Volume 13, No. 2, 2022, p. 3624-3630 https://publishoa.com ISSN: 1309-3452

Extremally Disconnectedness via a Soft Minimal Structure

Alpa Singh Rajput^{*(1)}, Mahima Thakur⁽²⁾, S. S. Thakur⁽³⁾

(1) Department of Sciences and Humanities, Vignan Foundation for Science, Technology and Research, Guntur, 522213, India, Email: alpasinghrajput09@gmail.com

(2) Department of applied Mathematics, Jabalpur Engineering College Jabalpur, India,

Email: mahimavthakur@gmail.com

(3) Former Principal, Jabalpur Engineering College, Jabalpur (M. P.) 482011, India, Email: samajh_singh@rediffmail.com
Received 2022 March 25; Revised 2022 April 28; Accepted 2022 May 15.

Abstract: We interpose an alteration of soft extremally disconnected spaces (SES) which is known as soft minimalextremally disconnected (SmES) and attain numerous properties of SmES.

Keywords: Soft m-structure, Soft extremally disconnected spaces, soft m-extremally disconnected.

2010 AMS Subject Classification: 06D72; 54A40; 54D10

1. INTRODUCTION

In this research paper, we introduced a soft topological space (briefly STS) (P, ς , \ddot{T}) over P with a soft m- structure m (P, \ddot{T}) over P to be SMS if m-closure (briefly m-CL) of soft open (O, \ddot{T}) is for each SOPS (O, \ddot{T}) of (P, ς , \ddot{T}) We defined numerous characterizations of soft m-extremally disconnected spaces. we will show that minimal extremal disconnectedness and soft extremal disconnectedness are independent by giving simple examples. Although, if soft minimal structure m(P, \ddot{T}) = SO (P, ς , \ddot{T}) or SPO (P, ς , \ddot{T}), then the mixed space (P, ς , m (P, \ddot{T})) is minimal-extremally disconnected for each (P, ς , \ddot{T}). If m(P, \ddot{T})= α (P, ς , \ddot{T}), PO (P, ς , \ddot{T}) or bO (P, ς , \ddot{T}), then (P, ς , m(P, \ddot{T})) is soft minimal-extremally disconnected for each (P, ς , \ddot{T}). Recently papers have studied few innovative classes of soft sets (briefly ST) through soft minimal-structures (briefly SmS).

2. **PRELIMINARIES:**

Let Z is initial universe set and set \ddot{T} is parameters, P(Z) denote the power set of Z. All the way through this paper soft set, SOPS soft topological space, soft minimal structure and soft m-extremally disconnected denotes ST, SOPS, STS, SmS and SmES respectively.

Definition 2.1 [17]: Given mapping S: $\ddot{T} \rightarrow P(Z)$. A pair (S, \ddot{T}) is said to be ST over Z.

So, (S, \ddot{T}) is parameterized family over Z. For all $t \in \ddot{T}$, S(t) is the set of t-approximate members of (S, \ddot{T}) .

Definition 2.2 [22]: A soft family $\zeta \in S(P, \ddot{T})$ is called soft topology over P if:

1. $\check{\phi}, \check{P} \in \varsigma$.

2. ς is closed under union of any number of ST and intersection of any two ST. Structure (P, ς , \ddot{T}) is called a S.T.S. over P.

Definition2.3 S.T. (M, \ddot{T}) of a S.T.S (P, ς , \ddot{T}) is called:

[a] If $(M, \ddot{T}) =$ Int $(Cl (M, \ddot{T}))$ then soft regular open [7];

[b] if $(M, \ddot{T}) \subseteq$ Int (Cl (Int $(M, \ddot{T}))$) then soft α -open [5];

[c] if $(M, \ddot{T}) \subseteq Cl$ (Int (M, \ddot{T})) then soft semiopen [15];

Volume 13, No. 2, 2022, p. 3624-3630 https://publishoa.com ISSN: 1309-3452

[d] if $(M, \ddot{T}) \subseteq$ Int (Cl (M, \ddot{T})) then soft preopen [3];

[e] if (M, \ddot{T}) ⊆Int (Cl (M, \ddot{T})) UCl (Int (M, \ddot{T})) then soft b-open [2].

