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Abstract: - The mobile robots' localization algorithms are considered the main part of robots to make 

them self-driven. However, most of the localization algorithms have a common problem related to the 

noisy reading of the sensors during Simultaneous Localization and Mapping (SLAM) of the 

environments. The noise produces errors in the estimated path which will lead to wrong decisions 

when handling the localization process. Thus, there is a need for an algorithm to eliminate the noise 

and correctly estimate the robot's position along with the movement. This paper classifies localization 

algorithms into three groups, namely, Kalman Filter based approaches, Statistical based approaches, 

and Artificial intelligence-based approaches. The reviewed algorithms have been arranged from the 

oldest to the newest with their results, researchers' methods to treat the noises, and tools for sensing 

the environment (camera, IMU, LiDAR, LRF, and Ultrasonic). One can notice that Kalman Filter-

based approaches were used rarely in the previous years, while the statistical-based approaches were 
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combined with other calculations to enhance their performance. The modern approaches used 

nowadays are AI-based approaches, especially fuzzy logic algorithms. The results of the reviewed 

algorithms proved that the noises are still affecting the algorithm's performance even though one can 

use modern algorithms to eliminate all the noisy readings. The laser simulator logic algorithm that has 

been used in the Active Force Control (AFC)  of mobile robots gave the best results in eliminating the 

noises. This work reviews most localization algorithms and classifies them based on how they are 

used for pose estimation; it can be a useful reference for researchers who will work in this field in the 

future. 

Key-Words: -Localization  algorithms, SLAM,  Mobile  Robot, Simultaneous  Localization and 

Mapping algorithms, Localizations' sensors, Autonomous Robot Systems 

 

1  Introduction: 

Mobile robots have become attractive and an exciting research area since the end of the past century 

due to their main use in the manufacturing field and military experiments for a long time. The main 

reason for this importance is to make the robots able to do things that are dangerous to humans, or 

things that humans cannot do at all, such as explosive detection and carrying out the danger 

assessment instead of people doing them. The other use of the robot is in the medical field, especially 

in modern medicine for the monitoring of the spreading of viruses and infections that threaten human 

lives. A recent example is a COVID-19 pandemic and the associated restrictions; all these things 

make the robot helpful for human life. Nowadays, advanced mobile robots are becoming self-driving 

(autonomous) regardless of how they are moved (humanized, wheeled, or aerial). For robot 

automation, it must know the environment, understand the map of the environment, and locate its 

position on the map to make the correct decision on where to go in the next move[1]. To make robots 

do this complex step, algorithms were provided by researchers to achieve the process of localization 

and mapping. Autonomous mobile robots also depend on other approaches to move in the 

environment, such as Path Planning and Trajectory algorithms. However, these approaches also need 

the SLAM to understand the surrounding environment; therefore, localization algorithms are the main 

parts of the autonomous robot's systems. 

SLAM stands for simultaneous localization and mapping, where two or more processes are done 

simultaneously. The localization means that position is estimated along with the robot's movement through 

sensors and an environment map. The localization and mapping must be done at the same time. The term SLAM 

contains two steps; the first step (localization) is done using sensing tools such as (camera, LiDAR, Laser Range 

Finder, and IMU). After that, the data are collected from sensors, then combined in the robot system, then the 

algorithm processes the data to estimate the location to make the right decision.  

The second step is map building and locating the robot's current pose on the drawn map. The mapping process 

collects the data from the sensors or visual sensor (camera) to select some of the known locations used as 

anchors in the mapping process and locate the robot pose on the map. Fig 1 shows the General Localization and 

Mapping process. The anchors in the mapping process are called landmarks (such as walls, tables, or signs). The 

localization and mapping are done according to the sensors' data, such as range, bear, or other data. The data can 

be used in triangulation or other methods to estimate the robot's pose and its pose on the map. SLAM algorithms 

have solved the problem of localization and mapping, but they are still not accurate [2]. 
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Fig 1. show the general localization and mapping 

 

For this reason, many algorithms have been provided, each with its limitations (advantages and 

drawbacks). Algorithms are also different in the calculations and sensing tools that algorithms work 

with. Some of the approaches are powerful in a static environment, and others work in the dynamic 

environment. There are other properties, such as working in an indoor or outdoor environment. Some 

algorithms employ the visual aspect in the localization process, typically done by a camera (mono or 

stereo), so-called VSLAM [3]. Combining the visual aspect and the sensors makes the algorithms 

more efficient. The other aspect is adding the Inertial Measurements Unit (IMU), also known as 

Inertial Odometry. The IMU and the visual aspect can give good results [4]. This work will address 

algorithms that often work with wheeled mobile robots.  

Some of the previous works face the problem of noise coming from the sensor's readings. The noisy 

readings lead to minor errors, but these small errors get propagated due to the cumulating errors. The 

error becomes significant enough, causing the robot to make wrong decisions for its next step [5]. 

Some algorithms or methods are applied to do the process of error rejection, such as the probabilistic 

methods (Bayesian and others) [6]. 

 

 

2  Sensor and Noise  
 

The common sensors used for localization are LRF, camera, RFID, and Odometry. LiDAR and 

OptiTrack Cameras are used for localizing the robot in a roundabout environment [7]. Camera and 

LiDAR with IMU sensors are also used for pose estimation in a 3D environment [8]. IMU, wheel 

speed, and gyroscope sensors with the help of Kalman Filter as a localization algorithm are used to 

build a pose estimation system [9]. Visual sensor (camera) and the Inertial Odometry (IMU) can be 

combined to achieve accurate localization by Range Focused Fusion algorithm [10]. Most robotic 

projects use sensors for the localization and mapping of mobile robots. UAVs (Unmanned Aerial 

vehicles) also use the same sensors with the addition of an Ultra Wide Band sensor or Satellite image 

as proposed in the work by [11]. 

Moreover, Under Water robots use the pre-mentioned sensors (Inertial Odometry) and some other 

sensors (infrared, sonar, and ultrasonic) for localization and mapping [12]. SLAM algorithms can 

employ only one of the standard sensors to perform the localization, but the results will not be perfect. 
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For example, the authors in [13] used only a stereo camera as a sensing tool but did not achieve good 

results. 

 On the other hand, in [14], the authors used LiDAR and Inertial Navigation System, while the authors 

in [15] used a camera and ultrasonic sensor to achieve good results. The type of environment 

sometimes affects the sensor to be used; for instance, in a glass-walled environment, the camera will 

not be as accurate as Laser Range Finders [16, 17]. Figure 2 shows the sensors used in the reviewed 

works. 
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Fig 2. Show the sensors used in the reviewed works 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure (3) taxonomy of sensors used the localization process 

 

3  SLAM Algorithms  

SLAM algorithms vary in their working method, and there are many classifications for these 

algorithms. Some use the Kalman filter as a base for their work, while others use Artificial 

intelligence algorithms to do the computational process; some other algorithms use Statistical 

computations for localization. This paper classifies SLAM algorithms into three main categories: 

Kalman Filter-based, AI-based, and statistical-based algorithms. The listing of the previous work will 

be based on a date, from relatively not old (2015) to the recently published. 

