4. The following is a list of interesting set partition lattices.

(1) A partition π ∈ Π([n]) is non-crossing if there is no quadruple of elements i < j <
k < l such that i ∼π k, j ∼π l and i �π j. The noncrossing partitions of [n] form
a lattice which we denote by NC([n]). This lattice is not a sublattice of Π([n]),
however, it is a meet subsemilattice of Π([n]) because the meet operators coincide.

(2) An interval partition of [n] is a partition π of a form

1 · · · i1|(i1 + 1) · · · i2| · · · |(ik + 1) · · ·n



Piotr Zwiernik / J. Alg. Stat., 3 (2012), 11-43 17

for some 0 ≤ k ≤ n − 1 and 1 ≤ i1 < . . . < ik ≤ n − 1. The poset of all interval
partitions is denoted by I([n]). It forms a sublattice of Π([n]) isomorphic to the
Boolean lattice of [n− 1].

(3) A partition π ∈ Π([n]) is called a one-cluster partition if it contains at most one
block of size greater than one. In particular the one-block partition [n] and the
minimal partition 1|2| · · · |n are one-cluster partitions. The poset of all one-cluster
partitions forms a lattice C([n]), which is not a sublattice of Π([n]). It is isomorphic
to the poset of all subsets of [n] excluding singletons. It forms a meet subsemilattice
of Π([n]).

(4) Let T = (V,E) be a fixed tree with set of nodes V , set of edges E and with n leaves
labelled by [n]. Removing a subset of edges E′ from E induces a forest. Restricting
[n] to the connected components of this forest gives a tree partition π induced by
T . The set of all tree partitions induced by T is denoted by T T ([n]) and it forms a
lattice which is a meet subsemilattice of Π([n]). For an example of a tree and the
induced lattice of partitions see Figure 1 (for n = 4) and Figure 2.

For every poset P we define the Möbius function mP : P × P → R by

mP(π, ν) =


1, if π = ν,
−
∑

π≤δ<ν mP(π, δ) if π < ν,

0, otherwise.

(6)

When there is no ambiguity we usually drop P in the notation denoting the Möbius
function on P by m. Note that directly from the definition in (6)

∑
π≤δ≤ν

mP(π, δ) =

{
0 if π < ν
1 if π = ν.

(7)

A special type of a subposet of P is the interval

[π, ν] = {δ ∈ P : π ≤ δ ≤ ν},

defined whenever π ≤ ν. The Möbius function on this subposet is naturally induced from
the Möbius function on P (see for example [13, Proposition 4]). For any two posets P1,P2

we define the poset P1 × P2 as a set with the ordering (π, ν) ≤ (π′, ν ′) if π ≤ π′ and
ν ≤ ν ′. The following result gives a convenient way of finding a Möbius function for
posets constructed from other posets by taking products.

Proposition 5 (Proposition 3.1.2, [22]). Let P1 and P2 be finite posets, and let P1 × P2

be their direct product. If (π, ν) ≤ (π′, ν ′) in P1 × P2, then

mP1×P2((π, ν), (π′, ν ′)) = mP1(π, ν)mP2(π′, ν ′).

The Möbius function is especially useful due to the following result.
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Proposition 6 (Möbius inversion formula). Let P be a finite poset. Let f, g : P → R.
Then

g(π) =
∑
ν≤π

f(ν), for all π ∈ P,

if and only if

f(π) =
∑
ν≤π

m(ν, π) g(ν) for all π ∈ P.

For every lattice denote m(π) := m(π, 1̂). Later we will see that it is particularly
important to identify values of m(π) for various partition lattices. For Π([n]) we have
m(π) = (−1)|π|−1(|π| − 1)! The lattice of interval partitions I([n]) is isomorphic to the
Boolean lattice of all subsets of [n − 1] and hence m(π) = (−1)|π|−1. For the lattice of
one-cluster partitions we have

m(π) =

{
(−1)n−1(n− 1) if π = 1|2| · · · |n, and

(−1)|π|−1 otherwise.
(8)

For the other cases in Definition 4 the Möbius function can be computed recursively.

3. Binary L-cumulants

In this section we discuss binary L-cumulants which generalize binary cumulants of
[23]. Most of the technical results will be stated without proofs, which will then be given
in a more general context in later sections.

3.1. Definition and basic facts

Assume that X = {0, 1}n, in which case A(X ) is the set of all subsets of [n]. Let
L ⊆ Π([n]) be a partition lattice of [n]. For every I ⊆ [n] consider L(I) as the subposet
of Π(I) obtained from L by constraining each partition to the subset I. The Möbius
function on L(I) is also denoted by m unless it may lead to ambiguity in which case we
write explicitly mI .

A multiplicative function on L(I) is any function such that for every π ∈ L(I)

f(π) =
∏
B∈π

fB for some fB ∈ R.

First consider the case when L = Π([n]). For every I ⊆ [n] and ν ∈ Π(I) define

k(ν) =
∑
π≤ν

m(π, ν)µ(π), (9)

where µ(π) =
∏
B∈π µB is a multiplicative function and the sum is taken over elements π

of Π(I) such that π ≤ ν. The one-block partition I is the unique maximal element of the
lattice Π(I). The Möbius function on Π(I) satisfies m(π) := m(π, I) = (−1)|π|−1(|π| − 1)!



Piotr Zwiernik / J. Alg. Stat., 3 (2012), 11-43 19

for all π ∈ Π(I). It follows by (3) that kI = k(I) and hence (9) evaluated at ν = I gives
the definition of binary cumulants.

To get the inverse formula for moments in terms of cumulants we need the following
result.

Lemma 7. For every ν ∈ Π(I) we have k(ν) =
∏
B∈ν kB, where k(ν) is defined by (9).

Proof. Note that every interval [π, ν] ⊆ Π(I) is isomorphic to a product of intervals∏
B∈ν [π(B), B] ⊆

∏
B∈ν Π(B), where π(B) denotes π constrained to elements in B ⊆ I.

By Proposition 5 a Möbius function on a product of posets is equal to the product of
Möbius functions for each individual factor. Hence, (9) can be rewritten as

k(ν) =
∏
B∈ν

 ∑
δ∈Π(B)

mB(δ)µ(δ)

 =
∏
B∈ν

kB,

which finishes the proof. �

The inverse formula for moments in terms of cumulants follows directly by Proposi-
tion 6 and Lemma 7. For every I ⊆ [n] we have

µI =
∑

π∈Π(I)

k(π) =
∑

π∈Π(I)

∏
B∈π

kB. (10)

We can directly generalize the definition of binary cumulants to binary L-cumulants.
Let L be a partition lattice of [n]. Define binary L-cumulants by

`I =
∑

π∈L(I)

m(π)
∏
B∈π

µB for every I ⊆ [n]. (11)

By definition for every I ⊆ [n] the maximal and minimal element of the lattice L(I)
coincide with the minimal and maximal element of Π(I). In particular for every L we
have `i = µi for i = 1, . . . , n; and `ij = µij − µiµj for all 1 ≤ i < j ≤ n. However, already
when n = 3 not all L-cumulants coincide with cumulants.

Example 8. Let n = 3 and consider L-cumulants induced by the lattice of interval
partitions. The lattice I([3]) has four elements: 123, 1|23, 12|3 and 1|2|3 and m(π) =
(−1)|π|−1. Therefore, we have

`123 = µ123 − µ1µ23 − µ12µ3 + µ1µ2µ3.

Compare this with the formula for k123 in (2) to note that not only the term µ2µ13 is
missing now in the formula for `123 but also the coefficient of µ1µ2µ3 is 1 not 2.

Let π ∈ Π([n]) be a set partition into blocks B1, . . . , Br. Denote

⊥⊥ B∈πXB := XB1 ⊥⊥ · · · ⊥⊥ XBr .
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By (5), ⊥⊥ B∈πXB if and only if

µI = µ(π(I)) for every I ⊆ [n], (12)

where π(I) denotes π constrained to elements in B. So for example the full independence
is given by the minimal partition π = 1|2| · · · |n and µI =

∏
i∈I µi for every I ⊆ [n].

