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ABSTRACT 

To put it simply, malware is posing a serious threat to global network security as the Internet era has progressed at an 

unprecedented rate. Using SIMGRU, we present an Android malware detection method that falls under the static 

detection category. Using the clustering similarity, which is widely used in static analysis of Android malware, we were 

able to improve the Gated Recurrent Unit (GRU) and produce three distinct structures of Sim GRU: Input Sim GRU, 

Hidden Sim GRU, and Input hidden SIMGNU There are two types of input hidden sim gru: input and hidden. Results 

show that the GRU model and other methods are outperformed by the Sim GRU, Hidden GRU, and Input Hidden GRU. 

Keyword: SimGRU (Gated Recurrent Unit)  

I. INTRODUCTION: 

Mobile software is constantly being released into the market, which makes it easier for malicious software to spread. 

This has led to a rise in the number of malicious Android apps and newer Android malware. [1] In order to evade 

detection and thwart analysis, Android malware is becoming increasingly sophisticated and powerful. As a result, it can 

be concluded that Android malware on mobile phones continues to pose a threat to device security. Malware can be 

identified in a variety of ways, as experts have proposed [2–9]. Static detection, dynamic detection, and hybrid detection 

are the three main types. An application's malicious code can be detected using static analysis, which reverse engineers 

the programme and extracts key features. It is possible to detect known malware quickly and effectively using static 

analysis, which is based on matching analysis. While the application is running in a simulated environment, malicious 

behaviour can be detected using the dynamic detection approach. Dynamic and static detection are both used in the 

hybrid detection method. 

1.1 GRU 

Among other things, GRU is an RNN model that eliminates the gradient disappearance issue common to native RNNs. 

A reset and an update gate are two of the GRU's two structural gates. An adaptive structure of two gates can be learned 

from the hidden state of the previous GRU unit's inputs and output. 

1.2 The SIMGRU  

We use GRU's similarity function, which is used by other malware detection systems, to enhance Android's malware 

detection performance. This model is referred to as SIMGRU. 

1.3 Purpose 

The purpose of this section is to explain the rationale for my decision to New techniques are being developed by 

malicious programmers in order to evade detection as all existing techniques are heavily reliant on static and malware 

analysis, where static analysis will extract dynamic features such as permissions and API calls, then check whether an 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 2, 2022, p. 3657-3668 

https://publishoa.com 

ISSN: 1309-3452 

3658 

app is requesting harmful permission or not, and if it is requesting harmful permissions, then that application will be 

flagged as malicious. 

1.4 Problem statemdent: 

For the first time, the author of this paper is using a similarity function called Euclidean Distance with GRU algorithm 

to extract similar features from a dataset, and this similar features will then be trained with GRU algorithm to improve 

the detection process. GRU neurons will be able to remember and predict similar neurons with a higher degree of 

accuracy, just like human brain neurons can remember similar events. 

1.5 The Scope: 

The static detection approach, which uses SIMGRU to detect Android malware, is what we propose. 

The scope of the project is defined as follows: 

Using GRU algorithms, we can find similarities between input and hidden neurons to gather more important features 

and then remove or hide the unimportant ones, increasing the accuracy of our predictions. GRU algorithms work on 

both input and hidden neurons. Because all malware-infected Android apps use the same API calls and other activities, 

identifying features that are similar allows us to extrapolate critical information that aids in our analysis. 

1.6 SVM-based malware detection on Android smartphones using a vector of keywords 

Smartphones have led to an increase in the number of mobile phone malwares, particularly on popular mobile operating 

systems such as Android, which can potentially harm users' personal information. It's been a challenge, however, to find 

a way to effectively detect new malware and malicious software variants. This paper presents a method for extracting 

features from Java source code in contrast to the traditional feature extraction method based on binary code. Key codes 

like API calls, Android permissions, the common parameters, and common key words in Android malware source code 

can be correlated using the Keywords Correlation Distance method. Afterwards, SVM is used to increase the system's 

ability to detect new malicious software as well as existing malware samples. Contrary to more traditional approaches, 

which rely on the text's context, this approach disregards that information. This method records the malicious software's 

behaviour by combining the characteristics of the various types of malicious software with the operating system itself. 

The method has been shown to be efficient and effective in detecting malware on the Android platform in tests. 

