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1. INTRODUCTION  

In this research paper, we introduced a soft topological space (briefly STS) (P, ς, T̈) over P with a soft m- structure m 

(P, T̈)  over P to be SMS if m-closure (briefly m-CL) of soft open (O, T̈) is for each SOPS (O, T̈) of (P, ς, T̈) We defined 

numerous characterizations of soft m-extremally disconnected spaces. we will show that minimal extremal 

disconnectedness and soft extremal disconnectedness are independent by giving simple examples. Although, if soft 

minimal structure m(P, T̈) = SO (P, ς, T̈) or SPO (P, ς, T̈), then the mixed space (P, ς, m (P, T̈)) is minimal-extremally 

disconnected for each (P, ς, T̈).  If m(P, T̈)= α (P, ς, T̈), PO (P, ς, T̈) or bO (P, ς, T̈), then (P, ς, m(P, T̈)) is soft minimal-

extremally disconnected for each (P, ς, T̈).  Recently papers have studied few innovative classes of soft sets (briefly ST) 

through soft minimal-structures (briefly SmS). 

2. PRELIMINARIES: 

Let Z is initial universe set and set T̈ is parameters, P(Z) denote the power set of Z. All the way through this paper soft 

set, SOPS soft topological space, soft minimal structure and soft m-extremally disconnected denotes ST, SOPS, STS, 

SmS and SmES respectively. 

Definition 2.1 [17]: Given mapping S: T̈ → P(Z). A pair (S, T̈) is said to be ST over Z. 

So, (S, T̈)  is parameterized family over Z. For all t ∈ T̈, S(t) is the set of t-approximate members of (S, T̈). 

Definition 2.2 [22]: A soft family ς ∈S (P, T̈) is called   soft topology over P if: 

1. φ̌, P̌ ∈ ς. 

2. ς is closed under union of any number of ST and intersection of any two ST. 

Structure (P, ς, T̈) is called a S.T.S. over P. 

Definition2.3 S.T. (M, T̈) of a S.T.S (P, ς, T̈) is called: 

 [a] If (M, T̈) =Int (Cl (M, T̈)) then soft regular open [7]; 

 [b] if (M, T̈) ⊆ Int (Cl (Int (M, T̈))) then soft α-open [5]; 

 [c] if (M, T̈) ⊆Cl (Int (M, T̈)) then soft semiopen [15]; 
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 [d] if (M, T̈) ⊆Int (Cl (M, T̈)) then soft preopen [3]; 

 [e] if (M, T̈) ⊆Int (Cl (M, T̈)) UCl (Int (M, T̈)) then soft b-open [2]. 

 [f] if (M, T̈) ⊆ Cl (Int (Cl (M, T̈))) then soft β-open [4] 

Family of each soft regular open (resp. soft-α-open, soft-pre-open, soft-semi-open, soft-β-open, soft-b-open) sets of P 

will be denoted by SRO (P, T̈) (resp. SαO (P, T̈), SPO (P, T̈), SSO (P, T̈), SβO (P, T̈), SbO (P, T̈)). 

Remark 2.4 [2]: The concepts of softsemi open and soft preopen sets are independent. 

Definition 2.5 [21]: m (P, T̈) of S(P, T̈) over P is called a soft minimal structure (SmS) on P if φ∈ m (P, T̈) and P̌∈ (P, 

T̈). 

Remark 2.6 [21]:  Let (P, ς, T̈) be STS. Then the families ς, SO(P, T̈), SPO(P, T̈), SαO(P, T̈), SβO(P, T̈), SbO(P, T̈) are 

all SmS on P. 

Definition 2.7 [21]: A sms m (P, T̈) over P is called to include the property B if the union of any family of ST ∈ m (P, 

T̈). 

A STS (W, ς, T̈) with a SMS m (P, T̈)  on P is called a soft mixed space and is denoted by       (P, ς, m(P, T̈)). 

Definition2.8: A ST (P, T̈) of a soft mixed space (P, ς, m (P, T̈)) is said to be: 

(1)m (P, T̈) dense if mCl (P, T̈) = P. 