 

3.1 Kalman filter-based approaches  

The computations time and memory consumption are significant in the localization process. Bresson 

et al. [18] proposed an algorithm based on Kalman Filter named MSLAM which is a  linearization-

free algorithm and produces 3D uncertainties in images. The results show that the algorithm achieves 

accurate localization, but there is a problem with losing the landmarks when the illumination is 

changed. 

The 6DoF (degree of freedom) visual SLAM with Extended Kalman Filter (EKF) was proposed by 

[19], and named StrcutSLAM. The algorithm depends on the building's structure lines to cope with 

the lack of point features in the environment. The results show good positioning and orientation in the 

localization process. As a weakness, the algorithm also treats some buildings' structure lines as 

outliers and the duplication of lines caused by the threshold value.  

Robotica (robot factory) is an example of mobile robots' industrial application. The factory depends 

on robots to do some tasks, but the robots face a problem with the dynamic environment and the 

obstacles that may intercept the robot path. The authors in [20] used an algorithm named Perfect 

Match (PM) with the help of the Extended Kalman Filter (EKF)  to solve the problem of path 

interception. The proposed method reduced the error between the measured and expected distances, 

and the experiments show promising results in localization and path drawing. 

The static environment in the real world is not as it is assumed to be as there is always a dynamic 

scene. Therefore, Evers & Naylor [21] proposed an algorithm called Generalized Motion SLAM 
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(GEM-SLAM) which is based on a probability density filter that makes use of (EKF) equations. The 

performance of GEM-SLAM was better than that of the SC-PHD filter, RB-PHD filter, and 

FastSLAM.. 

The heavy computations in FastSLAM algorithms increase the difficulty in the estimation accuracy of  

SLAM. Luo & Qin combined two algorithms - Box-PF (Statistical-based) and extended interval 

Kalman filter (EIKF) (Kalman filter-based), to solve the accuracy estimation problem [22]. The 

results show that the method can reduce the computational requirements and eliminate noise 

compared to FastSLAM. 

Extended Kalman Filter is one of the earliest SLAM algorithms; however, with the development of 

new SLAM algorithms, it still has issues with the noises. An improvement for (EKF) (Kalman Filter 

based) based on Fuzzy logic and laser matching to enhance the pose prediction was proposed by [23]. 

The results show an improvement in the accuracy of the proposed method compared to the standard 

EKF. However, the method needs to be compared with other new algorithms. 

Obstacles avoidance during the navigation of mobile robots depends on the accuracy of the SLAM 

algorithm used. Active SLAM is used with graph topology to enhance obstacle avoidance [24]. As a 

result, a collision-free trajectory can achieve good performance but the real-time experiment needs to 

be enhanced.  

The changes in the environment affect the robot's path; this can help detect older people's activity. 

Authors in [25] proposed a method for taking care of older people by robots. The method used the 

EKF and wall-following algorithm with IoT to monitor the older people in real-time. According to the 

results, the robot works well for older adults with a good map and the best route selection. 

External sensors are susceptible to noise from the surrounding environment, such as LiDAR, which is 

affected by light and dynamic objects. Graph-based Unscented Kalman Filter algorithm in [26] used  

IMU, RGBD camera, and LiDAR to reduce the noise. The experimental results show that the 

proposed method is more efficient than the Cartographer algorithm. However, the proposed algorithm 

needs more comparisons with other algorithms. 

Robot systems can work independently with their platforms by embedding the localization algorithm 

in the system. The goal will be to reduce the computation complexity to put the SLAM algorithm in 

the robot system. Authors in [27] implemented the MonoSLAM E.K.F. algorithm in the robot 

platform using OpenCL. The algorithms are executed entirely on the robot and without any computer 

help. 

Combining modern technologies with a relatively old algorithm enhances the algorithm's work. For 

example, the Hololens (augmented reality device) is combined with EKF SLAM algorithms by the 

authors [28] to minimize the error of the EKF algorithm. The results show that the new method 

reduced the calculations and constructed good maps. The future of this work is to use IoT 

infrastructure for energy reduction..  

There are issues with localization using RFID and one of them is that UHF RFID does not allow the 

range estimation between reader and tag. The authors in [29] proposed a UHF RFID method with 

Multi-hypotheses Kalman Filter (MHKF) to solve the problem mentioned above. The efficiency of the 

method was proved in the experiment, and it can be applied in path planning and localization but 

should be tested first for complex environment localization 

In real-time localization, the feature points extracted may arrive late at the robot processor, and new 

features are extracted; as a result, the robot location will be different from the late extracted features. 

The authors in [30] proposed an Extended Kalman Filter method that uses every single laser scan to 
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make matrices of EKF smaller. Experiments in complex environments show good results and reduced 

computations. For a more accurate SLAM, IMU should be added to the method. 

Path planning of industrial mobile robots is based on accurate SLAM. Authors in [7] proposed a 

method to improve the Extended Kalman Filter, and this is done by performing the linearization on 

the last estimation instead of intermediate estimation. The results demonstrate the robustness of the 

proposed method, and a suggestion to perform the method on different types of robots. 

Landmarks observation is important to any SLAM algorithm because it helps pose estimation. From a 

geometric sight, the authors in [31] proposed a method based on the SLAM State-Space principle to 

get a bundle of landmarks. The results show decreasing cost of computations and memory 

requirements much lower than the EKF SLAM algorithm. Table 1 compares the above-mentioned 

Kalman filter algorithms' main features 

 

 

 

 

 

 

Table 1 comparison between Kalman based localization algorithms 

 

id Author name Algorithm Environment 

type 

Accuracy CPU time or 

(speed) 

Work type 

1 [18] MSLAM Outdoor - 

large scale  

~3.5(m) deviation in 

200(m) trajectory  

No  Simulation and 

Real-experiment 

2 [19] StrcutSLAM Indoor - large-

Scale 

0.797(m) error for 

distance  

0.012(rad) for Yaw 

(774 m) 

No Simulation and 

Real-experiment 

3 [20] Extended 

Kalman Filter 

(EKF) 

Indoor - 

dynamic 

industrial 

environment 

~3 (cm) in 288 (cm) 

trajectory  

From 30 (ms) 