[f] if $(M, \ddot{T}) \subseteq Cl$ (Int $(Cl (M, \ddot{T}))$) then soft β -open [4]

Family of each soft regular open (resp. soft- α -open, soft-pre-open, soft-semi-open, soft- β -open, soft-b-open) sets of P will be denoted by SRO (P, \ddot{T}) (resp. S α O (P, \ddot{T}), SPO (P, \ddot{T}), SSO (P, \ddot{T}), SBO (P, \ddot{T})).

Remark 2.4 [2]: The concepts of softsemi open and soft preopen sets are independent.

Definition 2.5 [21]: m (P, \ddot{T}) of S(P, \ddot{T}) over P is called a soft minimal structure (SmS) on P if $\phi \in m$ (P, \ddot{T}) and $\check{P} \in (P, \ddot{T})$.

Remark 2.6 [21]: Let (P, ς, \ddot{T}) be STS. Then the families ς , SO (P, \ddot{T}) , SPO (P, \ddot{T}) , S α O (P, \ddot{T}) , S β O (P, \ddot{T}) , SbO (P, \ddot{T}) , are all SmS on P.

Definition 2.7 [21]: A sms m (P, \ddot{T}) over P is called to include the property **B** if the union of any family of ST \in m (P, \ddot{T}).

A STS (W, ζ , \ddot{T}) with a SMS m (P, \ddot{T}) on P is called a soft mixed space and is denoted by (P, ζ , m(P, \ddot{T})).

Definition2.8: A ST (P, \ddot{T}) of a soft mixed space (P, ς , m (P, \ddot{T})) is said to be:

(1)m (P, \ddot{T}) dense if mCl (P, \ddot{T}) = P.

- (2) soft m (P, \ddot{T}) nowhere dense if Int (mCl (P, \ddot{T})) = φ .
- (3) soft α -m (P, \ddot{T}) open if (P, \ddot{T}) \subseteq Int (mCl (Int (P, \ddot{T}))).
- (4) soft semi-m (P, \ddot{T}) open if (P, \ddot{T}) \subseteq m Cl (Int (P, \ddot{T})).
- (5) soft pre-m (P, \ddot{T}) open if (P, \ddot{T}) \subseteq Int (mCl (P, \ddot{T})).
- (6) soft β -m (P, \ddot{T}) open if (P, \ddot{T}) \subseteq Cl (Int (mCl (P, \ddot{T}))).
- (7) soft semi-m (P, \ddot{T}) *-open if (P, \ddot{T}) \subseteq Cl (mInt(P, \ddot{T})).
- (8) soft strongly- β m (P, \ddot{T}) open if (P, \ddot{T}) \subseteq mCl(Int(mCl(P, \ddot{T}))).

3. PROPERTIES of SOFT m-EXTREMALLY DISCONNECTED SPACES

In this section, soft extremally disconnected spaces and soft m-extremally disconnected spaces means SEDS, SmEDS respectively.

Definition3.1: (P, ζ , m (P, \ddot{T})) is said to be soft SmEDS (resp. m-hyperconnected) if mCl (P, \ddot{T}) \in_{ζ} (resp. mCl (P, \ddot{T}) = P) \forall (P, \ddot{T}) \in_{ζ} .

Example 3.2: $P = \{a,b,c\}, \ddot{T} = \{t1, t2\}\& (A,\ddot{T}) = (t1,\{a\}), (t2,\{a\}), (B, \ddot{T}) = (t1, b), (t2, \{b\}), (C,\ddot{T}) = (t1, \{a,b\}), (t2, \{a,b\}), (D,\ddot{T}) = (t1, \{c\}), (t2, \{c\})be ST.$

Let $\varsigma = \{\varphi, (A, \ddot{T}), (B, \ddot{T}), (C, \ddot{T}), P'\}$, m (P, \ddot{T}) = $\{\varphi, (A, \ddot{T}), (B, \ddot{T}), (D, \ddot{T}), P'\}$. Then STS (P, ς , \ddot{T}) is not SEDS and soft mixed space (P, ς , m (P, \ddot{T})) is SmEDS.