Below we list the basic facts about binary L-cumulants. They are proved in a more
general setting in Section 5. The following result implies that (P1) holds for binary L-
cumulants.

Proposition 9. There exists a partition π0 ∈ L such that ⊥⊥ B∈π0XB if and only if `(π) = 0
for all π 6≤ π0, or equivalently, if `I = 0 unless I is contained in one of the blocks of π0

(equivalence follows from Theorem 24).

Proof. The ’if’ part of the proposition is given in a more general setting in Proposi-
tion 25. To prove the opposite implication use Theorem 24 to conclude that `(π) = 0 for
all π 6≤ π0 implies that µI = µ(π0(I)) for all I ⊆ [n] which by (12) implies ⊥⊥ B∈π0XB. �

Example 10. Consider the situation of Example 8, where n = 3 and L-cumulants are
defined by the lattice of interval partitions. IfX1 ⊥⊥ (X2, X3) then µ123 = µ1µ23, µ12 = µ1µ2

and µ13 = µ1µ3. It follows that `12 = `13 = `123 = 0. On the other hand, the condition
X2 ⊥⊥ (X1, X3) does not imply that `123 = 0 because in this case

`123 = µ2µ13 − µ1µ2µ3,

which is zero only when in addition µ13 = µ1µ3 and hence when X1 ⊥⊥ X3. Here there is
no contradiction with Proposition 9 because 2|13 /∈ I([3]).

Under a minor additional condition the property (P2) also holds for binary L-cumulants.

Proposition 11. Suppose that for every i ∈ [n] the split i|([n]\i) lies in L. Let X̃ = X+a,
where a ∈ Rn and, for every I ⊆ [n], by ˜̀I denote the corresponding L-cumulant of the
subvector XI . Then ˜̀i = `i + ai for all i = 1, . . . , n and ˜̀I = `I for any I ⊆ [m] such that
|I| ≥ 2.

Proof. This follows from Proposition 26. �

Define central binary L-cumulants by replacing moments µB in (11) by central mo-
ments µ′B. For every I ⊆ [n] the corresponding central binary L-cumulant is denoted by
`′I .

Lemma 12. Under the assumptions of Proposition 11 we have `′I = `I for every I ⊆ [n]
such that |I| ≥ 2.

Proof. Central binary L-cumulants of X can be alternatively defined as binary L-
cumulants of X̃, where X̃i = Xi − EXi. The lemma follows from Proposition 11. �

In the next section we show how all these ideas can be applied in algebraic geometry.
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3.2. Geometric applications

We consider algebraic varieties in either the real space R2n = R2×···×2 or its complexi-
fication C2n = C2×···×2, or projectivization P2n−1 = P(C2×···×2). Each component C2 (or
R2) has basis e0, e1 so that ei1 ⊗ · · · ⊗ ein corresponds to I ⊆ [n] for ij = 1 if j ∈ I and
ij = 0 otherwise. For example, if n = 2 and µ ∈ C2×2 then we write µ in our basis as

µ = µ∅ e0 ⊗ e0 + µ1 e1 ⊗ e0 + µ2 e0 ⊗ e1 + µ12 e1 ⊗ e1.

Formula (11) gives an isomorphism of the affine subspace µ∅ = 1 in R2n (or C2n), which
forms a Zariski open subset of P2n−1. The inverse map is computed in a more general case
in (21).

We first show that some basic operations on the random vector X can encode inter-
esting actions on the space of 2 × · · · × 2 tensors. Define X̃ such that X̃i = λiXi for
λi ∈ C \ {0} for i = 1, . . . , n. Multiplying each Xi by λi results in the change of moments
from µI to µ̃I =

∏
i∈I λiµI and hence it corresponds to the action of the group Dn, where

D a group of diagonal matrices of the form[
1 0
0 λ

]
for λ ∈ C \ {0}.

Because L-cumulants are multilinear functions of the moments we conclude that this action
is the same on the level of L-cumulants. We have ˜̀I =

∏
i∈I λi`I for every I ⊆ [n].

Suppose now that X̃ = X + b, for b = (b1, . . . , bn) ∈ Cn, and consider the group U(2)n

where U(2) is the unipotent group of 2× 2-matrices of the form[
1 0
λ 1

]
for λ ∈ C.

Adding b to the vector X corresponds to the action of U(2)n, with λi = bi for i = 1, . . . , n,
on the space of moments. We illustrate this with an example that easily generalizes.

Example 13. Let n = 2 and denote by µ̃ = [µ̃I ] the moments of the vector X̃ = X + b.
We have µ̃∅ = 1, µ̃i = E(Xi + bi) = µi + bi for i = 1, 2 and

µ̃12 := E[(X1 + b1)(X2 + b2)] = µ12 + b1µ2 + µ1b2 + b1b2.

Write µ = [µI ] ∈ C2×2:

µ = e0 ⊗ e0 + µ1e1 ⊗ e0 + µ2e0 ⊗ e1 + µ12e1 ⊗ e1.

After applying the action of U(2)2 with λi = bi for i = 1, 2 we obtain

µ̃ = (e0 + b1e1)⊗ (e0 + b2e1) + µ1e1 ⊗ (e0 + b2e1) + µ2(e0 + b1e1)⊗ e1 + µ12e1 ⊗ e1

= e0 ⊗ e0 + (µ1 + b1)e1 ⊗ e0 + (µ2 + b2)e0 ⊗ e1 + (µ12 + b1µ2 + µ1b2 + b1b2)e1 ⊗ e1

= e0 ⊗ e0 + µ̃1e1 ⊗ e0 + µ̃2e0 ⊗ e1 + µ̃12e1 ⊗ e1,

which confirms that translating X by b ∈ Rn corresponds to the action of U(2)n on µ.
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For every I ⊆ [n], denote by ˜̀I the L-cumulant of X̃I . By Proposition 11, whenever
every split i|([n] \ i) lies in L, this complicated transformation of moments induced by
U(2)n translates to a very simple transformation of cumulants. We have ˜̀i = `i + bi
for i ∈ [n] and ˜̀I = `I for all I ⊆ [n] such that |I| ≥ 2 and hence all the higher order
L-cumulants are invariant with respect to the action of U(2)n on the space of moments.

Changing values of the binary variables Xi from 0, 1 to bi, ai, means defining a new
random vector X̃ such that X̃i = (ai − bi)Xi + bi. We have just shown that changing
values of the components of X corresponds to a natural action of the n-dimensional torus
(C∗)n with coordinates ai − bi on the space C2n−n−1 whose coordinates are the higher
order L-cumulants `I , |I| ≥ 2. More specifically the L-cumulants of X̃, such that X̃i =
(ai − bi)Xi + bi, are transformed by˜̀

I = `I ·
∏
i∈I

(ai − bi) for all I ⊆ [n] and |I| ≥ 2

and ˜̀i = (ai − bi)`i + bi for i = 1, . . . , n. This leads to the following result.

Theorem 14. Suppose that for every i ∈ [n] the split i|([n]\i) lies in L. Then a subvariety
of C2n−1 is invariant under changing values of components of X if and only it is defined
by Zn-homogeneous polynomials in `I with |I| ≥ 2.

Proof. See the proof of [23, Theorem 3.1]. �

Note that if a variety is invariant under the action of the special linear group SL(2)n

then in particular it is invariant under U(2)n.

Corollary 15. Suppose that L is a partition lattice of [n] such that for every i ∈ [n] the
split i|([n] \ i) lies in L. Let V be a subvariety of the affine open subset given by µ∅ = 1 in
the projective space P(C2×···×2) and let V denote its closure in that projective space. If V
is invariant under the action of SL(2)n then the ideal IV that defines V is generated by
Zn-homogeneous polynomials in the L-cumulants `I with |I| ≥ 2.

