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Abstract: 

The idea of this paper is to investigate and realizing the quantum relative entropy normally used in quantum information 

using physical systems for two quantum systems. We have described these respectively by Hamiltonian and Lindblad 

operators (𝐻𝑘 , 𝐿𝑘), 𝑘 = 1,2,⋯,and we calculate the rate at which the relative entropy distance between the states evolving 

according to their two systems evolve. A consequence of the Baker–Campbell–Haussdorff formula in lie algebra theory, 

the computation uses the differentiation formula for the exponential map. The asymptotic formula for this relative entropy 

rate is obtained in terms of the scattering matrix corresponding to the two Hamiltonian. 
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1. Introduction: 

The field of quantum information can be processed with a high level of emerging technologies with covering of a wider 

application of the various areas. It is using a large ensemble of ultra-cold and trapped atoms, to develop with high precision 

in spectrography and metrology to build technological enhancement. We have to consider quantum information pro-

cessing through photons pair, which includes quantum computation, metrology, commutation and a quantum sensing. 

Photon pair techniques are the best method in the quantum communication to established secured   and fast process 

because photons pairs are the trustworthy carriers modulation for quantum information application. The most important 

part of the photon pair of quantum information leads to quantum communication and computation in which all processing 

tasks are performed in atomic scale with high accuracy. The emerging developments  with a full-scale of quantum com-

munication and information is still untouched and still challenging. So optical or photon pair systems are the most prom-

ising approaches for implementation  quantum computing and quantum channels. The basic understanding of classical 

and quantum theory are representations, In classical information, the states denoted by ZERO and ONE, it means a single 

bit. But in quantum theory, the information is carried by qubits and it follows the quantum superposition. Here, two 

hypotheses are applicable and validate everywhere in the quantum system, first quantum superposition and other quantum 

entanglement. 

In Quantum superposition, If we have a classical bit, Ket {|0⟩ and |1⟩} would be the only two stage. But as per the law of 

quantum mechanics allow a qubit, which is to be a combination of |0⟩ and |1⟩, called a superposition states. Quantum 

mechanics defines coherent states of the 3D (three dimensional) - quantum harmonic oscillator, and proposed by Roy 

Glauber for the first time to describe the quantum wave function in the form of States. As per the Dirac notation of the 

qubit, it should be laid on 2D (two dimensional) of complex Hilbert space H in the quantum dynamics systems.  
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In Quantum entanglement, which is composed of two or more parts of the quantum system and also constitutes between 

quantum system and classical are correlated. It will support a basic understanding between quantum-classical boundaries. 

Besides these fundamental aspects, quantum entanglement is a very important tool for developing the area in quantum 

information science [1-3]. In short, entangled states are connected with various applications in quantum cryptography, 

quantum teleportation, and quantum sensing. These days, entanglement is the best process to recognised as the best ap-

proach in the field of quantum communication and quantum computation tasks [4-6].  

The Advantage of entanglement, is provided with a method for preparing an entangled state of  the atomic scale. The 

method involves respective optical trap of each atom loaded more than a dipole-dipole interaction length separates the 

atoms of the atomic ensemble[7-9]. We have focused primarily so far, the electromagnetic quantum field has only been 

studied from a spatial perspective. In any case, finding the time evolution of quantum fields is important for all physical 

applications, and for quantum information processing in particular to achieve and describe two equivalent ways. In either 

case, we can either take into account the time dependence when we describe the quantum state (the Schrödinger picture) 

or we can describe the time dependence in terms of the operators (the Heisenberg picture).  

Based on this ideas the quantum systems are defined through postulates. So one of the quantum postulates are explaining 

the coherent states, which is described by a density operator ρ in a Hilbert space H at given time period T. It is a positive 

semidefinite and the trace of the density operator (ρ) is unity. When its rank is one, the state of destiny operator is defined 

as pure states. 

So, we can write as 𝜌 = |𝜓 >< 𝜓|, where|𝜓 >is a unit vector in the given Hilbert space H.  