Example 3.3: Let $P = \{a,b,c\}$, $\ddot{T} = \{t1, t2\}$ & $(A,\ddot{T}) = (t1,\{a\}),(t2,\{a\})$, $(B,\ddot{T}) = (t1, \{b,c\}),(t2,\{b,c\})$, $(C,\ddot{T}) = (t1,\{b\}),(t2,\{b\}),(D,\ddot{T}) = (t1,\{a,c\}),(t2,\{a,c\})$ be ST. Let $\varsigma = \{\phi, (A, \ddot{T}), (B, \ddot{T}), P^{*}\}$, m $(P, \ddot{T}) = \{\phi, (A, \ddot{T}), (C, \ddot{T}), (D, \ddot{T}), P^{*}\}$. Then STS (P, ς, \ddot{T}) is SEDS and soft mixed space $(P, \varsigma, m, (P, \ddot{T}))$ is not SmEDS.

Volume 13, No. 2, 2022, p. 3624-3630 https://publishoa.com ISSN: 1309-3452

Let $\Omega \subseteq P(W)$ is called a generalized soft topology (i.e., GST) [8] on W if $\varphi \in \Omega$, Gi $\in \Omega$ for $i \in I \neq \varphi \rightarrow G = U$ {i $\in I$ } Gi $\in \Omega$. We say structure (W, Ω , \ddot{T}) a soft generalized topological space (brief SGTS) on W.

For a SGTS (W, Ω , \ddot{T}), elements of Ω are said to be Ω -open sets and complements are said to be Ω -closed sets. For (P, \ddot{T}) \subseteq W, symbolically by (C_{Ω}, (P, \ddot{T})) the intersection of each soft Ω -closed sets \subseteq (P, \ddot{T}), m (W, \ddot{T}) = Ω , where m (W, \ddot{T}) including property B, as special case of Definition 3.1.

We defined the subsequent definition:

Definition 3.4: Let (W, Ω, \ddot{T}) be a SGTS and $G \subseteq W$.

(1) G is called soft Ω -dense if $c_{\Omega}(G) = W$,

(2) (W, Ω , \ddot{T}) is said soft hyperconnected if G is soft Ω -dense \forall soft Ω -open set

 $G \neq \varphi$ of (W, Ω, \ddot{T}) .

Lemma3.5: Let $(W,\Omega,m(W, \ddot{T}))$ is soft mixed space. Then, subsequent properties hold: (1) If W is soft m-hyperconnected, then W is SmEDS.

(2) If m (W, \ddot{T}) =SO (W, \ddot{T}) or SPO (W, \ddot{T}), then (W, ς ,m(W, \ddot{T})) is SmEDS.

(3) Let (W, Ω, \ddot{T}) be SEDS. If m $(W, \ddot{T}) = \alpha (W, \ddot{T})$, PO (W, \ddot{T}) orBO (W, \ddot{T}) , then $(W, \varsigma, m(W, \ddot{T}))$ is SmEDS.

Proof. (1) obviously. (2) It is known in [3] that sCl (W, \ddot{T}) = (W, \ddot{T}) (Int (Cl (W, \ddot{T}))) and spCl (W, \ddot{T}) = (W, \ddot{T}) (Int (Cl (Int (W, \ddot{T})))) \forall ST (W, \ddot{T}) of W. Therefore, sCl (V, \ddot{T}) and spCl (V, \ddot{T}) aresoft open for every softopen set (V, \ddot{T}) and consequently (W, Ω ,m(W, \ddot{T}) is SmEDS for m(W, \ddot{T})= SO(W, \ddot{T}) or SPO(W, \ddot{T}). (3) Since α (W, \ddot{T}) = (W, \ddot{T}) U Cl (Int (Cl (W, \ddot{T}))), pCl (W, \ddot{T}) = (W, \ddot{T}) UCl(Int(W, \ddot{T})) and bCl(W, \ddot{T}) = sCl(W, \ddot{T}) \cap pCl(W, \ddot{T}) \forall soft set (W, \ddot{T}) of W. Therefore, α (V, \ddot{T}), pCl(V, \ddot{T}) and bCl(V, \ddot{T}) are soft open \forall (V, \ddot{T}) of a SEDS (W, Ω , \ddot{T}) and consequently (W, Ω ,m(W, \ddot{T})) is SmEDS for m(W, \ddot{T})= α (W, \ddot{T}), PO(W, \ddot{T}), or BO(W, \ddot{T}). The subsequent eg. shows that converse of every statement of Lemma3.5 are not true.