(2)  soft m (P, T̈) nowhere dense if Int (mCl (P, T̈)) = φ. 

(3)  soft α-m (P, T̈) open if (P, T̈) ⊆ Int (mCl (Int (P, T̈))). 

(4)  soft semi-m (P, T̈) open if (P, T̈) ⊆ m Cl (Int (P, T̈)). 

(5)  soft pre-m (P, T̈) open if (P, T̈) ⊆ Int (mCl (P, T̈)). 

(6)  soft β-m (P, T̈) open if (P, T̈) ⊆Cl (Int (mCl (P, T̈))). 

(7)  soft semi-m (P, T̈) *-open if (P, T̈) ⊆Cl (mInt(P, T̈)). 

(8) soft strongly-βm (P, T̈) open if (P, T̈) ⊆mCl(Int(mCl(P, T̈))). 

3. PROPERTIES of SOFT m-EXTREMALLY DISCONNECTED SPACES 

In this section, soft extremally disconnected spaces and soft m-extremally disconnected spaces means SEDS, SmEDS 

respectively. 

Definition3.1: (P, ς, m (P, T̈)) is said to be soft SmEDS (resp. m-hyperconnected) if mCl (P, T̈) ∈ς (resp. mCl (P, T̈) = 

P) ∀ (P, T̈) ∈ς. 

Example 3.2: P = {a,b,c}, T̈ = {t1, t2}& (A,T̈ ) = (t1,{a}),(t2,{a}),(B, T̈) = (t1, b),(t2, {b}), (C,T̈ ) = (t1, {a,b}),(t2, 

{a,b}), (D,T̈ ) =(t1, {c}), (t2, {c})be ST. 

Let ς= {φ, (A, T̈), (B, T̈), (C, T̈), P }̌, m (P, T̈) = {φ, (A, T̈), (B, T̈), (D, T̈), P̌}. Then STS (P, ς, T̈) is not SEDS and soft 

mixed space (P, ς,m (P, T̈)) is SmEDS. 

Example 3.3: Let P = {a,b,c} , T̈ = {t1, t2} & (A,T̈ ) = (t1,{a}),(t2,{a}) , (B,T̈ ) = (t1, {b,c}),(t2,{b,c}) , (C,T̈ ) = 

(t1,{b}),(t2,{b}),(D, T̈) =(t1,{a,c}),(t2,{a,c}) be ST. Let ς = {φ, (A, T̈), (B, T̈), P ̌}, m (P, T̈) = {φ, (A, T̈), (C, T̈), (D, T̈), 

P̌}. Then STS (P, ς, T̈) is SEDS and soft mixed space (P, ς,m (P, T̈))is not SmEDS. 
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Let Ώ⊆ P(W) is called a generalized soft topology (i.e., GST) [8] on W if φ∈Ώ, Gi∈Ώ for i∈ I ≠φ → G = U {i  ∈I} Gi 

∈Ώ. We say structure (W, Ώ, T̈) a soft generalized topological space (brief SGTS) on W. 

For a SGTS (W, Ώ, T̈), elements of Ώ are said to be Ώ-open sets and complements are said to be Ώ-closed sets. For (P, 

T̈) ⊆ W, symbolically by (CΏ, (P, T̈)) the intersection of each soft Ώ-closed sets ⊆ (P, T̈), m (W, T̈) =Ώ, where m (W, 

T̈) including property B, as special case of Definition 3.1. 

We defined the subsequent definition: 

Definition3.4: Let (W, Ώ, T̈) be a SGTS and G   ⊆ W. 

(1) G is called soft Ώ -dense if c Ώ (G) = W, 

(2) (W, Ώ, T̈) is said soft hyperconnected if G is soft Ώ-dense ∀ soft Ώ-open set 

G  ≠φ of (W, Ώ, T̈). 

Lemma3.5: Let (W,Ώ,m(W, T̈)) is  soft mixed space. Then, subsequent properties hold: (1) If W is soft m-

hyperconnected, then W is SmEDS. 

(2) If m (W, T̈) =SO (W, T̈) or SPO (W, T̈), then (W,ς,m(W, T̈)) is  SmEDS. 