Another important reason why L-cumulants may be useful, apart from their invariance
properties, is related to property (P1). Denote by Seg((P1)n) the Segre variety, which is
an embedding of (P1)n into P2n−1. In statistics the Segre variety corresponds to the full
independence model X1 ⊥⊥ · · · ⊥⊥ Xn. In particular Proposition 9 implies that the image
of Seg((P1)n) in the space given by L-cumulants is an affine subspace given by `I = 0
for all |I| ≥ 2 (see also [23, Remark 3.4]). Moreover, L-cumulants seem to be helpful
also in the analysis of other algebraic varieties related to the Segre variety Seg((P1)n).
For example the tangential variety Tan((P1)n) is toric when expressed in cumulants (see
[23, Theorem 4.1]). In the following section we show how L-cumulants defined by a tree
partition lattice can help to analyze the secant variety Sec((P1)n).

3.3. Binary tree cumulants for secant varieties

In [27] we defined tree cumulants, which gave a better understanding of certain statis-
tical models related to trees. We write more on that in Section 6. In this section we show
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how tree cumulants can be used to study secant varieties. Recall from Definition 4 that,
for a fixed tree T with n-leaves, T T ([n]) denotes the lattice of tree partitions of [n] induced
by T . Moreover, T T (I) is the lattice of all tree partitions of I induced by T (I), which is
the smallest subtree of T containing all leaves in I. The tree cumulant of the subvector
XI for every I ⊆ [n] is denoted by tI . Tree cumulants are L-cumulants and hence defined
by (11):

tI =
∑

π∈T T (I)

m(π)
∏
B∈π

µB, for all I ⊆ [n]. (13)

Remark 16. In [27, Section 3.2] binary tree cumulants were defined in terms of central
moments by

t̃I =
∑

π∈T T (I)

m(π)
∏
B∈π

µ′B for all I ⊆ [n], |I| ≥ 2,

and t̃i = µi for i ∈ [n]. In particular t̃I for all |I| ≥ 2 is just the corresponding central
L-cumulant. Let i ∈ [n] be one of the leaves. Removing the edge incident with i induces
a split i|([n] \ i) and hence the assumption of Proposition 11 holds and, by Lemma 12, it
follows that t̃I = tI for all I ⊆ [n]. In particular, both the definition in [27] and the one
given in (13) are equivalent.

Let L be the lattice of tree partitions induced by the caterpillar tree in Figure 1. For
example if n = 4 then the induced lattice is given in Figure 2. We first show how to
compute L-cumulants [tI ] without computing the Möbius function on the lattice L. By
Remark 16 we can replace moments by central moments in the formula for tI for all I ⊆ [n]
such that |I| ≥ 2. This is very convenient because

∏
B∈π µ

′
B is zero whenever π contains

a singleton block. Note that the elements of L with no singleton blocks correspond to
all interval partitions with no singleton blocks. If n = 4 then the elements of L with no
singleton blocks are the two boldfaced elements in Figure 2. This gives that for all I ⊆ [n]
such that |I| ≥ 2:

tI =
∑

π∈L(I)

m(π)
∏
B∈π

µ′B =
∑

π∈I(I)

m(π)
∏
B∈π

µ′B.

Both sums above are over all partitions in a poset of all interval partitions with no singleton
blocks. Hence, both Möbius functions constrained to this poset need to coincide. The
gain is that we already computed the Möbius function on the right-hand side explicitly
obtaining m(π) = (−1)|π|−1 (see the end of Section 2).

This allows us to write the map from moments [µI ] to tree cumulants [tI ] of the
caterpillar tree as a composition of two maps: from moments to central moments and
from central moments to tree cumulants induced by the caterpillar tree. We will show in
the end of Section 5.1 that the first map can be written as

µ′I =
∑
B⊆I

(−1)|I\B|µB
∏
i∈I\B

µi for all I ⊆ [n], |I| ≥ 2,
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and we have just shown that the second map is given by ti = µi for i = 1, . . . , n, and

tI =
∑

π∈I(I)

(−1)|π|−1
∏
B∈π

µ′B for all |I| ≥ 2.

In particular, if n = 4 then tI = µ′I for all 2 ≤ |I| ≤ 3 and

t1234 = µ′1234 − µ′12µ
′
34.

1 2 3 n

· · ·
Figure 1: A caterpillar tree with n leaves/legs.

1234

1|234 2|134 12|34 124|3 123|4

1|2|34 1|3|24 1|4|23 14|2|3 13|2|4 12|3|4

1|2|3|4
Figure 2: The Hasse diagram of the lattice of tree partitions induced by the tree in Figure 1 if n = 4.

We use this new coordinate system to study the secant variety Sec((P1)n). As an
example consider the case when n = 4.

Example 17. The secant variety Sec((P1)4) is a projective variety in P15 parametrized
by 9 copies of P1 with coordinates (t0, t), (a0i, ai) and (b0i, bi) for i = 1, 2, 3, 4. The
parametrization is given by

µI = t0
∏
i∈Ic

a0i

∏
i∈I

ai + t
∏
i∈Ic

b0i
∏
i∈I

bi for all I ⊆ [4],

where Ic denotes the complement of I in {1, 2, 3, 4} and µ = [µI ] denotes the coordinates
of the projective space P15. We want to describe the image of an open subset of the
parameter space given by a0i = b0i = 1 for i ∈ {1, 2, 3, 4} and t0 = 1 − t. This image is
described by

µI = (1− t)
∏
i∈I

ai + t
∏
i∈I

bi (14)

and in particular µ∅ = 1.
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Earlier in this section we explained how to compute [tI ] from moments as a composition
of two simple maps. From this we can also compute the induced parametrization directly.
Here we will show an alternative way of proceeding for the secant variety Sec((P1)4) to
present some other available techniques. First, use the parametrization of the secant in
terms of classical cumulants. This parametrization was given in [23, Equations (18) and
(19)], which implies that for every i < j < k

kij = t(1− t)(bi − ai)(bj − aj)
kijk = t(1− t)(1− 2t)(bi − ai)(bj − aj)(bk − ak)
k1234 = t(1− t)(6t2 − 6t+ 1)

∏4
i=1(bi − ai).

(15)

Now we change coordinates from cumulants to binary tree cumulants [tI ] using Propo-
sition 21. In particular, as explained in Example 22, since 13|24 and 14|23 are the only
partitions in Π([4]) which are not tree partitions of the caterpillar tree in Figure 1 for
n = 4, this yields

t1234 = k1234 + k13k24 + k14k23 (16)

and tI = kI for all I ⊆ [4] such that |I| ≤ 3. From this it follows that for every I ⊆
{1, 2, 3, 4} such that |I| ≥ 2:

tI = t(1− t)(1− 2t)|I|−2
∏
i∈I

(bi − ai), (17)

which for t1234 can be verified by direct computations. Now we can immediately check
that

tI∪J tI′∪J ′ − tI∪J ′tI′∪J = 0

holds on Sec((P1)4) for all distinct I, I ′ ∈ {{i}, {j}, {i, j}} and J, J ′ ∈ {{k}, {l}, {k, l}}
and every split ij|kl of {1, 2, 3, 4}. For example 12|34 leads to a set of equations including
t13t24 − t14t23 = 0 and t1234t13 − t123t134 = 0.

1 2

34
Figure 3: A 4-star tree.

This simple example can be generalized using the link between the secant varieties and
certain statistical models (see [3, Section 4.1]). Define for any two disjoint A,C ⊆ [n] the
conditional probability of XA given XC as:

pA|C(xA|xC) :=
pA∪C(xA, xC)

pC(xC)
for all xC ∈ XC s.t. pC(xC) 6= 0.