Example 3.6: Let soft mixed space (W, Ω ,m(W, T)), where W = {a,b,c,d}, T = {t1, t2} and Ω = { φ ,(t1,{a}),(t2,{a}), (T,{a}),(t2,{a}), (T,{a}),(t2,{a}),(t1,{a,c}),(t2,{a,c}),(t2,{a,c}),(t1,{a,c}),(t2,{a,c

Theorem 3.7: Let $(W,\Omega,m(W, \ddot{T}))$ is soft mixed space, the subsequent properties are equivalent:

(1) W is SmEDS;

(2) m-Int (P, \ddot{T}) is soft closed \forall soft closed set (P, \ddot{T}) of W;

- (3) m-Cl (Int (P, \ddot{T})) \subseteq Int (mCl (P, \ddot{T})) \forall soft set (P, \ddot{T}) of W;
- (4) Every soft semi-m (P, \ddot{T}) open set is soft pre--m (P, \ddot{T}) open;
- (5) mCl (P, \ddot{T}) $\in \Omega$ \forall strongly-soft β -m (P, \ddot{T}) open set (P, \ddot{T});
- (6) Every strongly-soft β -m (P, \ddot{T}) open set is soft pre-m (P, \ddot{T}) open;
- (7) (P, \ddot{T}) is soft α -m (P, \ddot{T}) open \leftrightarrow it is soft-semi-m (P, \ddot{T})-open \forall (P, \ddot{T}) \subseteq W.
- Proof. (1) \rightarrow (2): Let (P, \ddot{T}) be a soft closed set in W. Then W (P, \ddot{T}) is open. By (1)
- mCl (W (P, \ddot{T})) = W mInt (P, \ddot{T}) is soft open. Thus, mInt (P, \ddot{T}) is softclosed.

Volume 13, No. 2, 2022, p. 3624-3630 https://publishoa.com

ISSN: 1309-3452

 $(2) \rightarrow (3)$: (P, \ddot{T}) be any soft set of W. So, W -Int (P, \ddot{T}) is closed in W and by (2) mInt[W -Int(P, \ddot{T})] is soft closed in W. Therefore, mCl (Int (P, \ddot{T})) is soft open in W and consequently mCl (Int (P, \ddot{T})) \subseteq Int (mCl (P, \ddot{T})).

 $(3) \rightarrow (4)$: Let (P, \ddot{T}) be soft semi-m (P, \ddot{T}) open. By (3), we have $(P, \ddot{T}) \subseteq mCl$ (Int $(P, \ddot{T})) \subseteq Int$ $(mCl(P, \ddot{T}))$. Thus, (P, \ddot{T}) is soft pre-m (P, \ddot{T}) open.

 $(4) \rightarrow (5)$: Let (P, \ddot{T}) be a strongly-soft β -m (P, \ddot{T}) -open set. Then mCl (P, \ddot{T}) is soft semi-m (P, \ddot{T}) open. By (4), mCl (P, \ddot{T}) is soft pre-m (P, \ddot{T}) open. Thus, mCl $(P, \ddot{T}) \subseteq$ Int (mCl (P, \ddot{T})) and Consequently mCl (P, \ddot{T}) is open.

 $(5) \rightarrow (6)$: Let (P, \ddot{T}) be a strongly-soft β -m (P, \ddot{T}) open set. By (5), mCl (P, \ddot{T}) =Int $(mCl(P, \ddot{T}))$.

Thus, $(P, \ddot{T}) \subseteq mCl(P, \ddot{T}) = Int(mCl(P, \ddot{T}))$ and consequently (P, \ddot{T}) is soft pre-m{ (P, \ddot{T}) -open.

 $(6) \rightarrow (7)$: Let (P, \ddot{T}) is soft semi-m (P, \ddot{T}) open set. Since a soft semi-m (P, \ddot{T}) open set is

soft strongly- β -m (P, T) open, then by (6) it is soft pre-m (P, T) open. Since (P, T) is soft semi-m (P, T) open and soft pre-m (P, T) open, it is soft α -m (P, T) open.

 $(7) \rightarrow (1)$: Let (P, T) is softopen set of W. Then mCl (P, T) is soft semi-m (P, T) open and by (7) mCl(P, T) is soft α -m(P, T) open. Therefore, mCl(P, T) \subseteq Int(mCl(Int(mCl(P, T)))) = Int(mCl(P, T)), thus mCl(P,T) = Int(mCl(P, T)). Hence mCl(P, T) is soft open and W is SmEDS.