(3) Let (W, Ώ, T̈) be SEDS. If m (W, T̈) =α (W, T̈), PO (W, T̈) orBO (W, T̈), then (W,ς,m(W, T̈) ) is  SmEDS. 

Proof. (1) obviously. (2) It is known in [3] that sCl (W, T̈) = (W, T̈) (Int (Cl (W, T̈))) and spCl (W, T̈) = (W, T̈) (Int (Cl 

(Int (W, T̈))) ∀ ST (W, T̈) of W. Therefore, sCl (V, T̈) and   spCl (V, T̈) aresoft open for every softopen set (V, T̈) and 

consequently (W,Ώ,m(W, T̈) is  SmEDS for m(W, T̈)= SO(W, T̈) or SPO(W, T̈ ). (3) Since α (W, T̈) = (W, T̈) U Cl (Int 

(Cl (W, T̈))), pCl (W, T̈) = (W, T̈) UCl(Int(W, T̈)) and bCl(W, T̈) = sCl(W, T̈)⋂pCl(W, T̈) ∀ soft set (W, T̈) of W. 

Therefore, α (V, T̈), pCl(V, T̈ ) and bCl(V, T̈) are  soft open ∀ (V, T̈) of a  SEDS (W,Ώ, T̈) and consequently 

(W,Ώ,m(W, T̈) ) is  SmEDS for m(W, T̈)= α(W, T̈ ), PO(W, T̈), or BO(W, T̈).The subsequent eg. shows that converse 

of every statement of Lemma3.5 are not true. 

Example 3.6:  Let soft mixed space (W,Ώ,m(W, T̈)), where W = {a,b,c,d} , T̈ = {t1, t2} and Ώ = {φ,(t1,{a}),(t2,{a}), 

W̌ }, m(W, T̈) = {φ,(t1,{a}),(t2,{a}),(t1,{a,c}),(t2,{a,c}) 

,(t1,{a,d}),(t2,{a,d}),(t1,{b,d}),(t2,{b,d}),(t1,{c,d}),(t2,{c,d}),(t1,{a,b,d}),(t2,{a,b,d}),(t1,{a,c,d}),(t2,{a,c,d}),(t1,{b,c,d

}),(t2,{b,c,d}) ,W̌  }. If (P, T̈) = (t1, {a}), (t2, {a}), then (P, T̈) is soft open and mCl (P, T̈) = (t1, {a}), (t2, {a})  ≠ W. 

Hence (W,Ώ,m(W, T̈)) is soft not m-hyperconnected. Since soft closure-m (W, T̈) of each softopen is openset, W is 

SmEDS. Moreover, since (t1, {b,d}),(t2,{b,d}) is not soft β-open,m(W, T̈)is not SPO(W, T̈ ). 

Theorem3.7: Let (W,Ώ,m(W, T̈) ) is soft mixed space, the subsequent properties areequivalent: 

(1) W is SmEDS; 

(2) m-Int (P, T̈) is soft closed ∀soft closed set (P, T̈) of W; 

(3) m-Cl (Int (P, T̈)) ⊆Int (mCl (P, T̈)) ∀soft set (P, T̈) of W; 

(4) Every soft semi-m (P, T̈) open set is soft pre--m (P, T̈) open; 

(5) mCl (P, T̈) ∈ Ώ ∀strongly-soft β-m (P, T̈) open set (P, T̈); 

(6) Every strongly-soft β-m (P, T̈) open set is soft pre-m (P, T̈) open; 

(7) (P, T̈) is soft α-m (P, T̈) open ↔ it is soft-semi-m (P, T̈)-open ∀ (P, T̈) ⊆ W. 

Proof. (1) → (2): Let (P, T̈) be a soft closed set in W. Then W - (P, T̈) is open. By (1) 

mCl (W - (P, T̈)) = W – mInt (P, T̈) is soft open. Thus, mInt (P, T̈) is softclosed. 
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(2) → (3): (P, T̈) be any soft set of W. So, W -Int (P, T̈) is closed in W and by (2) mInt[W -Int(P, T̈)] is soft closed in 

W. Therefore, mCl (Int (P, T̈)) is soft open in W and consequently mCl (Int (P, T̈)) ⊆ Int (mCl (P, T̈)). 

(3) → (4): Let (P, T̈) be soft semi-m (P, T̈) open. By (3), we have (P, T̈) ⊆mCl (Int (P, T̈)) ⊆ Int (mCl(P, T̈)). Thus, (P, 

T̈) is soft pre-m (P, T̈) open. 