In the Hilbert space H, there is also an orthogonal projection operator P. The probability of this event P occurring when 

the system is in the state 𝜌 is defined as Tr(ρP) [10-14]. 

A Novelty of quantum information processing has been proposed to be carried out on physical devices. There are char-

acterized by the fact that they should be supported to qubits or other quantum systems. When entanglement exists, the 

result of an experiment that collapses the quantum state of a first particle can be correlated with the result of an experiment 

performed on a second particle that is entangled with the first, even if the particles are separated by a macroscopic distance 

that prevents mutual interaction at the time of measurement [15-17].  

One application of the paper's ideas is in systems at the nanoscale, such as transmitting information between atoms or 

from one gene to another in microorganisms. It is also possible to determine the information in atoms is transferred 

through quantum electromagnetic (EM) field and received by quantum receiver within another atom in the system, which 

is embedded [18-21]. Recently, a multi-particle entanglement measure based on Hilbert space geometry has been pro-

posed. In pure states, this geometrical measurement of entangled states is to be determined by optimal overlap between 

two possible entangled states and another the unentangled state, which is mathematically computed. This measurement 

of two distinct upper bounds of multipartite and bi-particles of the entangled states has to be applied in the pure and mixed 

states [22-25]. 

The main contribution of this paper is to explore the relationship between the discrepancy  of  measured value and the 

relative entropy for two quantum systems. But the condition of the pure states in the some bi-partite and multi-particle 

for lower bound has to be saturated, and thus their relative entropy of entanglement should be calculated mathematically, 

based on their known geometrical measured parameters of the entangled states. Moreover, an upper bounds of the quan-

tum relative entropy has to be established for certain mixed states of the entanglement. Numbers strongly suggest that 

these upper bounds are the relative entropy of entanglement, that is, they are the relative entropy of entanglement [16, 20, 

23-32]. The results, although not general enough to solve the problem of calculating the relative entropy of entanglement 

for arbitrary multipartite states, nevertheless provide some insight into the problem. The study may provide some insight 

into future analytic progress related to the relative entropy of entanglement, as well as serve as a testbed for future work. 

As follows is the paper's structure: In Sec. II we are describing Mathematical Descriptions of the Generalized Sudarshan-

Lindblad. In Sec. III description of the two entanglement state: methodology for evolution of Quantum relative entropy 

of entanglement. In Sec. IV we are concluding remarks. 
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2. Mathematical Descriptions of the Generalized Sudarshan-Lindblad: 

Let 𝔥 us consider the system Hilbert space and ℋ = 𝐿2(ℝ+) the noise Hilbert space.  𝛤𝑠(ℋ) = 𝛤𝑠(𝐿
2(ℝ+)) is the noise 

Boson Fock space. According to the Hudson-Parthasarathy noisy Time dependent Schrödinger equation, the evolution 

operator U(t) of the system plus bath in the system plus noise Hilbert space is 𝔥⊗ 𝛤𝑠(ℋ): 

 𝑑𝑈(𝑡) = (−𝑖𝐻(𝑡)𝑑𝑡 + 𝐿1(𝑡)𝑑𝐴(𝑡) − 𝐿2(𝑡)𝑑𝐴
∗(𝑡) + 𝑆(𝑡)𝑑𝛬(𝑡))𝑈(𝑡) 

where, 𝐿1(𝑡), 𝐿2(𝑡), 𝑆(𝑡), 𝐻(𝑡) are system operators, that is, in 𝐿(𝔥) and 𝐴(𝑡), 𝐴∗(𝑡), 𝛬(𝑡) act in the Boson Fock space 