To 1 (ms) 

decreases 

during runs 

 

Simulation and 

Real-experiment 

4 [22] extended 

interval 

Kalman filter 

(EIKF) 

Indoor  For noise level 

(0.6m,4o) RMSE was 

0.3m  

0.573(s) & 

number of 

particles is 100 

Simulation and 

Real-experiment 

5 [21] GEM-SLAM Dynamic (or 

unknown) 

Localization 96.54%, 

feature map 96.54% 

No Simulation  

6 [23] Extended 

Kalman Filter 

Underground 

Mine 

environment  

accuracy of y-

direction 53.8% 

φ-direction 60.9%  

compared with the 

standard EKF 

No Simulation 

7 [24] Active SLAM unknown 

environment 

and indoor 

environment 

~ 0.2(m) in 5x5 (m) 

indoor trajectory  

0.7 (s) Simulation and 

real-experiment  
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3.2 Statistical-based approaches  

Dual-sensor-based Victor SLAM (DV-SLAM) algorithm was proposed to solve the problem of the 

measurements that come from fixed heading which will be ambiguous in the SLAM process [32]. The 

algorithm adopts RBPF (Rao-Blackwellized Particle Filter) and measures the vector field signals by 

two sensors in a specific location on the robot. Experimental results show improved accuracy of 

SLAM and increased loop closing ability (indoor). The algorithms still have disadvantages for the 

outdoor environment due to the reliance on the Earth's magnetic field sensors. 

Khan et al. [33] provided an approach to make use of the laser's intensities data in the SLAM 

algorithms. HectorSLAM algorithm and laser intensities data can recognize the material surfaces by 

the reflection of the laser on the material surfaces. Moreover, the author uses this approach in pose 

estimation (near a wall, near a door). The method achieved accurate localization and acquired an 

excellent geometrical model in the indoor environment. Luminanceance will limit the laser reflection 

to the objects in open places for use in outdoor environments.  

GraphSLAM based on LiDAR was used to minimize the significant errors that come from the noisy 

measurements 2D axis mapping [34]. The results of the 2D Map Axis were accurate in mining drift 

and indoor environments, but the algorithm needs more tests in an outdoor environment.. 

Buildings nowadays are not only made up of concrete or wood as glass panels have become the 

modern interface of new world buildings. The glass reduces the rangefinder localization's accuracy; 

Hence, Wang et al.[17] proposed the use of the GMapping SLAM algorithm to exploit the light 

reflection on the glasses to complete the localization process. About 95% of glass panels have been 

detected by the method in experiments in real-time, but not all types can be detected, such as mirrors. 

8 [25] EKF (with 

wall following 

algorithm) 

indoor 

environment  

~ 30 (cm) maximum 

far from corner of the 

walls  

10 (s) for 43 

(cm) trajectory 

Simulation and 

real-experiment 

9 [26] Unscented 

Kalman Filter 

Indoor - large-

Scale 

0.2 (m) error in 8x10 

(m) trajectory 

No Simulation and 

real-experiment 

10 [27] MonoSLAM 

E.K.F. 

unknown 

environment 

The mean error of 

trajectory 0.31 (cm) 

Average 

processing time 

17.5 (ms) per 

frame. 

Implementation 

on OpenCL 

11 [29] Multi-

hypotheses 

Kalman Filter 

(MHKF) 

unknown 

environment 

When the noise is 

0.01 cm, the positing 

error is 1(cm) of 40 

(cm)  

 Simulation  

12 [30] Extended 

Kalman Filter 

unstructured 

outdoor 

environment 

0.24–0.42% of 

position error and 

0.078–0.141 deg/m of 

orientation error in 

localization 

approximately 

0.1 m/s. 

Simulation and 

real-experiment 

13 [7] Extended 

Kalman Filter 

unstructured 

environment. 

~0.3 rad (for rotation) 

and 0.1 for the path 

Robot speed 1 

(m/s) 

Simulation and 

real-experiment 

14 [31] SLAM State-

Space 

principle 

Dynamic 

environment 

~0.3 m error in 

trajectory 5x5 m 

 Simulation 
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SLAM algorithms based on particle filter (PF) are ubiquitous, but there is a problem in particle 

degeneracy, like Box-PF. To enhance the algorithm and reduce the computational load, the authors in 

[5] proposed an algorithm that uses Ball-PF instead of Box-PF. The comparison between the proposed 

method, Box-PF, and RBPF shows that Ball-PF is more accurate than the others. For better results, 

the probability density functions must be selected by the author for the Ball-PF SLAM algorithm 

which is a statistical-based method. 

Multi-moving objects (dynamic environment) form a problem for SLAM algorithms. A method for 

multi-target tracing coupled with the SLAM algorithm was proposed by [35]. The system detects and 

traces moving objects (DATMO) with RANSAC (SLAM algorithm). The method's effectiveness in a 

challenging environment was confirmed in the experiments.  

Embedding SLAM algorithms in the mobile robot may be affected by large and complex 

computations. To increase the speed of the SLAM process, Yan et al. [36]  proposed PF-SLAM which 

combines two SLAM methods, Particle Filter and FastSLAM. The proposed method increased the 

response time, and obstacles were quickly avoided in the dynamic environment during the robot 

navigation. The researchers compared FastSLAM to some of the previous works and found that this 

algorithm can be improved for better performance. 

The authors in[37] proposed a method to enhance the FastSLAM algorithm which involves 

resampling. A square root filter was added to the improved FastSLAM (Statistical based). A 

comparison of the new approach to two editions of FastSLAM (SRUFastSLAM and 

STSRCDFastSLAM) showed that IFastSLAM achieved better accuracy than the others, but it needs 

to be optimized for real-time application. 

Demim et al.[38] proposed an algorithm for localization to make the Unmanned Ground Vehicle 

(UGV) perform localization accurately. The proposed method, Adaptive Smooth Variable Structure 

Filter (ASVSF), is an extended form of the SVSF algorithm to improve the algorithm's performance. 

The results proved the enhancement of the performance and the computation time compared to the 

standard SVSF. 

Sonar transmitters can be used instead of range finders for position estimation in a mobile robot. 

Normal Distribution Transformation (NDT) algorithm with a sonar sensor has been proposed by [39] 

for indoor navigation. The results of the experiments proved the efficiency of the proposed method for 

indoor environment localization. 

Particles are used to describe robot state at a time instead of parametric values. These particles are 

used in the FastSLAM algorithm and degrade in the process of SLAM. Improving FastSLAM through 

variance reduction will increase the number of effective particles [40]. Experimental results 

demonstrate the efficiency of growing particles by this method, which leads to accurate SLAM. 