Selection of representative samples by frequent subgraph analysis for the classification of Android malware families 

Anti-malware systems face major challenges due to the rapid increase in Android malware, as the sheer number of 

samples overwhelms malware analysis systems. In order to speed up malware detection and inspection, malware 

samples should be classified into families, so that the common features shared by malware samples from the same 

family can be exploited. The selection of representative malware samples from each family can significantly reduce the 

number of malware samples that must be analysed. ' There are, however, a number of limitations to current 

classification solutions. For starters, the majority of Android malware is created by inserting malicious components into 

popular apps, which could lead to classification algorithms being misled. Second, Android malware that is polymorphic 

uses transformation attacks to avoid detection. To represent the common behaviours of malware samples belonging to 

the same family, we present in this paper a novel approach that creates frequent subgraphs (fregraphs). The FalDroid 

system we're proposing and developing classifies Android malware and selects representative samples based on 

fregraphs automatically. On 8407 malware samples from 36 families, we put it to the test. FalDroid can correctly 

classify 94.2 percent of malware samples into their families in about 4.6 seconds per app, according to experimental 

results. Malware investigation costs can be drastically reduced by using FalDroid, which only selects 8.5% to 22.5% of 

all samples that exhibit the most common malignant behaviour. 
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II.  Method of detecting Android malware using the Naive Bayes and permission correlation algorithms 

To better detect Android malware, an improved naive Bayes classification model for Android malware detection was 

proposed. An improved naive Bayes algorithm for malware detection is proposed in the first place, taking into account 

the unknown permissions that may be malicious in detection samples. Given the limited training samples, limited access 

to resources, and new malicious permissions in test samples, we weighted the new malware permissions in the test 

samples. The Android malware detection efficiency is enhanced by the weighted naive Bayesian algorithm. Second, we 

proposed a detection model for permissions and information theory based on the improved naive Bayes algorithm, 

taking into account the detection model. We looked at the relationship between the permission and the data. After 

determining the Pearson correlation coefficient r's value, we deleted permissions with r's value less than the threshold 

and obtained the new permissions set by deleting those permissions. So, using information theory, we were able to 

improve our detection model by clustering. Finally, in the same simulation environment, we found 1725 pieces of 

Android malware and 945 pieces of non-malicious code. An increased detection rate of 97.59 percent for benign 

applications is achieved using the improved naive Bayes algorithm. False detection rates are reduced by 8.25 percent 

using the improved naive Bayes algorithm. 

4. Deep4MalDroid: A Linux kernel system call graph-based deep learning framework for Android malware detection, 

Android malware detection is a hot topic in cyber security because of the explosive growth of Android malware and the 

harm it causes to smartphone users (e.g., the theft of user credentials, resource abuse). Anti-malware software products, 

such as Norton, Lookout, and Comodo Mobile Security, are currently the most significant line of defence against 

Android malware. The use of repackaging and obfuscation techniques by malware attackers to get around signatures 

and thwart attempts to analyse their inner mechanisms is on the rise. It is necessary to develop defences that can 

withstand the ever-evolving sophistication of Android malware, which necessitates the development of new techniques. 

Component Traversal is a novel dynamic analysis method that can automatically run the code routines of any given 

Android application (app) as thoroughly as possible. A deep learning framework based on graph-based features is used 

to detect newly discovered Android malware based on the extracted Linux kernel system calls. In order to compare 

various malware detection approaches, an extensive experimental study was conducted on a real sample collection from 

the Comodo Cloud Security Center. Experiments show that our method outperforms other Android malware detection 

techniques, which is encouraging. An anti-malware system for Android developed by us, Deep4MalDroid, has been 

integrated into a commercial product. 

As a result of this work, the UCI ML repository's banknote authentication dataset was subjected to three different train 

test ratios: 80/20, 60/40, and 70/30. Attributes in the dataset include 1372 for features and 5 for the target attribute, 

which has a value as either genuine bank currency or fake currency. 

III. Proposed Systems 

3.1 GRU Algorithm 

A similarity function called Euclidean Distance is used in this paper to extract similar features from a dataset, and these 

features are then trained using the GRU algorithm. 

Using GRU algorithms, we can find similarities between input and hidden neurons to gather more important features 

and then remove or hide the unimportant ones, increasing the accuracy of our predictions. GRU algorithms work on 

both input and hidden neurons. 

3.1.1. GRU, INPUT SIMGRU, HIDDEN SIMGRU, and INPUT HIDDEN SIMGRU were used in this study. 

The performance of similarity functions in malware detection, which we call SimGRU, allows GRU to detect Android 

malware.  
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3.1.2 ASSERT SIMGRU  

GRU uses a vectorized representation of the original data as its input vector xt. S=sim can be used to represent the 

similarity function (xt-1, xt ). x=(1-s)xt-1 can be used to determine the degree of similarity between two points in time. 

Because of this, we've added a similarity function called InputSimGRU to GRU. 

3.1.3. Hiding Simgru 

Human neurons are modelled in GRU's hidden state ht, so the representation of GRU cells may improve Android 

malware detection. A similarity between two hidden states can be calculated as h=1-sht-2, and the similarity between 

two adjacent hidden states is s=ht-1sim. Known as HiddenSimGRU, this is the name of the GRU being proposed. 

3.1.4 INPUT SIMGRU HIDEOUT 

A GRU cell can learn more similarities by comparing input and hidden state similarity simultaneously. This is possible 

because the input and hidden state can be used to detect Android malware from different perspectives. Input Hidden 

Sim GRU is the name of the model. 