𝛤𝑠(ℋ𝑡]). More precisely, 𝐴(𝑡), 𝐴∗(𝑡) and 𝛬(𝑡) act in 𝛤𝑠(ℋ𝑡]) and act as identity operators in 𝛤𝑠(ℋ(𝑡)). Here, we identity 

the Hilbert space 𝛤𝑠(ℋ) = 𝛤𝑠(ℋ𝑡] ⊕ℋ(𝑡) with 𝛤𝑠(ℋ𝑡]) ⊗ 𝛤𝑠(ℋ(𝑡) via the canonical isomorphism defined using expo-

nential vectors:   𝑒(𝑢) ≈ 𝑒(𝑢𝜒[0, 𝑡]) ⊗ 𝑒(𝑢𝜒(𝑡,∞)). Note that for any Borel subset B of ℝ+$, $(𝑢𝜒𝐵)(𝑡) equals u(t) for 

𝑡 ∈ 𝐵 and zero for 𝑡 ∉ 𝐵. The quantum Ito formula based on the differentiation of the creation, annihilation and 

conservation process, which are simplified in the infinite dimension of the Boson Fock space. Using these calculus, the 

HP equation noisy Schrödinger equation should be described below: 

 𝑑𝐴(𝑡)𝑑𝐴∗(𝑡) = 𝑑𝑡, 𝑑𝐴∗(𝑡)𝑑𝐴(𝑡) = 0, 𝑑𝛬(𝑡)𝑑𝐴∗(𝑡) = 𝑑𝐴∗(𝑡), 𝑑𝛬𝑑𝛬 = 𝑑𝛬 

 𝑑𝐴(𝑡)𝑑𝛬(𝑡) = 𝑑𝐴(𝑡), 𝑑𝛬(𝑡)𝑑𝐴(𝑡) = 0, 𝑑𝐴∗(𝑡)𝑑𝛬(𝑡) = 0 

Let 𝑋 ∈ 𝐿(𝔥) be Hermitian. 𝑋(𝑡) = 𝑈∗(𝑡)𝑋𝑈(𝑡) = 𝑈∗(𝑡)(𝑋 ⊗ 𝐼)𝑈(𝑡). 

By the quantum Ito formula, we have 

 𝑑(𝑈∗(𝑡)𝑈(𝑡)) = 𝑑𝑈∗𝑑𝑈 + 𝑈∗𝑑𝑈 + 𝑑𝑈∗𝑑𝑈 

= 𝑈∗(𝑖(𝐻∗ − 𝐻)𝑑𝑡 + (𝐿1
∗ − 𝐿2)𝑑𝐴

∗ + (𝐿1 − 𝐿2
∗ )𝑑𝐴 + (𝑆∗ + 𝑆)𝑑𝛬)𝑈     

 +𝑈∗(𝐿1 ∗ 𝑑𝐴
∗ − 𝐿2

∗𝑑𝐴 + 𝑆∗𝑑𝛬)(𝐿1𝑑𝐴 − 𝐿2𝑑𝐴
∗ + 𝑆𝑑𝛬)𝑈 

= 𝑈∗[(𝑖(𝐻∗ − 𝐻) − 𝐿2
∗ 𝐿2)𝑑𝑡 + (𝑆∗ + 𝑆 + 𝑆∗𝑆)𝑑𝛬 + (𝐿1

∗ − 𝐿2 − 𝑆∗𝐿2)𝑑𝐴
∗ + (𝐿1 − 𝐿2

∗ − 𝐿2
∗ 𝑆)𝑑𝐴]𝑈 

For U(t) to be unitary for all t, we require that 𝑑(𝑈∗𝑈) = 0 and this happens iff 𝑖(𝐻∗ − 𝐻) + 𝐿2
∗ 𝐿2 = 0, 𝑆 + 𝑆∗ + 𝑆∗𝑆 =

0, 𝐿1 = 𝐿2
∗ (1 + 𝑆), we assume that these conditions are satisfied. Another application of the quantum Ito formula yields 

the Heisenberg equation for X(t): 