Objects and robot locations are necessary to navigate a specific task using the map. Omni-directional 

means receiving signals from all directions and the tool for doing this is LiDAR. The authors in [41] 

proposed a method for SLAM using HectorSLAM (Statistical based) algorithm that relies on scan 

matching of LiDAR data. The algorithm achieved automatic navigation and map building in the 

experiments. However, the map should be 3D to realize Omni-directionality. 

SLAM algorithms based on Particle Filters suffer from the degradation of particles, affecting pose 

estimation. A novel Opposition High Dimensional Algorithm (OHDA) for particle filter improvement 

was proposed by [42]. The method can complete pose estimation and map building. Experiments 

show that the proposed method performed better than the other recently proposed algorithm with 

lower error values.  
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Giannelos et al.[43] revisited the use of a Particle Filter with an RFID localization system and 

proposed a new method to improve the (PF) approach. The proposed method is Robust-Distance 

Particle Filtering (RDPF) with RFID in which a weight metric was introduced for particles and 

measurements. The new method achieved high performance even with multipath and 3D localization. 

The problems of the current SLAM algorithms are two factors, measurements of occupancy grid-map 

and the estimation of position online. The author in [44]. proposed B-Spline SLAM to address these 

problems. Basis-Spline is a spline function with minimal support respecting a given smoothness, 

degree, and domain partition. Evaluations show that the proposed method constructs an accurate map 

without floating-point measurements. 

 Table 2 summarizes the comparison between the main localization features of the above-mentioned 

statistical algorithms. 

 

 

Table 2  comparison between statistical-based localization

 

Id Author name Algorithm Environment 

type 

Accuracy (Error) CPU time or  

(speed) 

Type of work 

1 [32] DV-SLAM Indoor 

environment 

Path error ~0.25(m) 

in 5x6 trajectory 

N/A Simulation 

and real-

experiment 

2 [33] HectorSLAM Indoor 

environment 

Error in the path 

~0.3 (m) in 5x5 

trajectory  

N/A Experiment  

3 [34] GraphSLAM indoor, outdoor, 

and 

underground 

environments 

Error ~1(m) in 

Beamish-Munro 

Hall 40x30 (m) 

And ~10(m) in 

1.3(km) path 

N/A Simulation 

and real-

experiment 

4  [17] GMapping Indoor 

environment 

(glass detection) 

Glass detection 

~95%. And the 

error is 0.5 (m) 

N/A Experiment 

5  [5] (Ball-PF) SLAM Indoor 

environment 

Error about ~4(m) 

in 200x250 (m) 

trajectory 

For (50) particles 

98.20 (s) as 

average 

Simulation 

and real-

experiment 

6 [35] (DATMO) with 

RANSAC 

dynamic 

environment 

Error in the path 

~1(m) in 50x50 (m) 

trajectory  

150 cm/s. the 

speed of robot 

travel 

Simulation 

and real-

experiment 

7  [36] Particle Filter& 

FastSLAM 

dynamic 

environment 

Error ratio about 

~0.05% on the path 

N/A Simulation 

and real-

experiment 
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3.3 Artificial intelligence-based approaches 

The authors in[45] had explained the sensors embedded in SLAM systems due to their importance, 

especially the Fuzzy logic-based SLAM. Scholars have shown that RGB-D cameras are preferred in 

building 3D maps with the depth channel, which is helpful to estimate distance. 

The navigation of mobile robots consists of two processes, SLAM and Path Planning, to travel from 

point to point. Jajulwar et al.[46] proposed a method for SLAM and obstacle avoiding controllers 

based on Fuzzy logic. The method selects the shortest path to reach the destination. Experiments and 

simulations show that the proposed method performed as expected. 

Landmarks are essential when using camera vision to make triangular localization. To make global 

localization with an accumulative error from noisy measurements, the authors in  [47] proposed FAST 

& SIFT (algorithms in image matching) with triangulation to complete the localization. The results 

show the similarity between the actual route and the experimental route. The localization was feasible, 

but the algorithm depends on the corners of the ceil of the buildings; if there are no such feature 

points, that will lead to errors. 

Navigation in the environment can be done using fuzzy navigation based on visual sensors or fuzzy 

navigation based on infrared sensors. When there is no information about the environment, the 

proposed method by [48] can achieve good results based on fuzzy logic specifications. The algorithm 

also needs to be tested in a complex environment. 

8 [37] IFastSLAM Under-water 

large-scale 

environment 

~0.4 (m) error in 

20x20 trajectory 

The number of 

particles 30 and 

(RMSE) is 

0.4(m). CPU 

time is 83 (s) 

Simulation 

and real-

experiment 

9 [38] Adaptive 

Smooth Variable 

Structure Filter  

dynamic 

environment 

Error ~0.7(m) in 

6x5 trajectory  

N/A Simulation 

and real-

experiment 

10  [39] Normal 

Distribution 

Transformation 

Indoor - large-

Scale 

~0.19 (m) error in 

2x2 (m) trajectory  

N/A Simulation 

and real-

experiment 

11  [40] improve 

FastSLAM 

unknown 

underwater 

environment 

Error about ~ 5(m) 

in 200 (m) 

trajectory 

100 particles  Simulation 

and real-

experiment 

12 Rivai et al. 

[41] 

HectorSLAM Unknown 

indoor-

environment 

Localization 

Average error is 

1.1%. mapping 

average error is 

5.32% 

N/A real-

experiment 

13 [42] Opposition High 

Dimensional 

Algorithm 

5 simulated 

environments  

~2(m) in 80x90 (m) 

simulated 

environment 

100 particles 

431(s) and error 

about 0.73 

Simulation 

and real-

experiment 

14 [43] Robust-Distance 

Particle Filtering 

indoor 

environment. 

~5% error in the 

trajectory  

N/A real-

experiment 
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The uncertainty caused by the noisy readings from sensors for the vision-based robot (UAV) needs to 

be handled. Hence, the authors in [49] proposed a Non-Singleton Fuzzy Logic algorithm for SLAM 

that control the robot by handling the uncertainty. Experiments show that the new controller achieves 

better performance than the conventional PID controller.  

Aerial robots or UAV (Unmanned Aerial Vehicle) has a problem coping with the spherical shell 

uniform distribution. The manipulation in (EKF) (Kalman Filter based) algorithm with the use of 

Gaussian Mixture Model (G.M.M.) (Fuzzy logic) can solve the problem as proposed by [50]. The 

reduction of parameterization and the observation of unnecessary landmarks improve the efficiency of 

the proposed method. Experiments show improvements in the correction stage of EKF only using 

radio-based range sensors.  