(4) → (5): Let (P, T̈) be a strongly-soft β -m (P, T̈)-open set. Then mCl (P, T̈) is soft semi-m (P, T̈) open. By (4), mCl 

(P, T̈) is soft pre-m (P, T̈) open. Thus, mCl (P, T̈) ⊆ Int (mCl (P, T̈)) andConsequently mCl(P, T̈ )is open. 

(5) → (6): Let (P, T̈) be a strongly-soft β-m (P, T̈) open set. By (5), mCl(P, T̈)=Int(mCl(P, T̈)). 

Thus, (P, T̈) ⊆ mCl (P, T̈) = Int (mCl(P,T̈ )) and consequently (P, T̈) is soft pre-m{(P, T̈)-open. 

(6) → (7): Let (P, T̈) is soft semi-m (P, T̈) open set. Since a soft semi-m (P, T̈) open set is 

soft strongly-β-m (P, T̈) open, then by (6) it is soft pre-m (P, T̈) open. Since (P, T̈) is soft semi-m (P, T̈) open and soft 

pre-m (P, T̈) open, it is soft α-m (P, T̈) open. 

(7) → (1): Let (P, T̈) is softopen set of W. Then mCl (P, T̈) is soft semi-m (P, T̈) open and by (7) mCl(P, T̈ )is soft α-

m(P, T̈ )open. Therefore, mCl(P, T̈ )⊆ Int(mCl(Int(mCl(P, T̈)))) = Int(mCl(P,T̈ )) ,thus mCl(P,T̈ ) = Int(mCl(P, T̈)). 

Hence mCl(P, T̈ )is soft open and W is  SmEDS. 

Corollary 3.8: Let (W,Ώ,m(W, T̈) ) is soft mixed space. Then, subsequent properties are equivalent: 

(1) W is SmEDS; 

(2) m-Cl (W, T̈) ∈Ώ∀soft α-m (W, T̈)-open set (W, T̈) of W; 

(3) m-Cl (W, T̈) ∈Ώ∀soft semi- (W, T̈)-open set (W, T̈) of W; 

(4) m-Cl (W, T̈) ∈Ώ∀soft pre-m (W, T̈)-open set (W, T̈) of W. 

Proof: Follows by Theorem 3.7. 

Theorem 3.9:  Let (W,Ώ,m (W, T̈))is a soft mixed space and m(W, T̈) have property B. Then, the subsequent properties 

are equivalent: 

(1) W is SmEDS; 

(2) For any (P, T̈) ∈Ώ and (B,T̈) ∈m (W, T̈) such that (P, T̈ )⋂ (B,T̈ ) = φ, there exist disjoint m (W, T̈)-closed set (U, T̈) 

and a closed set (V, T̈) such that (P, T̈ )⊆ (U, T̈) and (B,T̈ ) ⊆ (V, T̈); 

(3) mCl(U, T̈) ⋂Cl(V, T̈ ) = φ∀(U, T̈) ∈ς and (V, T̈) ∈ m(W, T̈)with (U, T̈) ⋂(V, T̈) = φ; 

(4) mCl[Int(mCl(U, T̈))] ⋂Cl(V, T̈ ) = φ∀(U, T̈) ⊆ W and (V, T̈) ∈m(W, T̈)with(U, T̈) ⋂(V, T̈) = φ. 

Proof. (1) → (2): Let W be SmEDS. Let (P, T̈) and (B, T̈) be two disjoint soft open and m (W, T̈)-open sets, 

respectively. Then mCl(P, T̈) and W -mCl(P,T̈ )are disjoint soft -m(P, T̈ )closed and soft closed sets ⊆(P, T̈) and (B, T̈), 

respectively. 