Piotr Zwiernik / J. Alg. Stat., 3 (2012), 11-43 26

For any function f of XA define the conditional expectation of f(XA) given XC as a
function of XC given for any xC ∈ XC

E[f(XA)|XC = xC ] =
∑

xA∈XA

pA|C(xA|xC)f(xA).

We denote this conditional expectation by E[f(XA)|XC ]. If f(XA) =
∏
i∈AXi then we

simply write µCA and µCA(xC) = E[
∏
i∈AXi|XC = xC ]. Note that µCA is a random variable

itself.
Similarly as in the case of Lemma 1 we can show that for disjoint C,B1, . . . , Br ⊆ [n]

the XBi ’s are jointly independent given XC if

µCA1···Ar =

r∏
i=1

µCAi for all Ai ⊆ Bi, i = 1, . . . , r,

In this case the marginal distribution of XC satisfies

µA1···Ar = E[µCA1···Ar ] =
∑

xC∈XC

pC(xC)µCA1···Ar(xC). (18)

For a statistician the parametrization in (14) corresponds to the parametrization of
moments of the binary 4-star tree model (naive Bayes model) as given in Figure 3. The
leaves of this tree correspond to a vector X = (X1, X2, X3, X4) of binary observed variables
and the inner node corresponds to a binary variable Y which is not observed. This model
contains all possible moments of a binary vector X such that all components of X are
jointly independent given Y . The parametrization in (14) is a special version of (18).

The fact that (14) can be rewritten in the easier form in (17) for any n ≥ 4 follows
from more general considerations in [27, Section 4]. We obtain the following procedure:

1. Consider any trivalent tree with n leaves, that is a tree such that each inner node
has valency three.

2. Compute tree cumulants induced by this trivalent tree.

3. The induced parametrization of the n-star tree model in the coordinate system con-
structed in step 2 is (17), where now I ⊆ [n] for n ≥ 4. For more details check
Section 6.

Of course, since we can pick any trivalent tree in step 1, the most natural choice is to pick
the caterpillar tree. This is mainly because the computation of the corresponding tree cu-
mulants is simple as it was presented earlier in this section. Now from the parametrization
in (17) we easily verify that

tI∪J tI′∪J ′ − tI∪J ′tI′∪J = 0 (19)

holds on Sec((P1)n) for all non-empty subsets I, I ′ ⊆ A and J, J ′ ⊆ B where A|B is a split
of [n].
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Remark 18. It may seem that a more natural way to proceed in Example 17 was to
construct tree cumulants induced directly by partitions of the 4-star tree in Figure 3. The
tree partitions of the 4-star tree are equal to one-cluster partitions from Definition 4. By
Proposition 27 this partition lattice induces central moments µ′I . To compute the induced
parametrization of the central moments note that µ′I = kI for all 2 ≤ |I| ≤ 3. A direct
check shows that

µ′1234 = t(1− t)(3t2 − 3t+ 1)

4∏
i=1

(bi − ai)

and we find that the relation between µ′1234 and other central moments is more complicated
than in the case of tree cumulants induced by the caterpillar tree. In particular, the
corresponding equations are no longer binomial like in (19).

4. The definition of L-cumulants

Let A = {i1, . . . , id} be a multiset. We define its multisubset B ⊆ A as a multiset
B = {ij : j ∈ I} for some I ⊆ [d]. For example if A = {1, 1, 2, 2} then A has, among
others, four multisubsets of the form {1, 2}. Let X be a finite discrete random vector
with values in X and let A(X ) be the family of multisets associated to X as given in (4).
Consider any family L = (L(A))A∈A(X ) of partition lattices such that L(A) is a subposet
of Π(A) for every A ∈ A(X ). Assume that the maximal and minimal elements of L(A)
coincide with the maximal and the minimal element of Π(A) and denote them by A and 0̂A
respectively. Moreover, for every B ⊆ A the map L(A) → L(B) are surjections given by
constraining partitions of A to B. Note that in particular, L(A) need not be a sublattice
of Π(A) because the join and the meet operator of L(A) and Π(A) may differ.

The first two trivial examples of a family L as above is Π = (Π(A))A∈A(X ) and L such

that for every A ∈ A(X ), |A| ≥ 2, the lattice L(A) is given by just two elements 0̂A and
A. Other interesting examples are obtained from Definition 4 (excluding tree partitions),
where L(A) is assumed to be isomorphic to L(|A|). The corresponding families of lattices
are denoted by NC (non-crossing), I (interval) and C (one-cluster). A definition of tree
cumulants in this case requires construction of an Â-labelled tree, where Â is the maximal
multiset A in A(X ) corresponding to x = (r1 − 1, . . . , rn − 1). This construction is not
unique and for that reason we discuss tree cumulants only in very concrete examples.

By mA we denote the Möbius function on L(A). The lattice will be always obvious
from the context so we omit it in the notation. When A is also clear from the context we
just write m.

Definition 19 (L-cumulants). Let X = (X1, . . . , Xn) be a random vector. For any
A ∈ A(X ) and ν ∈ L(A) define

`(ν) =
∑
π≤ν

mA(π, ν)µ(π), (20)

where µ(π) =
∏
B∈π µB. Then `A := `(A) is the L-cumulant of XA.
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If L = Π then, because Π(A) ' Π([|A|]), we obtain the formula in (3) and hence this
definition generalizes the classical cumulants. Other known L-cumulants were defined in
the non-commutative probability literature. These are L-cumulants defined by NC and
I, which are called free cumulants and Boolean cumulants respectively (see [20, 21]).

The map (20) is invertible with the inverse given by the Möbius inversion formula in
Proposition 6. Thus for every A ∈ A(X )

µA = µ(A) =
∑

π∈L(A)

`(π). (21)

Note that in general `(π) 6=
∏
B∈π `B, as it was the case for cumulants. However, `(π) =∏

B∈π `B whenever L satisfies the following condition:

(C0) For every A ∈ A(X ) and for any two partitions π, ν ∈ L(A) the interval [π, ν] is
isomorphic to the product of intervals

∏
B∈ν [π(B), B] ⊆

∏
B∈ν L(B).

Condition (C0) is not very restrictive. In fact all partition lattices mentioned in Defini-
tion 4 satisfy this property. If (C0) holds, then, by Proposition 5, the Möbius function on
L(A) satisfies mA(π, ν) =

∏
B∈ν mB(π(B), B). In particular (21) becomes

µA =
∑

π∈L(A)

∏
B∈π

`B,

and the proof of this follows essentially the proof of Lemma 7.

Remark 20. By the moment aliasing there is a one-to-one correspondence between the
probabilities P = [p(x)]x∈X and moments M = [µA]A∈A(X ) and hence also L-cumulants
L = [`A]A∈A(X ).

Unlike in the case of cumulants, for general L-cumulants no generating function is
known. It may be then useful to realize that L-cumulants can be expressed in terms of
classical cumulants in a rather simple manner. The following result generalizes Theo-
rem 4.1 in [8].

Proposition 21. Let L(A) be a lattice of set partitions of A in the family L and let Π∗

denote the set of elements π ∈ Π(A) such that [π,A] ∩ L(A) = {A}, where the interval
[π,A] is taken in Π(A). We have

`A =
∑
π∈Π∗

k(π) =
∑
π∈Π∗

∏
B∈π

kB.

Proof. In this proof δ ≤Π π means that δ ≤ π and δ ∈ Π(A). Similarly π ≥L δ
denotes π ≥ δ and π ∈ L(A). Expressing the L-cumulant in terms of moments and then
the moments in terms of classical cumulants gives

`A =
∑

π∈L(A)

m(π)
∏
B∈π

 ∑
δB∈Π(B)

∏
C∈δB

kC

 =



Piotr Zwiernik / J. Alg. Stat., 3 (2012), 11-43 29

=
∑

π∈L(A)

m(π)
∑
δ≤Ππ

∏
B∈δ

kB.