Corollary 3.8: Let $(W,\Omega,m(W,\ddot{T}))$ is soft mixed space. Then, subsequent properties are equivalent:

(1) W is SmEDS;

(2) m-Cl (W, \ddot{T}) $\in \Omega \forall$ soft α -m (W, \ddot{T})-open set (W, \ddot{T}) of W;

(3) m-Cl (W, \ddot{T}) $\in \Omega \forall$ soft semi- (W, \ddot{T})-open set (W, \ddot{T}) of W;

(4) m-Cl (W, \ddot{T}) $\in \Omega \forall$ soft pre-m (W, \ddot{T})-open set (W, \ddot{T}) of W.

Proof: Follows by Theorem 3.7.

Theorem 3.9: Let $(W,\Omega,m(W, \ddot{T}))$ is a soft mixed space and $m(W, \ddot{T})$ have property B. Then, the subsequent properties are equivalent:

(1) W is SmEDS;

(2) For any $(P, \ddot{T}) \in \Omega$ and $(B, \ddot{T}) \in m$ (W, \ddot{T}) such that $(P, \ddot{T}) \cap (B, \ddot{T}) = \varphi$, there exist disjoint m (W, \ddot{T}) -closed set (U, \ddot{T}) and a closed set (V, \ddot{T}) such that $(P, \ddot{T}) \subseteq (U, \ddot{T})$ and $(B, \ddot{T}) \subseteq (V, \ddot{T})$;

(3) mCl(U, \ddot{T}) \cap Cl(V, \ddot{T}) = $\varphi \forall$ (U, \ddot{T}) $\in \varsigma$ and (V, \ddot{T}) \in m(W, \ddot{T})with (U, \ddot{T}) \cap (V, \ddot{T}) = φ ;

(4) mCl[Int(mCl(U, \ddot{T}))] \cap Cl(V, \ddot{T}) = $\varphi \forall (U, \ddot{T}) \subseteq W$ and $(V, \ddot{T}) \in m(W, \ddot{T})$ with $(U, \ddot{T}) \cap (V, \ddot{T}) = \varphi$.

Proof. (1) \rightarrow (2): Let W be SmEDS. Let (P, T) and (B, T) be two disjoint soft open and m (W, T)-open sets, respectively. Then mCl(P, T) and W -mCl(P,T) are disjoint soft -m(P, T) closed and soft closed sets \subseteq (P, T) and (B, T), respectively.

 $(2) \rightarrow (3)$: Let $(U, \ddot{T}) \in \varsigma \& (V, \ddot{T}) \in m (W, \ddot{T})$ with $(U, \ddot{T}) \subseteq (V, \ddot{T}) = \varphi$. By (2), there exist

disjoint a soft m (P, \ddot{T}) closed set (F, \ddot{T}) and a soft closed set (G, \ddot{T}) such that (U, \ddot{T}) \subseteq (F, \ddot{T}) and (V, \ddot{T}) \subseteq (G, \ddot{T}). Therefore, mCl(U, \ddot{T}) \cap Cl(V, \ddot{T}) \subseteq (F, \ddot{T}) \cap (G, \ddot{T}) = φ .

 $\begin{array}{l} (3) \rightarrow (4): \text{Let } (U, \ddot{T}) \subseteq W \text{ and } (V, \ddot{T}) \in m \ (W, \ddot{T}) \text{ with } (U, \ddot{T}) \cap (V, \ddot{T}) = \phi. \text{ Since Int } (\text{mCl}(U, \ddot{T})) \in_{\varsigma} \text{ and Int}(\text{mCl}(U, \ddot{T})) \\ \cap (V, \ddot{T}) = \phi, \text{ by } (3) \text{ mCl}[\text{Int}(\text{mCl}(U, \ddot{T}))] \cap \text{Cl}(V, \ddot{T}) = \phi. \end{array}$

Volume 13, No. 2, 2022, p. 3624-3630

https://publishoa.com

ISSN: 1309-3452

(4) → (1): Let (U, T) is SOPS. Then [W - mCl(U, T)] \cap (U, T) = φ . Since m (P, T) has property B, W - mCl(U, T) \in m(P, T)and by (4) mCl(Int(mCl(U, T))) \cap Cl(W-mCl(U, T)) = φ . Since (U, T) \in ς , we have mCl(U, T) \cap [W - Int(mCl(U, T))] = φ .