 𝑑𝑋(𝑡) = 𝑑𝑈∗. 𝑋. 𝑈 + 𝑈∗𝑋𝑑𝑈 + 𝑑𝑈∗𝑋𝑑𝑈 

= 𝑈∗(𝑖(𝐻∗𝑋 − 𝑋𝐻 − 𝐿2
∗𝑋𝐿2)𝑑𝑡 + (𝐿1

∗𝑋 − 𝑋𝐿2 − 𝑆∗𝑋𝐿2)𝑑𝐴
∗ + (𝑋𝐿1 − 𝐿2

∗𝑋 − 𝐿2
∗𝑋𝑆)𝑑𝐴 + (𝑋𝑆∗ + 𝑆𝑋 + 𝑆∗𝑋𝑆)𝑑𝛬)𝑈

            (1) 

We get for 𝜌𝑠(0) ∈ ℒ(𝔥) being the initial system state and 𝑢 ∈ ℋ,     

𝑇𝑟(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|𝑑𝑋(𝑡)) = 𝑇𝑟1(𝜌𝑠(0)𝑇𝑟2(|𝑒(𝑢) >< 𝑒(𝑢)|𝑑𝑋(𝑡))) 

Now from (1), 

𝑇𝑟(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|𝑑𝑋(𝑡)) = 𝑖. 𝑇𝑟[𝑈(𝑡)𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|𝑈(𝑡)∗)(𝐻∗𝑋 − 𝑋𝐻 − 𝐿2
∗𝑋𝐿2]𝑑𝑡 

+𝑇𝑟(𝑈(𝑡)(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|)𝑈(𝑡)∗(𝐿1
∗𝑋 − 𝑋𝐿2 − 𝑆∗𝑋𝐿2))𝑢(𝑡)𝑑𝑡 

+𝑇𝑟(𝑈(𝑡)(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|)𝑈(𝑡)∗(𝑋𝐿1 − 𝐿2
∗𝑋 − 𝐿2

∗𝑋𝑆))𝑢(𝑡)𝑑𝑡 

+𝑇𝑟(𝑈(𝑡)(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|)𝑈(𝑡)∗(𝑋𝑆∗ + 𝑆𝑋 + 𝑆∗𝑋𝑆))|𝑢(𝑡)|2𝑑𝑡 

It follows that if we define the system state at time t as 
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 𝜌𝑠(𝑡) = 𝜌𝑠(𝑡, 𝑢) = 𝑇𝑟2(𝑈(𝑡)(𝜌𝑠(0) ⊗ |𝑒(𝑢) >< 𝑒(𝑢)|)𝑈(𝑡)∗) 

then 𝜌𝑠(𝑡) satisfies the generalized Sudarshan-Lindblad equation 

𝜌𝑠
′(𝑡) = −𝑖(𝐻(𝑡)𝜌𝑠(𝑡) − 𝜌𝑠(𝑡)𝐻(𝑡)

∗ − 𝐿2(𝑡)𝜌𝑠(𝑡)𝐿2(𝑡)
∗) + 𝑢(𝑡)(𝜌𝑠(𝑡)𝐿1(𝑡)

∗ − 𝐿2(𝑡)𝜌𝑠(𝑡) − 𝐿2(𝑡)𝜌𝑠(𝑡)𝑆(𝑡)
∗) 

+𝑢(𝑡)(𝐿1(𝑡)𝜌𝑠(𝑡) − 𝜌𝑠(𝑡)𝐿2(𝑡)
∗ − 𝑆(𝑡)𝜌𝑠(𝑡)𝐿2(𝑡)

∗) + |𝑢(𝑡)|2(𝑆(𝑡)∗𝜌𝑠(𝑡) + 𝜌𝑠(𝑡)𝑆(𝑡)
∗ + 𝑆(𝑡)𝜌𝑠(𝑡)𝑆(𝑡)

∗) 

Given a state evolution 𝜌𝑑(𝑡),0 ≤ 𝑡 ≤ 𝑇, assuming 𝐿1, 𝐿2, 𝐻, 𝑆 to be constant operators in 𝔥 (i.e. independent of time). 