For every δ ∈ Π(A) let δ̄ denote the smallest element of L(A) such that δ ≤Π δ̄. Then, by
changing the order of summation, the above equation can be rewritten as

`A =
∑

δ∈Π(A)

∏
B∈δ

kB

∑
π≥Lδ̄

m(π)

 .

By (7) the sum in brackets vanishes whenever δ̄ 6= A. Therefore the whole expression is
equal to

∑
δ∈Π∗

∏
B∈δ kB. �

Example 22. Let n = 4 and let L be the lattice of all set partitions in Figure 2. The
only partitions of Π([4]) which are not in L are 13|24 and 14|23. Hence, they are also the
only partitions satisfying the condition [π, [4]] ∩ L = [4]. This, by Proposition 21, gives
the formula for t1234 given in (16).

5. Basic properties of L-cumulants

In this section we show that L-cumulants satisfy properties similar to (P1)-(P4). The
following lemma is central to most of the proofs of this section. It was first formulated by
Weisner [24] in a special case and then generalized by Rota [13] for general lattices (see
the corollary on page 351 therein).

Lemma 23. Let L be a finite lattice with at least two elements, and let π0 ∈ L be such
that π0 6= 1̂. Then for any δ ∈ L ∑

π:π∧π0=δ

m(π) = 0.

A special case of this result, when δ = 0̂, is given in [22, Corollary 3.9.3]. It is a useful
exercise to see that the proof given there generalizes to provide a proof of Lemma 23.

5.1. Independence and semi-invariance

To show that property (P1) holds for L-cumulants we first prove a more algebraic
version of this result. This result is directly linked to the definition of independence
formulated in terms of moments in (5).

Theorem 24. Consider the L-cumulant of X = (X1, . . . , Xn) as in Definition 19. The
following are equivalent:

(i) There exists a partition π0 ∈ L such that π0 6= [n] and for every π ∈ L we have that
µ(π) = µ(π ∧ π0),
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(ii) µI = µ(π0(I)) for all I ⊆ [n],

(iii) `(π) = 0 for all π 6≤ π0,

(iv) `I = 0 unless I is contained in a single block of π0.

Proof. The equivalence of (i) and (ii) follows from the fact that µ(π) is a multiplicative
function of L. Hence (i)⇒(ii) follows by taking π = [n] and then constraining to elements
of I. The opposite implication follows by taking I to be blocks of π. We now prove
(i)⇒(iii). Using Definition 19 we obtain

`(ν) =
∑
π≤ν

m(π, ν)µ(π) =
∑
π≤ν

m(π, ν)µ(π ∧ π0) =

=
∑

δ≤ν∧π0

 ∑
π∧π0=δ

m(π, ν)

µ(δ),

where the inner sum in the last expression is over all π in [0̂, ν] such that π ∧ π0 = δ
(or π ∧ (π0 ∧ ν) = δ). To show (iii), we are interested only in ν 6≤ π0 and hence we can
assume that ν 6= 0̂. The interval [0̂, ν] ⊆ L is a lattice with at least two elements, and,
whenever ν 6≤ π0, also π0 ∧ ν 6= ν. Therefore, by Lemma 23 for all δ ≤ ν ∧ π0 the sum∑

π∧π0=δ m(π, ν) vanishes. Hence `(ν) = 0 unless ν ≤ π0.
To show (iii)⇒(i) note that if `(δ) = 0 for all δ 6≤ π0 then for every π ∈ L

µ(π) =
∑
δ≤π

`(δ) =
∑

δ≤π∧π0

`(δ) = µ(π ∧ π0).

To see that (iv) follows from (i) and (iii), apply (i) with L(I) in place of L. If I is not
contained in a block of π0 then π0(I) is not the maximal element of L(I) and by (i) this
gives µ(π) = µ(π ∧ π0(I)) for every π ∈ L(I). Now `I = 0 by (iii).

Finally we show that (iv) implies (ii) using induction with respect to |I|. If I = {i, j}
such that i and j lie in different blocks of π0 then π0(I) = i|j. Since `ij = µij − µiµj = 0,
(ii) holds if |I| = 2. Suppose now that (ii) holds for all |I| < d and let now I ⊆ [n] be such
that |I| = d and π0(I) 6= I (otherwise (ii) holds trivially). By (20) we have

`I =
∑

π∈L(I)

m(π)µ(π).

If π < I then µ(π) is a product of some µB, where |B| < d and hence by assumption
µ(π) = µ(π ∧ π0(I)). We can rewrite the above equation as

`I = µI − µ(π0(I)) +
∑

π∈L(I)

m(π)µ(π ∧ π0(I)). (22)

The last summand can be rewritten as∑
δ≤π0(I)

[ ∑
π∧π0(I)=δ

m(π)
]
µ(δ),
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which is zero by Lemma 23 because π0(I) 6= I. Therefore, (22) becomes `I = µI−µ(π0(I)).
Since `I = 0 by assumption, we obtain that (ii) holds for |I| = d and hence it holds for all
I ⊆ [n]. �

This result gives an immediate corollary which generalizes property (P1) of the classical
cumulants.

Proposition 25. Suppose there exists a partition π0 ∈ L such that ⊥⊥ B∈π0XB. Then
`(π) = 0 for all π 6≤ π0 or equivalently `A = 0 unless all the elements of A are contained
in a single block of π0.

This proposition shows one of the important features of L-cumulants. For cumulants,
by (P1), all marginal independencies imply that k1···n = 0. In the case of L-cumulants only
some of the independencies imply vanishing (see Example 10). Hence, this new coordinate
system can be designed to better fit the model under consideration. This concept will be
explained in more detail for tree cumulants in Section 6.

We formulate an additional condition on the family of lattices L, which we require to
hold only when this is explicitly stated.

(C1) For every A ∈ A(X ) and every i ∈ A the split i|(A \ i) is in L(A).

Among the partitions in Definition 4 only the lattice of interval partitions does not satisfy
(C1).

Proposition 26 (Semi-invariance). Let L satisfy (C1) and X̃ = X + a, where a ∈ Rn
is any constant vector. Denote by ˜̀A the L-cumulant of X̃A. Then ˜̀i = `i + ai for all
i = 1, . . . , n and ˜̀A = `A for any multiset A ∈ A(X ) such that |A| ≥ 2.

Proof. Without loss of generality assume A = [n]. Since a =
∑
aiei, where the ei’s

are the unit vectors in Rn, it suffices to prove this result only in the case when a is such
that a1 is the only non-zero entry. In this case write X̃1 = X1 + a1 as X1−µ1 + (a1 +µ1),
where µ1 = EX1 and a1 + µ1 = EX̃1. Hence, if the split π0 = 1|{2, . . . n} ∈ L then for
every π ∈ L,

µ̃(π) = µ(π)− µ(π ∧ π0) + µ̃(π ∧ π0).

It follows that ˜̀
1···n =

∑
π∈Lm(π)µ(π)−

−
∑

π∈Lm(π)µ(π ∧ π0) +
∑

π∈Lm(π)µ̃(π ∧ π0).
(23)

Since L is a lattice and π0 6= [n], by Lemma 23 we have that
∑

π∧π0=ν m(π) = 0 for each
ν ∈ L and hence the second and third summand in (23) are zero. The proof is completed
because the first summand is exactly `1···n. �

The following result shows that the central moments are L-cumulants induced by the
lattice of one-cluster partitions C([n]).

Proposition 27. Let X be a random vector with values in X . Then the central moments
µ′A for |A| ≥ 2 are equal to the corresponding L-cumulants induced by C = (C(A))A∈A(X ).
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Proof. Denote by c the L-cumulants induced by the family C of one-cluster partition
lattices. Let A ∈ A(X ) be such that |A| ≥ 2. Since every split of the form i|(A \ i) is a
one-cluster partition, by Proposition 26, we can write c in terms of the central moments

cA =
∑

π∈C(A)

m(π)
∏
B∈π

µ′(B) for all |A| ≥ 2.