In a narrow area, images will degrade, causing a pose estimation difficulty. VSLAM with feature 

matching method with the help of Inertial-Measurement Unit (IMU). Chen et al.[51] proposed a 

method called STCM-SLAM that uses tiling lines to extract image features. The performance of the 

approach compared to ORB-SLAM2 and OKVIS showed that the proposed method performed better. 

However, the method should be tested in dark and narrow places.  

The dynamic objects decrease the traditional algorithms' performance due to the inference that 

happens when these objects intercept the robot's path. To treat better with dynamic objects, Dynamic-

SLAM based on the ORB-SLAM2 algorithm was proposed by [52], by adding the SSD component. A 

deep learning-based object detector was also added to detect dynamic objects. The new method's 

accuracy was higher than that of ORB-SLAM2, PTAM, SVO, and LSD-SLAM as it achieved better 

dynamic object detection. However, the method needs more tests in more complex environments. 

VSLAM compatibility with Robot Operating System (ROS) is crucial because some algorithms 

consume more CPU and GPU resources. Hence, Giubilato et al.[53] evaluated ORB-SLAM2, 

SPTAM, and RTAB-MAP by comparing their performance and the benefits of applying histogram 

normalization. ORB-SLAM2 and RTAB-MAP achieved the best performance in the test. However, 

the study recommended the inclusion of GPU in the experiment by editing the algorithms. 

Most environments in the real world combine static and dynamic objects, which degrade SLAM 

algorithms' performance. To make robots recognize dynamic and static objects, the sparse motion 

removal (SMR) algorithm which is based on Bayesian networks has been proposed by [54]. In the 

algorithm, dynamic regions are eliminated, and static regions are fed into the VSLAM system. The 

results proved the method's efficiency, but the experiment needed to be performed in the real world. 

Recognition of places is helpful in VSLAM algorithms because it makes the robot know where it is. 

To make SLAM algorithms recognize and store the knowledge about some places, the Neurologically 

Inspired approach was by [55] based on CNN. The approach worked with the localization algorithms 

to achieve good results, and the experiments proved the efficiency of the proposed method. 

The problems in SLAM algorithms, such as consuming time and computation resources, trajectory 

drift, and the high cost of long-range LiDARs limit localization accuracy. For these reasons, ORB2 

RGBD-SLAM is an improvement of ORB RGBD-SLAM proposed by [56] in which location 

estimation is done by a 3D camera instead of LiDAR to make the camera do a Virtual laser scan. 

Evaluations showed an improvement in the accuracy of the approach as it recorded small error ranges. 

However, the method should be tested outdoor to prove the image feature extraction. 

When using laser sensor vision with IMU, errors are possible, especially when taking motion with 

significant angle changes. The problem can be solved by using RCNN (Recurrent Convolutional 

Neural Networks) using a 2D laser and IMU [57]. The enhancement can be a 3D laser with geometric 
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methods. The results appeared with efficient pose estimation even with angular velocity compared 

with the traditional geometrical methods. 

SLAM algorithms' accuracy issues can be solved by reducing the error in each step. Unscented 

Kalman Filter (UKF) with hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) was proposed for 

solving the issue of accuracy and landmarks state estimation [58]. The method was tested in complex 

and circular environments, and the results showed better accuracy due to error minimization in each 

step. 

Automation of mobile robots depends not just on the SLAM algorithm, but there is a need for an 

algorithm to control the robot and avoid obstacles. Wang et al. [59] presented a method for the 

autonomous navigation of mobile robots. The method uses Particle Filter (PF) as a SLAM algorithm 

and Victor Field Histogram (VFH) (Fuzzy logic) for obstacle avoidance. The proposed method can 

reduce localization and SLAM errors according to the MATLAB simulation. Nevertheless, the 

method still needs to be tested on a real robot. 

The authors in[60] proposed a system for mobile robot indoor navigation and collision-free path 

planning. The system uses an RGBD sensor and Probabilistic Road Map (PRM) algorithm (Fuzzy 

logic). The SLAM process is completed by the RGBD SLAM algorithm, and then, the map is 

converted to the Octo-Map algorithm to construct the map. The results show good indoor navigation 

performance, but the map constructed by the method was not good. 

In large-scale dynamic environments, the accuracy and speed of the localization system get weakened 

due to the difficulty of treating dynamic objects in a large environment. Li et al. [61] proposed 

semantic segmentation of the image with the image morphology to process colored images and 

enhance pose estimation. The experiments showed a high-quality map represented by the algorithm 

and high SLAM accuracy. 

The optimal path of mobile robots saves time and power; hence, achieving the optimum path was the 

goal of the algorithm proposed by [62]. The Hybrid Meta-Heuristic method combines Particle Swarm 

Optimization and Fringe Search algorithm (PSOFS). The results showed the ability of PSOFS to 

shorten, smooth, and save paths in an indoor environment. 

Inertial Measurement Unit (e.g., wheel speed) is helpful in pose estimation; it is used with visual 

aspects to form Visual inertial SLAM. This measurement affects pose estimation; hence, Peng et al. 

[63] propose a method that depends on Monocular-inertial SLAM (Mono camera and Inertial 

Odometry). The results showed good indoor pose estimation, but the cumulative position error is 

0.165 m (28 %). The computation of methods done by the nonlinear optimization method depends on 

the posterior probability (AI-based). 

The presence of noise prevents the enhancement of an Extended Kalman Filter for real-time 

applications. Hence, Adaptive Extended Kalman Filter (AEKF) algorithm that uses Maximum 

Likelihood Estimation-Expectation Maximization (Fuzzy logic) MLE-EM was proposed by [64]. The 

results show that the method can be used when noise statics are unknown and there is system 

inaccuracy. 

Tracking failure in VSLAM comes from the inability of the camera to detect image features because 

of the camera speed motion or low texture environment, or both. Hence, the authors in [65] proposed 

a method for VSLAM with bionic stereo cameras that can move flexibly with 3DoF. The method uses 

a Bundle Adjustment algorithm and the bionic eye to prevent tracking failure as proved in the 

experiments. However, the performance on dynamic and static objects was not determined.  

In VSLAM, the drift of pose estimation comes from feature point tracking failure, especially with 

dynamic objects. As such, the author in [66]. proposed a method based on Semantic Segmentation 
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with geometric constraint and Visual Inertial SLAM Mono (VINS-Mono). Indoor experimental 

results showed accuracy improvement, but outdoor results were not good. 

Indoor environments consist mainly of walls and objects that can be considered landmarks for the 

localization process. The author in [67] proposed a method to make the usability of these landmarks in 

data association. The method is Semantic SLAM (RoomSLAM) which (AI-based) comes with an 

objects detector and walls detector. The results were compared to RGBDSLAM and the proposed 

method performed better. 