The optimum function 𝑢(𝑡),0 ≤ 𝑡 ≤ 𝑇$($𝑢 ∈ 𝐿2(ℝ+)) so that ∫
0

𝑇
∥ 𝜌𝑠(𝑡, 𝑢) − 𝜌𝑑(𝑡) ∥

2 𝑑𝑡 is a minimum. 

Assuming the function 𝑢(𝑡),0 ≤ 𝑡 ≤ 𝑇 and H given, determine the optimum operators 𝐿1, 𝐿2, 𝑆, so that ∫
0

𝑇
∥ 𝜌𝑠(𝑡, 𝑢) −

𝜌𝑑(𝑡) ∥
2 𝑑𝑡 is a minimum in given block diagram.  

3. Methodology for Evolution of Quantum relative entropy: 

The evolution has to be appeared in the form of Von Neumann entropy for an entangled states 𝜌, which is defined as 

𝑆(𝜌)−= 𝑇𝑟(𝜌. 𝑙𝑜𝑔(𝜌)). When the measurement has to be carried out, the evolution of the entangled state may get dis-

turbed by BATH states due to Heisenberg uncertainty  principles. So in order to avoid this, we can approach the non-

demolition measurement, which can be made on the system with BATH states. Suppose we send a random classical 

alphabet x with probability p(x) and the resulting state is 𝜌𝑥 [31-37]. Then the conditional entropy of the output given the 

input is given by  𝑆(𝑌|𝑋) = ∑
𝑥
𝑝(𝑥)𝑆(𝜌𝑥)and the entropy of output is given by     

  𝑆(𝑌) = 𝑆(∑
𝑥
𝑝(𝑥)𝜌𝑥).  

A quantum relative entropy is evolving in between two quantum systems 𝜌1(𝑡) and 𝜌2(𝑡) are density matrices satisfying 

the Sudarshan-Lindblad equation. 

   𝜌1
′ (𝑡) = −𝜄[𝐻1, 𝜌1(𝑡)] −

1

2
𝜃1(𝜌1(𝑡)) 

   𝜌2
′ (𝑡) = −𝜄[𝐻2, 𝜌2(𝑡)] −

1

2
𝜃2(𝜌2(𝑡)) 
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Where, 𝐻1 and 𝐻2 are time dependent Hamiltonian, which are hermitian operators and 𝜃1 and 𝜃2are the Noise operators, 

deigned through observable.  

   𝜃1(𝑋) = ∑
𝑘=1

𝑝

(𝐿𝑘
∗ 𝐿𝑘𝑋 + 𝑋𝐿𝑘

∗ 𝐿𝑘 − 2𝐿𝑘𝑋𝐿𝑘
∗ ) 

   𝜃2(𝑋) = ∑
𝑘=1

𝑝

(𝑀𝑘
∗𝑀𝑘𝑋 + 𝑋𝑀𝑘

∗𝑀𝑘 − 2𝑀𝑘
∗𝑀𝑘) 

 Assume 𝐻2 −𝐻1 and 𝑀𝑘 − 𝐿𝑘  upto 𝑂(𝜀), then calculate upto 𝑂(𝜀2). 

   
𝑑

𝑑𝑡
𝑇𝑟(𝜌1𝑙𝑜𝑔𝜌1) = 𝑇𝑟(

𝑑𝜌1

𝑑𝑡
) + 𝑇𝑟(𝜌1

𝑑

𝑑𝑡
𝑙𝑜𝑔𝜌1) 

so by the Baker–Campbell–Haussdorff formula 

  𝜌1 = 𝑍1, 𝜌2 = 𝑒𝑍1, 𝜌1
′ = 𝑒𝑍1

𝐼−𝑒−𝑎𝑑𝑍1

𝑎𝑑𝑍1
 

Let, 

   𝑍1
′ = 𝜌1

−1 ∑
𝑟=1

∞

𝑐𝑟(𝑎𝑑𝑍1)
𝑟(𝜌1

−1𝜌1
′ ) 

  𝑇𝑟(𝜌1
𝑑

𝑑𝑡
𝑙𝑜𝑔𝜌1) = 𝑇𝑟(𝜌1𝑍1) = ∑

𝑟=1

∞

𝑐𝑟𝑇𝑟(𝜌1(𝑎𝑑𝑙𝑜𝑔𝜌1)
𝑟(𝜌1

−1𝜌1
′ )) 

(since 𝑇𝑟(𝜌1
′ ) = 0). If X is a self-adjoint (like 𝑍1), then 𝑎𝑑𝑋is a skew-Hermitian. 