Therefore, mCl $(U, \ddot{T}) \subseteq$ Int (mCl (U, \ddot{T})) and mCl (U, \ddot{T}) is soft open. This shows that W is SmEDS.

Definition3.10: A ST (P, \ddot{T}) of a soft mixed space (W, Ω ,m(W, \ddot{T})) is said to be a soft Rm-openset if (P, \ddot{T}) = Int(mCl(P, \ddot{T})).Complement of a soft Rm-open set is called soft Rm-closed.

Theorem 3.11: Let $(W,\Omega,m(W, \ddot{T}))$ be a soft mixed space and $m(W, \ddot{T})$ have property B. Then, subsequent properties are equivalent:

(1) W is SmEDS;

(2) Each soft Rm-open set of W is soft m (W, T)-closed in W;

(3) Each soft Rm-closed set of W is soft m (W, \ddot{T})-open in W.

Proof. (1) \rightarrow (2): Let W be SmEDS. Let (P, T) be a soft Rm-open set of W. Then (P, T) = Int (mCl(P, T)). Since (P, T) is SOPS, then mCl(P, T) is soft open. Thus, (P, T) = Int (mCl(P,T)) = mCl(P,T) and consequently (P, T) is soft m(W, T)-closed.

 $(2) \rightarrow (1)$: Suppose that every soft Rm-open set of W is m (W, T)-closed in W. Let SOPS (P, T) of W. Since Int (mCl (P,T)) is soft Rm-open, then it is soft m(W, T)-closed. Therefore, mCl (P, T) \subseteq mCl (Int (mCl(P, T))) = Int(mCl(P,T)) since (P, T) \subseteq Int(mCl(P, T)). Thus, mCl (P, T) is soft open and consequently W is SmEDS.

 $(2) \rightarrow (3)$: It is obvious.

Theorem 3.12: Let $(W,\Omega,m(W, \ddot{T}))$ be a soft mixed space. Then subsequent properties are equivalent:

(1) W is SmEDS;

(2) mCl (P, \ddot{T}) $\in \Omega \forall$ soft Rm-open set (P, \ddot{T}) of W.

Proof. (1) \rightarrow (2): Let (P, \ddot{T}) is a soft Rm-open set of W. Then (P, \ddot{T}) is open and mCl(P, \ddot{T}) $\in \Omega$.

(2) \rightarrow (1): Suppose that mCl (P, \ddot{T}) $\in \Omega \forall$ soft Rm-open set (P, \ddot{T}) of W. Let (V, \ddot{T}) is SOPS of W. Then Int (mCl (V, \ddot{T})) is a soft Rm-open set and mCl (V, \ddot{T}) = mCl (Int (mCl (V, \ddot{T}))) $\in \Omega$. Thus mCl(V, \ddot{T}) $\in \Omega$ and as a result W is SmEDS.

Theorem 3.13: Let $(W, \Omega, m(W, \ddot{T}))$ be a soft mixed space and $m(W, \ddot{T})$ have property B.

Then, the subsequent properties are equivalent:

(1) W is SmEDS;

(2) If (P, \ddot{T}) is soft semi-m (P, \ddot{T}) open, B is soft semi-m (P, \ddot{T})*-open and (A, \ddot{T}) \cap (B, \ddot{T}) = φ , then mCl(P, \ddot{T}) \cap Cl(B, \ddot{T}) = φ .

Proof: (1) \rightarrow (2): Let (P, T) is soft semi-m (P, T) open, (B, T) soft semi-m (P, T)*-open and (P, T) \cap (B,T) = φ . Since m (P, T) is property B, mInt (B, T) is soft -m (P, T) open and mCl(P,T) \cap mInt (B,T) = φ . By Corollary 3.8, mCl (P, T) is soft open and mCl (P, T) \cap Cl (mInt (B, T)) = φ . Since (B, T) is soft semi-m (P, T)* -open, Cl (B,T) = Cl (mInt(B, T)) and consequently mCl(P,T) \cap Cl(B,T) = φ .