(2) → (3): Let (U, T̈) ∈ς & (V, T̈) ∈m (W, T̈) with (U, T̈) ⊆ (V, T̈) = φ. By (2), there exist 

disjoint a soft m (P, T̈) closed set (F, T̈) and a soft closed set (G, T̈) such that (U, T̈) ⊆ (F, T̈) and (V, T̈) ⊆ (G, T̈). 

Therefore, mCl(U, T̈) ⋂Cl(V, T̈)⊆ (F, T̈) ⋂(G, T̈) = φ. Thus, mCl(U, T̈) ⋂Cl(V, T̈ ) = φ. 

(3) → (4): Let (U, T̈) ⊆ W and (V, T̈) ∈m (W, T̈) with (U, T̈) ⋂ (V, T̈) = φ. Since Int (mCl(U, T̈)) ∈ς and Int(mCl(U, 

T̈)) ⋂(V, T̈) = φ, by (3) mCl[Int(mCl(U, T̈))] ⋂Cl(V, T̈ ) = φ. 
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(4) → (1): Let (U, T̈) is SOPS. Then [W - mCl(U, T̈)] ⋂(U, T̈) = φ. Since m (P, T̈) has property B, W - mCl(U, T̈) 

∈m(P, T̈)and by (4) mCl(Int(mCl(U, T̈))) ⋂Cl(W-mCl(U, T̈)) = φ. Since (U, T̈) ∈ς, we have mCl(U, T̈) ⋂[W - 

Int(mCl(U, T̈))] = φ. 

Therefore, mCl (U, T̈) ⊆ Int (mCl(U, T̈)) and mCl(U, T̈) is soft open. This shows that W is SmEDS. 

Definition3.10: A ST (P, T̈) of a soft mixed space (W,Ώ,m(W, T̈) ) is said to be a soft Rm-openset if (P, T̈) = 

Int(mCl(P, T̈)).Complement of a soft Rm-open set is called  soft Rm-closed. 

Theorem 3.11: Let (W,Ώ,m (W, T̈) ) be a soft mixed space and m(W, T̈) have property B. Then, subsequent properties 

are equivalent: 

(1) W is SmEDS; 

(2) Each soft Rm-open set of W is soft m (W, T̈)-closed in W; 

(3) Each soft Rm-closed set of W is soft m (W, T̈)-open in W. 

Proof. (1) → (2): Let W be SmEDS. Let (P, T̈) be a soft Rm-open set of W. Then (P, T̈) = Int (mCl(P, T̈)). Since (P, T̈) 

is SOPS, then mCl(P, T̈ )is  soft open. Thus, (P, T̈) = Int (mCl(P,T̈ )) = mCl(P,T̈ ) and consequently (P, T̈) is soft m(W, 

T̈)-closed. 

(2) → (1): Suppose that every soft Rm-open set of W is m (W, T̈)-closed in W. Let SOPS (P, T̈) of W. Since Int (mCl 

(P,T̈)) is soft Rm-open, then it is soft m(W, T̈)-closed. Therefore, mCl (P, T̈) ⊆ mCl (Int (mCl(P, T̈))) = Int(mCl(P,T̈ )) 

since (P, T̈) ⊆ Int(mCl(P, T̈)). Thus, mCl (P, T̈) is soft open and consequently W is SmEDS. 

(2) → (3): It is obvious. 

Theorem 3.12: Let (W,Ώ,m (W, T̈) ) be a soft mixed space. Then subsequent propertiesare equivalent: 

(1) W is SmEDS; 

(2) mCl (P, T̈) ∈ Ώ ∀soft Rm-open set (P, T̈) of W. 

Proof. (1) → (2): Let (P, T̈) is a soft Rm-open set of W. Then (P, T̈) is open and mCl(P,T̈ )  ∈Ώ. 

(2) → (1): Suppose that mCl (P, T̈) ∈ Ώ∀ soft Rm-open set (P, T̈) of W. Let (V, T̈) is SOPS of W. Then Int (mCl (V, 

T̈)) is a soft Rm-open set and mCl (V, T̈) = mCl (Int (mCl (V, T̈))) ∈ Ώ. Thus mCl(V, T̈)  ∈Ώ and as a result W is 

SmEDS. 