Since,    

𝑇𝑟((𝑎𝑑𝑋)(𝑦)𝑍) = 𝑇𝑟([𝑋, 𝑌]𝑍)                                                                                                  = 𝑇𝑟((𝑋𝑌 −

𝑌𝑋)𝑍) = −𝑇𝑟(𝑌(𝑋𝑍 − 𝑍𝑋)) = −𝑇𝑟(𝑌(𝑎𝑑𝑋)(𝑍)) 

Let, (𝑎𝑑𝑋)∗ = 𝑎𝑑𝑋, Hence all the eigenvalues or 𝑎𝑑𝑋 are pure imaginary and the above series for 
𝑎𝑑𝑍

1−𝑒−𝑎𝑑𝑍
  does not 

converge.  

Instead, we try 

𝑎𝑑𝑍1
1 − 𝑒−𝑎𝑑𝑍1

= (𝑎𝑑1) ∑
𝑚=0

∞

𝑒−𝑚𝑎𝑑𝑍1 

                      = 𝑎𝑑𝑍1 ∑
𝑚=0

∞

𝐴𝑑(𝑒−𝑚𝑍1)= (𝑎𝑑𝑍1)(𝐼 + ∑
𝑚=1

∞

𝐴𝑑(𝜌1
−𝑚)) 

 so, 𝑇𝑟(𝜌1
𝑑

𝑑𝑡
𝑙𝑜𝑔𝜌1) = 𝑇𝑟(𝜌1𝑍1

′)= 𝑇𝑟(𝜌1
𝑎𝑑𝑍1

1−𝑒−𝑎𝑑𝑍1
(𝜌1

−1𝜌1
′ ) 

  = 𝑇𝑟(𝜌1(𝑎𝑑𝑍1))(𝜌1
−1𝜌1

′ + ∑
𝑚=1

∞

𝜌1
−𝑚−1𝜌1

′𝜌1
𝑚))      

 = 𝑇𝑟(𝜌1(𝜌1𝜌
−1𝑎𝑍1(𝜌1

′ ) + ∑
𝑚=1

∞

𝑒1
−𝑚−1[𝑍1, 𝜌1

′ ]𝜌1
𝑚))  

  = 𝑇𝑟([𝑍1, 𝜌1
′ ]) + ∑

𝑚=1

∞

𝑇𝑟(𝜌1
−𝑚[𝑍1, 𝜌1

′ ]𝜌1
𝑚) 

so, 

                                 
𝑑

𝑑𝑡
𝑇𝑟(𝜌1𝑙𝑜𝑔𝜌1) = 𝑇𝑟[𝜌1

′ 𝑙𝑜𝑔𝜌1] 
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and 

                  
𝑑

𝑑𝑡
𝑇𝑟(𝜌1𝑙𝑜𝑔𝜌2) = 𝑇𝑟(𝜌1

′ 𝑙𝑜𝑔𝜌2) + 𝑇(𝜌1𝑍2) 

Now, 

    𝑍2 = 𝑙𝑜𝑔𝜌2, 

   𝑍2
′ =

𝑎𝑑𝑍2

1−𝑒−𝑎𝑑𝑍2
(𝜌1

−1𝜌2
′ ) 