 $(2) \rightarrow (1)$: Let (P, T) is soft semi-m (P, T) open set. Since (P, T) and W – mCl (P, T) are disjoint soft semi-m (P, T) open and soft semi-m (P, T)*-open, respectively, by (2) we have mCl(P, T) \cap Cl[W - mCl(P, T)] = φ . This implies that mCl (P, T) \subseteq Int (mCl (P, T)). Thus mCl(P, T) is soft open. Hence, by Corollary 3.8, W is SmEDS.

Volume 13, No. 2, 2022, p. 3624-3630

https://publishoa.com

ISSN: 1309-3452

Theorem 3.14: Let $(W, \Omega, m, (W, \ddot{T}))$ is soft mixed space and $m, (W, \ddot{T})$ have property B.Then W is SmEDS if and only if \forall SOPS (G, \ddot{T}) and every soft $m, (W, \ddot{T})$ -closed set (F, \ddot{T}) with $(G, \ddot{T}) \subseteq (F, \ddot{T})$, \exists a SOPS $(G1, \ddot{T})$ and a soft -m(P, $\ddot{T})$ closed set $(F1, \ddot{T})$ such that $(G, \ddot{T}) \subseteq (F1, \ddot{T}) \subseteq (G1, \ddot{T}) \subseteq (F, \ddot{T})$.

Proof. Suppose W is SmEDS. Let (G, \ddot{T}) be a SOPS and (F, \ddot{T}) a soft -m (P, \ddot{T}) closed set in W such that $(G, \ddot{T}) \subseteq (F, \ddot{T})$. Then $(G, \ddot{T}) \cap (W - (F, \ddot{T})) = \varphi$. Then by theorem 3.9 mCl $(G, \ddot{T}) \cap Cl(W - (F, \ddot{T})) = \varphi$, that is, mCl $(G, \ddot{T}) \subseteq W - Cl(W - (F, \ddot{T}))$. Using the fact that W-Cl(W-F) $\subseteq (F, \ddot{T})$ and writing mCl $(G, \ddot{T}) = (F1, \ddot{T})$, W-(Cl(W-(F, $\ddot{T}))) = (G1, \ddot{T})$, we get $(G, \ddot{T}) \subseteq (F1, \ddot{T}) \subseteq (G1, \ddot{T}) \subseteq (F, \ddot{T})$.Conversely, let the condition hold. Let (U, \ddot{T}) be a SOPS and (V, \ddot{T}) be a soft-m (P, \ddot{T}) open set in W such that $(U, \ddot{T}) \cap (V, \ddot{T}) = \varphi$. Then, $(U, \ddot{T}) \subseteq W - (V, \ddot{T})$ and $W - (V, \ddot{T})$ is -m (P, \ddot{T}) closed, \exists a SOPS (G, \ddot{T}) and a soft -m (P, \ddot{T}) closed set (F, \ddot{T}) such that $(U, \ddot{T}) \subseteq (F, \ddot{T}) \subseteq (G, \ddot{T}) \subseteq W - (V, \ddot{T})$. This implies that mCl $(U, \ddot{T}) \cap W$ - [Int $(W - (V, \ddot{T}))$] = φ . But W- [Int $(W - (V, \ddot{T}))$] = Cl (V, \ddot{T}) . That is, mCl $(U, \ddot{T}) \cap Cl (V, \ddot{T}) = \varphi$ and by Theorem 3.9 W is SmEDS.