The SLAM algorithms can be used off-road to estimate the position of the intelligent vehicles for 

auto-driven cars. Using a Mono camera may not be sufficient outdoor due to differences in image 

light or other parameters. Hence, Yang et al. [68]  proposed a method with panoramic vision using 

multiple cameras that collaborate to share information of vision; the BA algorithm was also 

incorporated for localization. The results of the method are better than those of ORB SLAM and 

Multi-col SLAM. 

SLAM algorithms make robots to percept their environment, and the perceptions need to be increased 

by increasing robot intelligence. ORB SLAM2 was improved in [69] to construct a 3D semantic map 

with semantic segmentation (AI). The proposed method was examined in the experiments and showed 

stability of pose estimation even with a low light scene. However, the semantic segmentation method 

needs more improvement. 

Monocular VSLAM can be affected by the motion of the robot (velocity, sharp turning, and others) or 

challenging environments such as light and dark. Bruno et al. [70] proposed an algorithm combining 

Deep Neural Networks (DNN) and geometric VSLAM algorithms and called it Learned Invariant 

Feature Transformation (LIFT-SLAM). The efficiency of the new LIFT-SLAM was evaluated in both 

indoor and outdoor experiments, and the selected features were not the best in the image. 

Visual odometry with a monocular camera gives poor performance and sometimes does not work in 

complex environments. VO is used with Deep Learning Neural Networks and a 6DoF Mono camera 

to build a navigation system [71]. The results showed that the proposed system is better than 

traditional methods but the camera movement may decrease the speed of localization. 

Robots need SLAM algorithms to do their tasks perfectly; hence, Parra et al.  [72] proposed and 

implemented an approach to do thermal insulation in underfloor voids by using an RGB-D sensor, 

laser scanner, and Point Cloud algorithm. Pose estimation was calculated by combining both laser 

scanner and RGB-D sensor data. The results showed successful position estimation compared to ICP, 

CPD, and NDT. 

To present a heterogeneous system consisting of different sensors that prevent these sensors from 

falling over during the SLAM process, the authors in [6] proposed a method that represents a 

relationship between sensors using Bayesian Network with fuzzy logic. The experiments showed the 

efficiency of the proposed method and its better performance compared to an existing method in terms 

of enhancing the sensory system.. 

Sometimes, multi-robots are needed for a specific task; if the computation sources are costly, there is 

a need for a method to minimize the cost. Hence, Li et al. [73]  proposed an approach for offloading 

cloud point computations with the help of RGBD-SLAM and modifying the ICP algorithm to 

FSHICP (Fitness Score Hierarchical Iterative Closest Point). Experiments showed decreases in the 

energy consumption of indoor multi-robot SLAM. 

The authors in [74] reviewed the state-of-art VSLAM algorithms that use Artificial intelligence as a 

base for their work. The algorithms use neural networks like CNN, RNN, SIFT, and other algorithms 
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that employ fuzzy logic. The study concluded that this field is helpful in SLAM and navigation 

algorithms.  

Key frame-based SLAM algorithms have a problem of losing feature points of visual odometry. 

Therefore, ORB SLAM with Affine transformation was proposed in [75] to extract features of robot 

vision. A mathematical affine transformation then follows using Affine-ORB SLAM. The 

experiments showed a reduction in key-frame loss and high accuracy of localization. The method 

needs to increase the real-time accuracy by adding a laser sensor. 

Path planning algorithms come after SLAM algorithms for the construction of the map of the 

environment. As such, the authors in [76] proposed a novel method for path planning in a global 

environment using a Generalized Laser Simulator (GLS) algorithm. Observed points are used to 

determine the barrier between the points through the border detection function. The proposed method 

proved its ability to find the optimal path in perfect time compared to the A* algorithm. However, the 

algorithm should be tested to find the local path with obstacle avoidance. 

The noise from sensor readings is confused with the robot estimation in SLAM or task that depends 

on sensors. Ali et al. [77] proposed a novel algorithm for Active Force Control of a wheeled mobile 

robot named Laser Simulator Logic (LSL)(AI-based). The proposed method can determine the inertia 

moment during the robot trajectory, and the method can quickly eliminate noise from the sensor. 

Experiments show that the method effectively controlled the robot even in a zigzag circular 

environment and efficiently performed against noisy readings.  

The difficulty of detecting and tracing dynamic objects in a static environment can impair VSLAM 

algorithm performance. ORB-SLAM2 with object detection algorithm based on Deep Learning with a 

probability model was proposed in [78] for reducing tracking errors; the experiments showed the 

method recorded better performance than RGB-D SLAM. Deep learning unsupervised and supervised 

should be specified to decide which is better to use with the method. 

The Deep Learning VSLAM algorithm was proposed in [79] with Convolutional Neural Networks 

(CNN) to extract feature points. The feature points are hard to extract in texture-less environments, 

and feature point detection is helpful for pose estimation. The method proved to be efficient in real-

time and can construct a 3D map. However, the real-time run comparison to the traditional algorithms 

is still insufficient. 

Panoramic cameras with IMU were combined to trace wheeled mobile robots and construct the local 

map as proposed in [80]. The proposed method is PIW SLAM and can achieve high accuracy 

localization in all scenarios which are considered a challenge for traditional VSLAM. The results 

showed the robustness and high accuracy SLAM of the proposed method, indoor or outdoor, even 

with low light (low illumination). 

Feature-based algorithms like RGB-D SLAM always cope weakly with dynamic objects in an 

environment assumed to be static. The DP-SLAM proposed by [81]. uses semantic segmentation and 

Bayesian probability theorem to detect the dynamic key points and pose estimation. The results 

demonstrate the performance of the proposed method, however, the motion removal is not good 

enough for map construction. 

An unknown environment sometimes needs to be represented in a 3D map in SLAM, but this is not 

easy. To solve this problem, Kuo et al.[82] proposed the use of Virtual Reality VR to percept 3D 

maps from a 2D display. SLAM-based VR(AI-based) uses an RGB-D camera to scan the environment 

in real-time experiments. The results showed an error ratio reduced by the new method. However, the 

system should be equipped with other sensors. 
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FastSLAM algorithm, which is based on particles, gets degraded due to the impairment of particles. 

This time, the solution to the problem comes with Hybrid Filter SLAM that uses Intuitionistic Fuzzy 

Logic System (IFLS) [83]. The proposed method increases accuracy by controlling the noise 

covariance matrix. The results proved that the proposed method performed better than FastSLAM for 

large environments. 

The authors in [84] proposed an approach for SLAM with LiDAR with a low sampling rate, and at the 

start of each SLAM iteration, Relative Directional Neighbor Matching (RDNM) is applied. The 

proposed method depends on Point Set Registration (PSR) to solve the measurements' problem that 

can give different potentially significant position that changes the results. The experiments 

demonstrated the efficiency of the proposed method in solving the problem. 