However, µ′i = 0 for every i ∈ [n] and hence the only non-zero term of the above sum is
where π = A, which proves that cA = µ′A. �

The correspondence between the lattice of one-cluster partitions and central moments
gives also the following explicit, simple and computationally efficient formula for central
moments in terms of moments.

Lemma 28. Let X be a random vector with values in X . For every A ∈ A(X ) such that
|A| ≥ 2 we have:

µ′A =
∑
B⊆A

(−1)|A\B|µB
∏

i∈A\B

µi. (24)

Proof. Use (8) and Proposition 27 to write

µ′A =
∑

0̂<π∈C(A)

(−1)|π|−1
∏
B∈π

µB + (−1)|A|−1(|A| − 1)
∏
i∈A

µi.

Let B0 be the distinguished non-singleton block in each of the product
∏
B∈π µB above.

Then |π|−1 = |A\B0|. Hence, every
∏
B∈π µB corresponds to some µB0

∏
i∈A\B0

µi in (24)
with the same coefficient. The remaining part is to check that the coefficient of

∏
i∈A µi

is also the same, but this is an easy check. �

Example 29. Let A = {1, 1, 2, 2} and list all multisubsets of A as defined in the beginning
of Section 4. We easily check that

µ′1122 = µ1122 − 2µ1µ122 − 2µ2µ112 + µ11µ
2
2 + 4µ12µ1µ2 + µ2

1µ22 − 3µ2
1µ

2
2,

which can be verified also by hand.

5.2. Multilinear transformations

By property (P3) cumulants behave nicely under multilinear transformations. In this
section, to study similar properties for general L-cumulants, we restrict to L satisfying the
following condition.

(C2) For every A ∈ A(X ) the lattice L(A) is isomorphic to L([d]), where d = |A|.
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This property is satisfied by construction for Π, I, NC, and C. If (C2) holds then, for
every d-tuple (i1, . . . , id) ∈ [n]d we define L(d) as a n× · · · × n tensor of the form

L(d)
i1···id =

∑
π∈L([d])

m(π)
∏
B∈π

µiB . (25)

Note that in general L(d)
i1···id may differ from `i1···id . For example if L = I([3]) then `213 =

`123 because the definition of L-cumulants does not depend on the ordering of the elements

in [n]. On the other hand, we have L(d)
123 6= L

(d)
213 because

L(d)
123 = µ123 − µ1µ23 − µ12µ3 + µ1µ2µ3

and
L(d)

213 = µ123 − µ2µ13 − µ12µ3 + µ1µ2µ3.

The following proposition shows that the tensor L(d), for any d ≥ 1, under linear
mappings transforms as a contravariant tensor.

Proposition 30. Let X = (X1, . . . , Xn) be a random vector. Consider L-cumulants
defined by L satisfying (C2). Let Q = [qij ] ∈ Rm×n and X̃ = QX ∈ Rm. Define [µ̃A], [˜̀A]

and L̃(d) as counterparts of [µA], [`A] and L(d) for X̃ accordingly. Then for each d ≥ 1,

L̃(d) = Q · L(d),

where Q · L(d) is the multilinear action on a d-dimensional tensor defined by

(Q · L(d))i1···id =

n∑
j1=1

· · ·
n∑

jd=1

qi1j1 · · · qidjdL
(d)
j1···jd (26)

for each d ≥ 1 and i1, . . . , id ∈ [m].

Proof. By (25) we have

(Q · L(d))i1···id =
n∑

j1=1

· · ·
n∑

jd=1

qi1j1 · · · qidjd

 ∑
π∈L([d])

m(π)
∏
B∈π

µjB

 .

Write µjB explicitly as E
[∏

b∈BXjb

]
. Then, using (C2), after changing the ordering of

products and summations we obtain

(Q · L(d))i1···id =
∑

π∈L([d])

m(π)
∏
B∈π

E

∏
b∈B

(

n∑
jb=1

qibjbXjb)

 .
Since X̃ib =

∑n
jb=1 qibjbXjb we obtain

(Q · L(d))i1···id =
∑

π∈L([d])

m(π)
∏
B∈π

µ̃iB = (L̃(d))i1···id ,
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which finishes the proof. �

Although for some L the property (P3) may not hold, the homogeneity holds for all
L-cumulants. Thus, if X̃ = (λ1X1, . . . , λnXn) for some λ = (λ1, . . . , λn) ∈ (R∗)n then˜̀
A =

∏
i∈A λi`A for every A ∈ A(X ).

5.3. Conditional L-cumulants

Suppose we are given the conditional cumulants of X = (X1, . . . , Xn) conditional on
some random variable Y and we want to obtain the unconditional cumulants. This is a
common problem with hidden variable models. On the level of moments this relationship
is straightforward since

µA = E
[∏
i∈A

Xi

]
= E

[
E
[∏
i∈A

Xi|Y
]]

for every multiset A. For cumulants, or more generally for L-cumulants, the situation is
a bit more complicated.

For every multiset A ∈ A(X ) denote by kYA the conditional cumulant of XA given Y ,
that is a cumulant computed as in Definition 19 but with moments replaced by conditional
moments. Note that each kYA is itself a random variable. For any π ∈ Π(A), by k̂π denote
the cumulant of the random vector (kYB)B∈π. It is known from [1] that for every A ∈ A(X ):

kA =
∑

π∈L(A)

k̂π. (27)

This in particular generalizes the well-known formula

Cov(X,Z) = E[Cov(X,Z|Y )] + Cov(E[X|Y ],E[Z|Y ]).

In Theorem 31 we give a purely combinatorial proof of (27). For our purposes it is slightly
more constructive than a similar proof of the same result in [19]. Also it immediately
enables us to formulate this result for L-cumulants in the case when L satisfies the following
property.

(C3) For every n ≥ 0 and each π ∈ L the interval [π, [n]] ⊆ L is isomorphic to L([|π|]).

This property is satisfied for Π (see [22, Example 3.10.4]). A sufficient condition for L
to satisfy (C3) is that for every n ≥ 0 the lattice L forms a join subsemilattice of Π([n]).
Therefore, I as well as the lattice of tree partitions for sufficiently regular trees (for example
caterpillars) both satisfy the property. Condition (C3) does not hold however for the lattice
of one-cluster partitions, (general) tree partitions and non-crossing partitions.

For every multiset A ∈ A(X ) denote by `YA the conditional L-cumulant of XA given

Y . For any π ∈ L(A), by ˆ̀
π denote the L-cumulant of the random vector (`YB)B∈π.
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Theorem 31 (Brillinger’s formula for L-cumulants). Let X = (X1, . . . , Xn) be a random
vector and Y be a random variable. If L satisfies (C3) then

`1···n =
∑
π∈L

ˆ̀
π.

Proof. Since µB = EµYB, by (21) we obtain the identity

µB = EµYB =
∑

δ∈L(B)

E
[ ∏
C∈δ

`YC
]
. (28)

Using (20) and replacing (28) for each µB we can write

`1···n =
∑

π∈Lm(π)
∏
B∈π

(∑
δ∈L(B) E

[∏
C∈δ `

Y
C

])
=

=
∑

π∈Lm(π)
∑

δ≤π
∏
B∈π E

[∏
C∈δ(B) `

Y
C

]
,

where δ(B) denotes the partition δ ∈ L constrained to B ∈ π. We change the order of
summation to obtain

`1···n =
∑
δ∈L

∑
π≥δ

m(π)
∏
B∈π

E
[ ∏
C∈δ(B)

`YC
] . (29)

For each δ = C1| · · · |Cr ∈ L denote the set of its blocks by Bδ = {C1, . . . , Cr}. By (C3)
the interval [δ, [n]] is isomorphic to L(Bδ) which is isomorphic to L([|δ|]) and hence the
expression in brackets in (29) can be rewritten as∑

ν∈L(Bδ)

mBδ(ν,Bδ)
∏
B∈ν

E
[ ∏
C∈B

`YC
]
,

which by definition is equal to ˆ̀
δ. �

If (C3) does not hold and we want to perform some efficient conditional computations,
we can still use the classical Brillinger’s formula for cumulants and then translate them
back to L-cumulants using Proposition 21. Moreover, for some special statistical models
the following result may be useful. It works for all families L.