𝑇𝑟(𝜌1𝑍2
′ ) = 𝑇𝑟{𝜌1𝑍2 ∑

𝑚=0

∞

𝑒𝑚.𝑎𝑑.𝑍2(𝜌1
−1𝜌2

′ )}   = 𝑇𝑟{𝜌1(𝑎𝑑𝑍2(𝜌1
−1𝜌2

′ + ∑
𝑚=1

∞

𝜌2
−𝑚−1𝜌2

′𝜌2
𝑚))}  

 = 𝑇𝑟{𝜌1𝜌2
−1[𝑍2, 𝜌2

′ ]} + ∑
𝑚=1

∞

𝑇𝑟(𝜌1𝜌2
−𝑚−1[𝑍2, 𝜌2

′ ]𝜌2
𝑚)     

 = 𝑇𝑟{𝜌1𝜌2
−1[𝑍2, 𝜌2

′ ]} + ∑
𝑚=1

∞

𝑇𝑟(𝜌2
𝑚𝜌1𝜌2

−𝑚−1[𝑍2 − 𝜌2
′ ]) 

   ∑
𝑚=0

∞

𝑇𝑟(𝜌2
𝑚𝜌1𝜌2

𝑍2,𝜌2
′

) 

so, 

  
𝑑

𝑑𝑡
𝑆(𝜌1, 𝜌2) =

𝑑

𝑑𝑡
𝑇𝑟(𝜌1𝑙𝑜𝑔𝜌1 − 𝜌1𝑙𝑜𝑔𝜌2)  

  𝑇𝑟(𝜌1
′ 𝑙𝑜𝑔𝜌1) − 𝑇𝑟(𝜌1

′ 𝑙𝑜𝑔𝜌2) − 𝑇𝑟(𝜌1𝑍2
′ ) 

  𝑇𝑟(𝑇1(𝜌1)𝑙𝑜𝑔𝜌1)) − 𝑇𝑟(𝑇1(𝜌1)𝑙𝑜𝑔𝜌2) 

  ∑
𝑚=0

∞

𝑇𝑟(𝜌2
𝑚𝜌1𝜌2

−𝑚−1[𝑙𝑜𝑔𝜌2, 𝑇2(𝜌2)]) 

When, 

  𝑇𝑘(𝜌) = −𝜄[𝐻𝑘 , 𝜌] −
1

2
𝜃𝑘(𝜌), 𝑘 = 1,2…. Special case 𝜃1 = 𝜃2 = 0 (No noise),  

Then 

  𝑇𝑘(𝜌) = −𝜄[𝐻𝑘 , 𝜌] 

 𝑇𝑟(𝑇1(𝜌1)𝑙𝑜𝑔𝜌1) = −𝜄𝑇𝑟{[𝐻1, 𝜌1]𝑙𝑜𝑔𝜌1}= −𝜄𝑇𝑟{𝐻1𝜌1𝑙𝑜𝑔𝜌1 − 𝜌1𝐻1𝑙𝑜𝑔𝜌1} 

   = −𝜄𝑇𝑟({𝐻1[𝜌1, 𝑙𝑜𝑔𝜌1]}) = 0 

 𝑇𝑟(𝑇1(𝜌1)𝑙𝑜𝑔𝜌2) = −𝜄𝑇𝑟{[𝐻1, 𝜌1]𝑙𝑜𝑔𝜌2}= −𝜄𝑇𝑅{𝐻1(𝜌1𝑙𝑜𝑔𝜌2 − 𝑙𝑜𝑔𝜌2𝜌1)}  

 𝑇𝑟(𝜌2
𝑚𝜌1

𝑚𝜌2
−𝑚−1[𝑙𝑜𝑔𝜌2, 𝑇2(𝜌2)])= −𝜄𝑇𝑟(𝜌2

𝑚𝜌1
𝑚𝜌2

−𝑚−1[𝑙𝑜𝑔𝜌2, 𝐻2𝜌2 − 𝜌2𝐻2]) 

 = −𝜄𝑇𝑟(𝜌2
𝑚𝜌1

𝑚𝜌2
−𝑚−1((𝑙𝑜𝑔𝜌2)(𝐻2𝜌2 − 𝜌2𝐻2) − (𝐻2𝜌2 − 𝜌2𝐻2)𝑙𝑜𝑔𝜌2)) 