Theorem 3.13: Let (W, Ώ, m (W, T̈)) be a soft mixed space and m (W, T̈) have property B. 

Then, the subsequent properties are equivalent: 

(1) W is SmEDS; 

(2) If (P, T̈) is soft semi-m (P, T̈) open, B is soft semi-m (P, T̈)*-open and (A,T̈ ) ⋂ (B,T̈ ) = φ, then mCl(P, T̈)⋂ Cl(B,T̈ 

) = φ. 

Proof: (1) → (2): Let (P, T̈) is soft semi-m (P, T̈) open, (B, T̈) soft semi-m (P, T̈)*-open and (P, T̈ )⋂ (B,T̈ ) = φ. Since 

m (P, T̈) is property B, mInt (B, T̈) is soft -m (P, T̈) open and mCl(P,T̈ ) ⋂ mInt (B,T̈) = φ. By Corollary 3.8, mCl (P, T̈) 

is soft open and mCl (P, T̈) ⋂Cl (mInt (B, T̈)) = φ. Since (B, T̈) is soft semi-m (P, T̈)* -open, Cl (B,T̈ ) = Cl (mInt(B, 

T̈)) and consequently mCl(P,T̈ ) ⋂Cl(B,T̈ ) = φ. 

(2) → (1): Let (P, T̈) is soft semi-m (P, T̈) open set. Since (P, T̈) and W – mCl (P, T̈) are disjoint soft semi-m (P, T̈) 

open and soft semi-m (P, T̈)*-open, respectively, by (2) we have mCl(P, T̈) ⋂Cl[W - mCl(P, T̈)] = φ. This implies that 

mCl (P, T̈) ⊆ Int (mCl (P, T̈)). Thus mCl(P, T̈ )is  soft open. Hence, by Corollary 3.8, W is SmEDS. 
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Theorem 3.14:  Let (W, Ώ, m (W, T̈)) is soft mixed space and m (W, T̈) have property B.Then W is SmEDS if and only 

if ∀SOPS (G, T̈) and every soft m (W, T̈)-closed set (F, T̈) with (G, T̈) ⊆ (F, T̈), ∃ a SOPS (G1, T̈) and a soft -m(P, T̈ 

)closed set (F1, T̈) such that (G, T̈) ⊆ (F1, T̈) ⊆ (G1, T̈) ⊆ (F, T̈). 

Proof. Suppose W is SmEDS. Let (G, T̈) be a SOPS and (F, T̈) a soft -m (P, T̈) closed set in W such that (G, T̈) ⊆ (F, 

T̈). Then (G, T̈) ⋂ (W - (F, T̈)) = φ. Then by theorem 3.9 mCl(G, T̈) ⋂Cl(W - (F, T̈)) = φ, that is, mCl(G, T̈) ⊆ W - 

Cl(W -(F, T̈).Using the fact that W-Cl(W-F) ⊆ (F, T̈) and writing mCl(G, T̈) = (F1, T̈), W-(Cl(W-(F, T̈)) = (G1, T̈), we 

get (G, T̈) ⊆ (F1, T̈) ⊆ (G1, T̈) ⊆ (F, T̈).Conversely, let the condition hold. Let (U, T̈) be a SOPS and (V, T̈) be a soft-m 

(P, T̈) open set in W such that (U, T̈) ⋂ (V, T̈) = φ. Then, (U, T̈) ⊆ W - (V, T̈) and W - (V, T̈) is -m (P, T̈) closed, ∃ a 

SOPS (G, T̈) and a soft -m (P, T̈) closed set (F, T̈) such that (U, T̈) ⊆ (F, T̈) ⊆ (G, T̈) ⊆ W - (V, T̈). This implies that 

mCl (U, T̈) ⋂W - [Int (W - (V, T̈))] = φ. But W- [Int (W- (V, T̈))] = Cl (V, T̈). That is, mCl (U, T̈)⋂ Cl (V, T̈) = φ and 

by Theorem 3.9 W is SmEDS. 
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