Proposition 32. Let X = (X1, . . . , Xn) be a random vector and Y a random variable. If
X1 ⊥⊥ · · · ⊥⊥ Xn|Y , then

`1...n = ˆ̀
1|2|···|n,

where by definition ˆ̀
1|2|···|n is the L-cumulant of the random vector (`Y1 , . . . , `

Y
n ) = (µY1 , . . . , µ

Y
n ).

Proof. Since X1 ⊥⊥ · · · ⊥⊥ Xn|Y , by Proposition 25, `YC = 0 unless |C| = 1. Moreover,
we have

µB = E[
∏
i∈B

µYi ].
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Using (20) and replacing the above identity for each µB we can write

`1···n =
∑

π∈Lm(π)
∏
B∈π E

[∏
i∈B µ

Y
i

]
.

But since `Yi = µYi , the right hand side in the above equation is exactly the L-cumulant
of the random vector (`Y1 , . . . , `

Y
n ). �

To see how this result may be relevant in geometry see Example 17.

6. Tree cumulants and hidden Markov processes

In this section we complement the discussion of tree cumulants and show how they can
be used to analyze more general processes on trees.

6.1. Tree models

Let T r be a rooted tree with vertex set V and edge set E, that is a tree with one
distinguished node r ∈ V called the root and all the edges directed away from r. Let
X = (Xv)v∈V be a vector of binary random variables with values 0 and 1. Consider the
Bayesian network for X represented by T r. Each node v corresponds to a random variable
Xv and the structure of T r imposes some constraints on the joint distribution of X (see
for example [7]). DefineMT as the model obtained from this Bayesian network by taking
the marginal distributions over the leaves of T r. We callMT the two-state general Markov
model (for example [17, Chapter 8]). We omit the rooting in the notation because the
model does not depend on the rooting. In other words, for any alternative rooting the
induced parametrization will lead to the same model.

The parametric formulation of the model is obtained by expressing the marginal dis-
tribution of X over the leaves of T r in terms of the marginal distribution of the root r
and conditional distributions of each v ∈ V \ {r} given its parent in T r denoted by pa(v).
Assume that T r has n leaves and label them by elements of [n]. The distribution over the
set of leaves satisfies

p(x1, . . . , xn) =
∑
H
pr(xr)

∏
v∈V \r

pv|pa(v)(xv|xpa(v)), (30)

where H is the set of all x ∈ {0, 1}V such that the restriction to the leaves of T is equal to
(x1, . . . , xn). The model is given as the image of (30) in ∆X , where each point corresponds
to a different choice of values for conditional probabilities on the right hand side of this
parametrization. If m denotes the number of inner nodes of T then this parametrization
has 2m terms. For large trees this is a big polynomial which complicates the geometric
and algebraic analysis of these models.

The two-state general Markov model can be equivalently defined by a set of conditional
independence statements. This follows from the general theory of graphical models (see
[7, Section 3.2.2]). We say that two disjoint subsets A,B of the set of vertices V of T are
separated by another subset C if every undirected path from a node in A to a node in B
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necessarily crosses C. The set of all conditional independence statements which define the
general Markov model are given by all A ⊥⊥ B|C for all disjoint subsets A,B,C ⊆ V such
that C separates A and B. For example the 4-star tree model discussed in Section 3.3
is defined by X1 ⊥⊥ X2 ⊥⊥ X3 ⊥⊥ X4|Y because the inner node separates all the leaves from
each other.

Before we recall the main result of [27], let us give some intuition on why tree cumulants
may be helpful in the study of tree models. Suppose that for some edge (u, v) in T r we
impose on the model MT that in addition Xu ⊥⊥ Xv. This corresponds to removing the
edge (u, v) from T r and considering the model of the induced forest. Let A|B be the
split of the set of leaves [n] induced by removing the edge (u, v). Then the independence
statement Xu ⊥⊥ Xv implies also that XA ⊥⊥ XB.

Example 33. Let T be the quartet tree in Figure 4 rooted in a. The independence
(X1, X2) ⊥⊥ (X3, X4) defines a valid submodel of the tree model for T . This submodel is
defined by requesting Xa ⊥⊥ Xb and hence it is given as the image of the subspace of the
parameter space restricted to pb|a(1|0) = pb|a(1|1).

1

2

3

4

a b

Figure 4: A quartet tree.

By Proposition 9 there exists a tree partition π0 such that ⊥⊥ B∈π0XB if and only if
tI = 0 whenever I ⊆ [n] is not completely contained in one of the blocks of π0. In Example
33, because 12|34 is a valid tree partition, the marginal independence (X1, X2) ⊥⊥ (X3, X4)
holds if and only if tI = 0 for all I ⊆ {1, 2, 3, 4} such that I is not contained neither in
{1, 2} nor {3, 4}. Hence all t13, t14, t23, t24, t134,t234,t123,t124 and t1234 vanish whenever
pb|a(1|0) = pb|a(1|1). These kind of considerations help to understand why tree cumu-
lants are helpful for describing the two-state general Markov models. They also help to
intuitively understand the result in Theorem 34, which we now state formally.

Let ηuv = pv|u(1|1) − pv|u(1|0) for each (u, v) ∈ E. As we have shown ηuv = 0 if and
only if Xu ⊥⊥ Xv. Moreover, let µ̄v = 1− 2µv for v ∈ V .

Theorem 34 (Zwiernik, Smith [27]). Let T be trivalent tree. Then the two-state general
Markov model MT can be equivalently expressed in the space of tree cumulants by `i =
µi = 1

2(1− µ̄i) for i = 1, . . . , n; and for all |I| ≥ 2

tI =
1

4
(1− µ̄2

r(I))
∏

deg(v)=3

µ̄v
∏

(u,v)∈E(I)

ηuv,

where V (I) and E(I) denotes vertex and edge sets of the tree T (I), r(I) is the root of T (I)
and deg(v) denotes the valency of v in T (I).
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Example 35. Let T r be a quartet tree in Figure 4. Then by Theorem 34 we have for
example t12 = 1

4(1− µ̄2
a)ηa1ηa2, t13 = 1

4(1− µ̄2
a)ηa1ηabηb3, t34 = 1

4(1− µ̄2
b)ηb3ηb4 and

t1234 =
1

4
(1− µ̄2

a)µ̄aµ̄bη1aη2aηabηb3ηb4.

We also infer from this that

tI∪J tI′∪J ′ − tI∪J ′tI′∪J = 0

for all I, I ′ ∈ {{1}, {2}, {1, 2}} and J, J ′ ∈ {{3}, {4}, {3, 4}}.

Theorem 34 can be applied only for trivalent trees and hence it does not hold for n-star
tree models discussed earlier (see also Remark 18). We can use however the fact that any
non-trivalent tree model is a submodel of some model of a trivalent tree. Thus, if T is
not trivalent then we take any trivalent tree T ∗ such that T can be obtained from T ∗ by
edge contractions. Now the two-state general Markov model for T , when expressed in tree
cumulants of T ∗, is parametrized by `i = µi for i = 1, . . . , n, and for all |I| ≥ 2

tI =
1

4
(1− µ̄2

r(I))
∏

v∈V (I)\I

µ̄deg(v)−2
v

∏
(u,v)∈E(I)

ηuv.

In the quartet tree of Example 35 we can contract the edge (a, b) to obtain the 4-star tree
in Figure 3. This contraction corresponds to the subspace of the parameter space given
by µ̄a = µ̄b and ηab = 1. This induces the parametrization of the secant variety given in
Example 17. The same can be obtained for any n-star tree model with n ≥ 4. For more
details see [27].