= 𝜄𝑇𝑟({𝜌2
𝑚+1𝜌1𝜌2

−𝑚−1𝑙𝑜𝑔𝜌2 − 𝜌2
𝑚𝜌1𝜌2

−𝑚𝑙𝑜𝑔𝜌2 − 𝑙𝑜𝑔𝜌2𝜌1
𝑚+1𝜌2

−𝑚−1 + (𝑙𝑜𝑔𝜌2)𝜌2
𝑚𝜌1𝜌2

−𝑚}𝐻2) 

= −𝜄𝑇𝑟{{[𝜌2
𝑚+1𝜌1𝜌2

−𝑚−1, 𝑙𝑜𝑔(𝜌2)] + [𝑙𝑜𝑔(𝜌2), 𝜌2
𝑚𝑟ℎ𝑜1𝜌2

−𝑚]}𝐻2} 

= −𝜄𝑇𝑟{{𝜌2
𝑚+1[𝜌1, 𝑙𝑜𝑔𝜌2]𝜌2

−𝑚−1 + 𝜌2
𝑚[𝑙𝑜𝑔𝜌2, 𝜌1]𝜌2

−𝑚}} 

In this case, we thus find 
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𝑑

𝑑𝑡
𝑆(𝜌1, 𝜌2) = −𝜄𝑇𝑟{𝐻1[𝜌1, 𝑙𝑜𝑔𝜌2]} + 𝜄 ∑

𝑚=0

∞

𝑇𝑟{𝐻2(𝜌2
𝑚+1[𝑟ℎ𝑜1 , 𝑙𝑜𝑔(𝜌2)]𝜌2

−𝑚−1 − 𝜌2
𝑚[𝜌1𝑙𝑜𝑔𝜌2]𝜌2

−𝑚)}  

Now, 

∑
𝑚=0

∞

(𝜌2
𝑚+1[𝜌1, 𝑙𝑜𝑔𝜌2]𝜌2

−𝑚−1 − 𝜌2
𝑚[𝜌1, 𝑙𝑜𝑔𝜌2]𝜌2

−𝑚) = −[𝜌1, 𝑙𝑜𝑔𝜌2] 

Provided  

 𝑙𝑖𝑚
𝑁→∞

𝜌2
𝑁[𝜌1, 𝑙𝑜𝑔𝜌2]𝜌2

−𝑁 = 0  

In this case we find 

  
𝑑

𝑑𝑡
𝑆(𝜌1, 𝜌2) = 𝜄𝑇𝑟{(𝐻1 − 𝐻2)[𝜌1, 𝑙𝑜𝑔𝜌2]} 

The aim of this paper is to solve the relative entropy of the quantum systems without noise. Our research is presently 

describe the quantum average measure value to extra the information with effecting of the AWGN and stochastic noise 

and we will evaluate the performance of our algorithm in the presence of BATH states, that is, compute the noise to signal 

ratio of the given estimate of 𝛿𝜃, that is, 𝐸(||𝛿(𝜃) − 𝛿(𝜃)||2). 

4. Conclusions:  

The quantum information processing has wider application and it is a generalized form of non-demolition Von-Neumann 

entropy for the entangled quantum states. So, the concluding remarks of the geometrical measurement for entangled 

operators have calculated with lower bound of the pure states. It has to satisfy the condition of quantum postulate for 

arbitrary bi-particle and multipartite. For mixed states, we have explained the mathematical methodology for the relative 

entropy without effecting of the BATH space of the entangled states. The BATH states will be finally optimized by using 

HP equations to the specific example of the trapped atom model. And we will realize and simulate through MATLAB for 

evaluating the performance criteria to show the  NSR (Noise to signal ratio) plot to get the estimate value of observable 

form the noisy angular momentum. Future research will need to address many other important issues to understand the 

quantum noise analysis and more discuss about proposed filter bank, like Belavkin filter. 
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