4. Bibliography

- 1. U. Acar, F. Koyuncu, B. Tanay, "Soft sets and soft rings", Comput. Math Appl. ,59, (2010),3458--3463. 010, doi: 10.1016/j.camwa.2010.03.034
- 2. M. Akdag, A. Ozkan, "Soft b-open sets and soft b-continuous functions", Math Sci 8:124, DOI10.1007/s40096-014-0124-7 (2014).
- 3. M. Akdag, A. Ozkan, "On Soft Preopen Sets and Soft Pre-Separation Axioms", Gazi University Journal of Science GU J Sci ,27, (4), (2014),1077--1083.
- 4. M. Akdag, A. Ozkan, "On Soft β -Open Sets and Soft β -continuous Functions", The Scientific World Journal, Article ID 843456, pages 6, (2014).
- 5. M. Akdag, A. Ozkan, "On Soft α -open Sets and Soft α-Continuous Functions", Abstract and Applied Analysis http://dx.doi.org/101155/2014/891341, Article ID 891341,7 pages (2014).
- 6. M. Irfan Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, "On some new operations in soft set theory", Comput. Math. Appl, 57, (2009),1547--1553.
- 7. I. Arockiarani, A. A. Lancy, "Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces", International Journal of Mathematical Archive,4, (2013),1--7.
- 8. D.N. Georgiou and A.C. Megaritis, "Soft set theory and topology". Appl. Gen. Topol., 15, (1) (2014),93--109.
- 9. H. Hazra, P. Majumdar, S. K. Samanta, "Soft topology", Fuzzy Inf. Eng., DOI 10 (2012).
- 10. A.S. Hussain, B. Ahmad, "Some properties of soft topological spaces", Comput. Math.Appl.,62, (2011),4058-4067.
- Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, "Υ-operation and decompositions of some forms of soft continuity in soft topological spaces", Annals of Fuzzy Mathematics and Informatics ,7, (2), (2014),181--196.
- 12. I. Kharaland B. Ahmad, "Mappings of soft classes", New Math. Nat. Comput., 7, (2011), 471--481.
- 13. P. K. Maji, R. Biswas and A. R. Roy, "Soft set theory", Comput. Math. Appl., 45, (2003), 555--562.
- 14. P. K. Maji, R. Biswas and A. R. Roy, "An application of soft sets in decision making problem", Comput. Math. Appl.,44, (2002),1077--1083.
- 15. J. Mahanta, P. K. Das, "On soft topological space via semi open and semi closed soft sets", Kyungpook Math. J., 54, (2014),221--236.
- 16. Won Keun Min, "A note on soft topological spaces", Computers and Mathematics with Applications, 62, (2011), 3524--3528.
- 17. D. Molodtsov, "Soft set theory First results", Comput. Math. Appl. 37, (1999), 19--31.
- 18. D. Molotov, V.Y. Leonov and D.V. Kovkov, "Soft sets technique and its application", Nechetkie Sistemyi Myagkie Vychisleniya., (2006),8--39.
- 19. E. Peyghan, B. samadi, A Tayebi, "On soft Connectedness", Math GNFeb-9,(2012).
- 20. E. Peyghan, B. Samadi, A. Tayebi, "About soft topological spaces", Journal of New Results in Science, 2 (2013),60--75.

Volume 13, No. 2, 2022, p. 3624-3630

https://publishoa.com

ISSN: 1309-3452

- 21. S.S. Thakur and Alpa Singh Rajput, "On Soft M-continuous Mappings", The Journal of Fuzzy Mathematics Vol. 25, No. 2, 2017,313--326.
- 22. M. Shabir and M. Naz, "On soft topological spaces", Computers and Mathematics with Applications Elsevier, 61, (2011),1786--1799. doi.org/10.1016/j.camwa.2011.02.006.
- 23. Q. M. Sun, Z. L. Zhang, J. Liu, "Rough Sets and Knowledge Technology", In proceedings of Third International Conference RSKT 2008 17--19, (2008),403--409.
- 24. S. S. Thakur, Alpa Singh Rajput, Connectedness between soft sets, New Mathematics and Natural Computation Vol. 14, No. 01, pp. 53-71 (2018),doi.org/10.1142/S1793005718500059.
- 25. S.S. Thakur, Shailendra Singh Thakur Alpa Singh Rajput, "Extremally Disconnectedness in soft topological spaces", The Journal of Fuzzy Mathematics, 27(2), 2019, 1-11.
- 26. Tareq Al-shami, El-Sayed Abo, "Connectedness and Local Connectedness on Infra Soft Topological Spaces, Topological Spaces". Mathematics 2021,9, 1759 DOI: 10.3390/math9151759.
- 27. Savita Rathee and Ridam Girdhar, "On Soft ω-Connectedness in Soft Topological Spaces", Communications in Mathematics and Applications Vol. 12, No. 3, pp. 457–474, 2021, DOI: 10.26713/cma. v12i3.1515.
- 28. I. Zorlutana, N. Akdag, W.K. Min, "Remarks on soft topological spaces", Ann Fuzzy Math. Inf.,3, (2), (2012),171--185.
- 29. Idris Zorlutunal, and CakirHatice, "On Continuity of Soft Mappings", Appl. Math. Inf. Sci. ,9, No. 1, (2015), 403--409. DOI: 10.12785/amis/090147