6.2. Binary hidden Markov processes

We now show that tree cumulants can be useful also for other related statistical models.
We consider models with an underlying two-state Markov chain which is not observed,
where the observed variables are independent given this Markov chain. An example is
given by the hidden Markov model or some simple cases of Markov switching models
without autoregressive terms (see for example [6]). In this section we refer to all these
models as binary hidden Markov processes.

Consider tree cumulants induced by the caterpillar tree and define the normalized tree
cumulants as

t̄I =
∏
i∈I

1√
kii

tI for all I ⊆ [n],

which is always well defined if all the variables in the system are non-degenerate (a degen-
erate random variable takes only one value with nonzero probability). With this definition
ρij := t̄ij is just the usual correlation between Xi and Xj , and γi := t̄iii is the skewness of
Xi.
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In this section we deal with an observed vector X = (X1, . . . , Xn) and a hidden vector
H = (H1, . . . ,Hn). Since we need to consider mixed tree cumulants involving indices
from both vectors, we introduce the following convention. Whenever an index involves
i referring to Hi we write it as i. Hence for example kij = Cov(Hi, Xj), kii = Var(Hi),
kii = Var(Xi), γi = E(Hi − EHi)

3/Var(Hi)
3/2, and µ′B = E[

∏
i∈B(Hi − EHi)].

It is well known that for every random variable X, if Y is binary, then

E(X|Y ) = EX + Cov(X,Y )(Var(Y ))−1(Y − EY ), (31)

where Cov(X,Y )(Var(Y ))−1 is the linear regression coefficient of X with respect to Y . The
following proposition shows that the hidden Markov process has an elegant formulation
and all its normalized tree cumulants are parametrized by correlations and skewnesses.

Proposition 36. Let X = (X1, . . . , Xn) be a random vector and H = (H1, . . . ,Hn)
a binary random vector (both non-degenerate). Assume that X1 ⊥⊥ . . . ⊥⊥ Xn|H and the
conditional distribution of Xi given H depends only on Hi for i = 1, . . . , n. Moreover, let
H form a Markov chain. Then for every I = {i1, . . . , id} such that 1 ≤ i1 < · · · < id ≤ n
the corresponding normalized tree cumulant satisfies

t̄I =
d−1∏
j=2

γij

id−1∏
i=i1

ρi i+1

∏
i∈I

ρi i.

Proof. Before we prove the proposition we formulate the following result.

Lemma 37. Suppose that X = (X1, . . . , Xn) is a binary random vector such that i ⊥⊥ j ⊥⊥ C|r
for some disjoint i, j, r ∈ [n] and C ⊆ [n]. Let ηrA = µ′rAk

−1
rr for every A ⊆ [n] and

τr = krrrk
−1
rr . Then

µ′ijC = ηriηrjkrrµ
′
C + ηriηrjµ

′
rCτr.

Proof. Let UA :=
∏
i∈A(Xi − EXi) for every A ⊆ [n]. The conditional independence

i ⊥⊥ j ⊥⊥ C|r implies

E[UijC |Ur] = E[Ui|Ur] E[Uj |Ur] E[UC |Ur].

Using (31) for the conditional expectations on the right hand side and then taking expec-
tations on both sides yields

µ′ijC = ηriηrjkrrµ
′
C + ηriηrjηrCkrrr.

Replace ηrC = µ′rCk
−1
rr to obtain the formula in Lemma 37. �

To prove Proposition 36 first assume that I = [n] and by L denote the lattice of tree
partitions of the caterpillar tree with n leaves. We can divide the partitions in L into two
groups:

1. partitions with 1 and 2 in two different blocks 1A and 2B, and
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2. partitions with 1 and 2 in a single block 12A

By Remark 16 we can write

t1...n =
∑
π∈L

m(π)
∏
B∈π

µ′B. (32)

In the first group of partitions we always have either A = ∅ or B = ∅. Since µ′1 =
µ′2 = 0, for every π in the first group the corresponding summand in (32) is zero. Let
δ0 = 12|3| · · · |n. The set of all partitions in the second group forms an interval [δ0, [n]],
which is isomorphic to the set of all tree partitions of the subtree T2 of T with n−1 leaves
given by the hidden vertex 2 and the remaining leaves of T : 3, . . . , n. This isomorphism
is given by replacing each block 12A with a block 2A. Denote the lattice of all partitions
of T2 by L2. Since [δ0, [n]] ' L2, the Möbius function on L restricted to this interval is
equal to the Möbius function on L2.

For every A ⊆ [n] \ {1, 2} we have that X1 ⊥⊥ X2 ⊥⊥ XA|H2 and hence, by Lemma 37

µ′12A = η21η22k22µ
′
A + η21η22µ

′
2Aτ2.

Therefore, (32) becomes

t1...n =
∑

π∈[δ0,[n]]

m(π)
∏
B∈π

µ′B · η21η22k22µ
′
A + η21η22τ2

∑
π∈L2

m2(π)
∏
B∈π

µ′B. (33)

Let π0 be a split 12|[n] \ {1, 2}. For every π ∈ [δ0, [n]] the partition π ∧ π0 is the partition
obtained from π by splitting the block 12A into two blocks 12 and A. With this notation
the first summand in (33) can be rewritten as∑

ν∈[δ0,π0]

[ ∑
π:π∧π0=ν

m(π)
] ∏
B∈ν

µ′B · η21η22k22.

Since the interval [δ0, [n]] forms a lattice then by Lemma 23 the above expression is zero.
Since

∑
π∈L2

m(π)
∏
B∈π µ

′
B = t([n]\{1,2})∪{a}, then the second summand in (33) is

t1···n = η21η22τ2t([n]\{1,2})∪{2}. (34)

Using (31) we can also prove that η21 = k11η11η12k
−1
22 (use the fact that X1 ⊥⊥ H2|H1). In

the next step we can apply the same procedure as above to express t([n]\{1,2})∪{2} in (34)
in terms of k22, η23, η33, τ3 and t([n]\{1,2,3})∪{3}. We can do it recursively until we obtain

t1···n = k11

n∏
i=1

ηii

n−1∏
i=1

ηi i+1

n−1∏
i=2

τi.

Divide both sides by
√
k11 · · · knn. The main proposition follows for I = [n] after some

obvious algebraic rearrangements. In the general case we first use the formula for [n] to
conclude that for every I = {i1, . . . , id}, where i1 < . . . < id

t̄I =

d−1∏
j=2

γij

d−1∏
j=1

ρij ij+1

∏
i∈I

ρi i.
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To prove the final formula, it remains to show that

ρij ij+1 =

ij+1−1∏
i=ij

ρi i+1,

which can be proved by induction using (31). �

This proposition enables us to analyze the moment structure of hidden Markov pro-
cesses.

Example 38 (Homogeneous binary hidden Markov model). Consider a homogeneous
binary hidden Markov model. In this case H = (Hi)

n
i=1 forms a homogeneous two-state

Markov chain which we assume to start from its stationary distribution. Moreover, the
conditional distribution of Xi given Hi is the same for every i = 1, . . . , n. Under these
assumptions the marginal distribution of H1 is equal to the marginal distribution of Hi

for every i = 2, . . . , n. Let γ be the skewness of H1, ρ = Corr(H1, H2) be the one step
correlation of the Markov chain H, and b = Corr(H1, X1). By Proposition 36, for every
d ≥ 2 and 1 ≤ i1 < . . . < id ≤ n,

ti1···id = bdρid−i1γd−2. (35)

This in turn induces some constraints on the tree cumulants of the observed variables
which may be useful to construct simple diagnostic tests for this class of models. For
example it is easy to check that

ti(i+2)tj(j+2) = tk(k+3)tl(l+1) for every i, j, k, l = 1, . . . , n

and that tijtiktjk ≥ 0 for all i < j < k. The monomial parametrization in (35) enables us
to obtain the equations for higher order tree cumulants.
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