For robots to perform agricultural tasks in addition to industrial tasks, the authors in [15] proposed a 

robot system for fruit pick-up based on vision. The robot arm is 6DoF and equipped with a camera in 

hand. Localization is done by ORB-SLAM3 (AI-based) with a Stereo vision camera. The results 

demonstrated the SLAM accuracy of the proposed system. The AI-based localization algorithms can 

be classified based on the number of cited papers as shown in Fig. 4. Table 3 summarizes the 

comparison between the main localization features of the AI mentioned above algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3  comparison between AI-based localization 

 

id Author name  Algorithm  Environment 

type  

Accuracy (error) CPU time 

(speed) 

Type of 

work 

1 [46] Fuzzy logic indoor 

environment 

  Simulation  

2 [47] FAST & SIFT indoor 

environment 

~25(cm) in 

500x250 (cm) 

trajectory  

 real-

experiment 

Fig 4. Show the classifications of AI-based algorithms 
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3 [48] fuzzy navigation 

based on 

infrared sensors 

indoor 

environment 

~9(cm) error in 

100x50 (cm) 

navigation 

 Simulation 

4 [49] Non-Singleton 

Fuzzy Logic 

Indoor unknown 

environment 

~0.3 (m) error in 

the path of 

3x3(m) trajectory  

Speed 2m/s. real-

experiment 

5 [50] Gaussian 

Mixture Model 

(GMM) 

indoor 

environments 

localization error 

is 0.54(m) 

mapping error is 

0.58 (m)  

3000(ms) when 

using 50 beacons  

Simulation 

and real-

experiment 

6  [51] STCM-SLAM indoor unknown 

environment 

absolute trajectory 

error 0.008m  

36.07(H) 

performance and 

CPU load is 

~40% 

Simulation 

and real-

experiment 

7  [52] Dynamic-

SLAM based on 

ORB-SLAM2 

Dynamic 

environment 

~1.25(m) path 

error 40x45(m) 

trajectory  

38 (s) for 

complete 

trajectory  

real-

experiment 

8 [53] ORB-SLAM2, 

SPTAM, and 

RTAB-MAP 

comparison  

unknown 

environment 

ORB-SLAM2 

error (~0.3m). 

SPTAM (0.5 m). 

(0.45) for RTAB-

MAP 

CPU usage ORB-

SLAM2 (85%). 

SPTAM (98%). 

RTAB-MAP 

(98%) 

real-

experiment 

9 [54] Bayesian 

networks 

Dynamic 

environment 

Error for 

2x1.5(m) 

trajectory is 0.1 

(m) 

 real-

experiment 

10 [55] The 

neurologically 

Inspired 

approach is 

based on (CNN) 

Null >3 (m) in place 

with area 700(m) 

 Simulation 

and real-

experiment 

11  [56] ORB-SLAM indoor large-scale 

environment 

0.05(m) error  5(s) real-

experiment 

12  [57] RCNN 

(Recurrent 

Convolutional 

Neural 

Networks) 

indoor 

environment 

Error in the path 

~2(m) in 

30x30(m) 

trajectory  

 Simulation 

and real-

experiment 

13 [58] (UKF.)with 

Adaptive 

Neuro-Fuzzy 

Interface 

System 

unknown 

environment 

mean square error 

is 0.0480(m) 

 Simulation 

14 [59] Victor Field 

Histogram 

(VFH) 

unknown 

environment 

Path error is 

~0.25(m) in 

10x10 (m) path 

 Simulation 
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15 [60] Probabilistic 

Road Map 

(PRM) 

indoor 

environment 

 2.82(s) for path 

(5.97m) 

 

 

16 

 [61] semantic 

segmentation of 

the image 

dynamic indoor 

environment 

Path error 

~0.05(m) in 

2.5x1.5(m) 

trajectory 

detect dynamic 

object in (56) ms 

real-

experiment 

17 [62]. Particle Swarm 

Optimization 

and Fringe 

Search 

Unknown Indoor 

Environment 

0.53 the 

smoothness of the 

path  

 real-

experiment 

18 [63] Monocular-

inertial SLAM 

indoor 

environment 

cumulative 

position error 

~0.165 m. 

the runtime is 

896.3 s 

15 m ×15 m 

real-

experiment 

19 [64] Adaptive 

Extended 

Kalman Filter 

with MLE-EM 

Null Path error 

~15(cm) in 

500x600(cm) 

trajectory 

 Simulation 

20  [65] Bundle 

Adjustment 

indoor low-

textured and 

large-scale 

outdoor 

environment 

LATERALLY 

error 0.129(m), 

VERTICALLY 

0.033(m) 

 real-

experiment 

21 [66] Visual Inertial 

SLAM Mono & 

Semantic 

Segmentation 

Dynamic 

environment 

(indoor and 

outdoor) 

Path error about 

~6(m) in 60x60 

(m) of trajectory 

in sequence 23 

422.84 (ms) at 

each step  

real-

experiment 

22 [67] Semantic 

SLAM 

(RoomSLAM) 

indoor 

environment 

~3(m) error in the 

path in 40x40(m) 

trajectory  

 real-

experiment 

23 [68] BA algorithm 

with panoramic 

vision using 

multiple 

cameras 

dynamic off-road 

environment, 

Path error by 

using three 

cameras is ~5(m) 

while using five 

cameras is ~4(m) 

in 60x60(m) 

trajectory 

For five cameras 

and (264 map 

points), the 

median was 

69.745(ms) 

real-

experiment 

24 [69] ORB SLAM2 indoor unknown 

environment 

0.05(m) error 5(s) real-

experiment 

25  [70] Learned 

Invariant 

Feature 

Transformation 

(LIFT-SLAM) 

unknown 

environment 

ATE (m) 18.77.  

RPE (deg/m) 

2.20. 

700x300(m) 

trajectory 

 real-

experiment 

26  [71] VO DL-Hybrid 

with Deep 

Learning Neural 

Networks 

Unknown 

environment  

~20(m) in 

trajectory 

200x700 (m) 

average run time 

per image 

0.021(s)  

Simulations 
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27 [72]  Underfloor  No path or map 

just pose 

estimation 

  

28 [6] Bayesian 

Network 

&fuzzy logic 

indoor 

environment 

 Time is 2(s) in 

1048 inferences 

for different 

network 

configurations. 

Simulation 

and real-

experiment 

29  [73] RGBD-SLAM 

&FSHICP 

indoor 

environment 

0.22 at 30 

iterations (but no 

information about 

the path) 

4510(ms) in 10 

steps  

Simulations 

30  [75] Affine-ORB 

SLAM 

indoor and 

outdoor 

environment 

The median of 

trajectory absolute 

pose error 

0.352(m) 30x30 

(m) 

 real-

experiment 

31  [76] Generalized 

Laser Simulator 

uncertain 

environment  

 ~4(s) to reach the 

goal at the end of 

the path 

Simulation 

32  [77] Laser Simulator 

Logic (LSL) 

constrained 

environment & 

zigzag circular 

environment 

a maximum 

tracking error of 

10-6  

 simulation 

and real-

time 

experiment 

33  [78] ORB-SLAM2 & 

probability 

model 

dynamic 

environment 

0.0752(m) 

Absolute pose 

error in 2x3(m). 

67.08((ms/frame-

1)  

real-

experiment 

34  [79] Deep Learning 

VSLAM& 

(CNN) 

Unknown 

environment 

maximum error is 

0.055(m), 

minimum error is 

0.002 (m) in 

4x4(m) trajectory  

~ 95 (ms) for each 

frame  

real-

experiment 

 

3.4 Multi-Algorithm based Localization and comparisons 

The comparison of three modern SLAM algorithms (TinySLAM, which depends on the Monte Carlo 

method (Statistical-based), GMapping SLAM algorithm that uses Rao-Blackwellized particle filter 

(RBPF) (Statistical-based), and Google Cartographer SLAM (based on AI)) was done by[85]. The 

results showed that Google cartographer has lower error dispersion while TinySLAM has error 

accumulation and GMapping has an asymptotic RMSE value to google cartographer..  

Taketomi et al.[86] provided a survey from 2010 to 2016 of SLAM algorithms to summarize the 

recent VSLAM. They are classified into three classes - feature-based methods (MonoSLAM and 

PTAM), direct methods (DTAM, LSD-SLAM, SVO, and DSO), and RGB-D SLAM.  However, 

MonoSLAM (Kalman Filter based) PTAM (AI-based) which uses bundle adjustment (BA) algorithm) 

was found better than MonoSLAM. The direct methods (DTAM) Ai-based) use the multi-baseline 

stereo to do the mapping. LSD-SLAM, SVO, and DSO are Ai-based, while RGB-D SLAM is Ai-

based. The results showed that PTAM is better than MonoSLAM for the feature-based approaches 
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while DTAM is the best for the direct methods, followed by LSD-SLAM; SVO and DSO can be 

considered spare for DTAM and LSD-SLAM. 

The authors in [87] proposed a method for SLAM and navigation to solve the problem with a network 

of radio sources (Fuzzy logic approach). The method employs RSSI-based EKF-SLAM (Kalman 

Filter based); the errors of SLAM and navigation were satisfactory but the workspace was not big 

enough. 

A brief survey of SLAM algorithms and their classification into collaborative VSLAM, filter-based 

approaches, and key-frame-based approaches was provided in [88]. Surveys are helpful to start 

working on some areas, especially when there are many algorithms in the area. 

SLAM and navigation are needed to make robots navigate and move autonomously and do other 

tasks; most tasks are in dynamic environments. Rehman et al. [89] compared three common SLAM 

algorithms (GMapping (Statistical-based), HectorSLAM (Statistical-based), and Cartographer (Ai-

based) with LiDAR as a laser pointer) for navigation. According to the experiments, the computations 

and memory cost of GMapping are high, grid map's performance increased with HectorSLAM, and 

Cartographer is suitable for indoor environments.  

The object detection process is remarkable in SLAM and navigation to avoid obstacles in the 

environment. The authors in [90] reviewed state-of-art algorithms that use object detection techniques. 

SIFT and SURF, for example, for indoor image-based object detection methods use histograms for 

indoor localization, such as FAST and ORB SLAM. 

SLAM algorithms classifications have many forms according to the main purpose of the algorithm. 

Taheri et al. [91]  ]  classified SLAM algorithms that use filters into Kalman Filter based, tree-filters-

based, information-filters, and particle filters. The study noted that Kalman filters were more accurate 

when there is uncertainty, but they are slow. 

Analyzing different approaches to SLAM and studying the challenges of controlling a robot with 

historical scenarios was the goal of the study [92]. The review classified the methods into probabilistic 

approaches (Markov, Kalman Filter, U.K.F., EKF), evolutionary approaches (PSO, and GA-Fuzzy 

logic-based EKF), and RFID-based approaches. The conclusion was that using EKF in an 

environment with low noise, and the combination of EKF and one of the evolutionary approaches, 

will increase the efficiency of SLAM. Finally, RFID was found to be better for use in limited 

environments. 

The localization algorithms reviewed in this paper can be classified based on the number of cited 

papers, as shown in Fig. 5. 
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Fig 5. The localization algorithms reviewed in this paper basing on the number of cited papers 

4 Conclusion  

This paper reviewed the most recently published works for position estimation of mobile robots 

during Simultaneous Localization and Mapping (SLAM) for the period 2015 to 2021. After reviewing 

previous research, we have categorized the algorithms according to their computational performance 

in the estimation of the location and mapping. Thus, these algorithms have been classified into three 

groups, namely, Kalman Filter, Statistical algorithms, and Artificial Intelligence. We found that 

algorithms based on the Kalman filter are not efficient enough in noise processing and have become 

rarely used in the past years. Statistical-based algorithms are also starting to be neglected but are often 

combined with other methods to improve their performance. The most useful algorithms in statistical 

algorithms are those that depend on particles (particle filters). The AI-based methods have been 

widely used in the past three years because their computational time is low and requires less 

processing than the methods that depend on the Kalman filter. AI-based methods can be further 

classified based on their computations; for example, Fuzzy logic-based algorithms come at the 

forefront of the most used aspect because they deal with noise better than other algorithms; then, there 

are deep learning algorithms and neural networks algorithms. The common sensors used in the 

previous works are camera, IMU, LiDAR, LRF, Ultrasonic, RFID, and wideband work, which are 

varying according to the type of the environment and work. For example, a Camera with IMU is 

mostly used for outdoor environments where the luminance is good, while LiDAR or Laser Range 

Finders performs well when the luminance is low. Some types of environments need a specific type of 

sensor, such as a glass-walled environment that reduces the accuracy of LRF or the underground 

environment, which needs a Laser Scanner (e.g., LiDAR). Despite these, the noise problem is still not 

wholly resolved. Laser Simulator Logic (LSL) algorithms, used in Active Force Control of Mobile 

robots, perform very well against noises. Our future direction will be to use the LSL algorithm in the 

Simultaneous Localization and Mapping of Wheeled Mobile Robots. 
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