 

Fig.1. Architecture diagram 

 

Fig. 2. Algorithm and Process Design diagram 
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Use this module to upload the Drebin malware dataset and then view the total number of malicious and benign records 

in a graph. 

Pre-process Dataset: This module will read the entire dataset and remove all of the non-existent values, before dividing 

the dataset into two separate training and testing sets. 

Use this module to train the GRU algorithm on the above dataset without using any similarity functions, and then 

determine the accuracy of the train validation. 

This module is used to train GRU algorithm by finding similarity between input features X and X-1 using Similarity 

Euclidean distance function. 3) Run Input-GRU algorithm. 

To train GRU, we'll use this module's Similarity Euclidean distance function to compare two sets of unobserved hidden 

features. 

We will use this module to train the GRU algorithm by comparing the inputs X and X-1 and the hidden features they 

contain to each other using the Similarity Euclidean distance function. 

Algorithm performance metrics, such as precision, recall, and accuracy will be graphed in this module. 

IV. Outcome and Implementation 

4.1 The collection of data 

The Drebin dataset was used by the author to implement this project, and we will be using the same dataset to 

implement this paper. Using different static APIs and permission calls, the dataset column details are illustrated in the 

diagrams below. 

 

Fig.3. Dataset column 

Android permission and API call names appear first in this dataset, followed by either 0 or 1 where 0 indicates that the 

app is not requesting permission or accessing that API, and 1 indicates a request for permission and/or an API call. 

4.2 Metrics for Evaluation: 

Performance, Accuracy, and Receiver Operating Capabilities-Area. We use ROC-AUC metrics to gauge how well our 

models are performing. FPR=False Positive Rate must be used to evaluate the F1-score, accuracy, precision, and recall. 

To put it another way, TPR stands for True Positive Rate. 

F1-score: Accuracy, Precision, Recall 

True positive (TP) is defined as the number of events that are correctly identified. 

An incorrectly predicted or unneeded number of events is referred to as a false negative (FN). 

An FP is a number of events that were incorrectly predicted. 
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"True negative" (TN): the number of events that can be predicted correctly and are therefore unnecessary. 

Ratio of falsely positive results: Machine learning model accuracy can be measured using this metric. 

https://deepchecks.com/glossary/machine-learning-model-accuracy The formula for calculating the FPR is: 

FP/(FP+TN) 

a measure of the accuracy of a test result It is a synonym for recall and is therefore defined as TPR=FP/(FP+TN). 

Accuracy: To measure performance, simply divide the number of correctly predicted observations by the total number 

of predicted observations. 

Accuracy=(TN+TP)/(TP+FP+TN+FN) 

It's the ratio that accurately predicts positive observations in the original data. 

TP/(TP+FN) = Recall 

In order to get the most accurate results, precision is needed. In other words, this means determining the total number of 

software's predicted to be positive that are actually positive. Precision is calculated as follows: TP/(TP + FP) = TP/(TP). 

F1-score: The F-score is a way of combining precision and recall in a machine learning model. high levels of accuracy 

and recall https://deepai.org/machine-learning-glossary-and-terms/precision-and-recall Mean  

Precision and recall are two important properties of the model, and they are both described by the term "harmonic 

mean" at https://deepai.org. The F-score is another name for it. Precision Recall/Precision + Recall is the formula used 

to calculate F1 Score. 

If you're trying to solve a classification problem, you'll want to keep an eye out for metrics that can help you determine 

how well you're doing.4.3 Outcome: 

 

Fig.4. Upload Drebin Malware Dataset diagram 

In above diagram click on ‘Upload Drebin Malware Dataset’ button to upload dataset 

 

Fig5. Upload Upload Drebin Malware Dataset 
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In above diagram selecting and uploading ‘drebin’ dataset and then click on ‘Open’ button to load dataset and to get 

below diagram 

 

Fig.6. number of malware and benign (normal) records 

In above diagram in text area we can see dataset loaded and in dataset application find total number of malware and 

benign (normal) records. In above graph x-axis represents type of record where B means benign and S mean malware 

and y-axis represents count of those records. Now close above graph and then click on ‘Preprocess Dataset’ button to 

process dataset by removing missing values and to get below diagram 

 

Fig. 7. Dataset Processing 

In above diagram we can see dataset process and in dataset total 15036 records are there and each record contains 215 

features or values. Now dataset is ready and now click on ‘Run GRU Algorithm’ button to train GRU with above 

dataset and to get below output 

 

Fig.8. GRU accuracy, precision and recall 

In above diagram we can see GRU accuracy, precision and recall values and we in graph we can see TRAIN and 

validation accuracy of GRU. To train GRU we took 10 EPOCHS and in above graph x-axis represents EPOCH and y-

axis represents accuracy values. In above graph blue line represents training accuracy and red line represents validation 
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accuracy. Now close above graph and then click on ‘Run Input-GRU Algorithm’ button to get below output

 

Fig. 9 Train and Validation Accuracy 

In above diagram we can see Input-GRU output and now close above graph and then click on ‘Run Hidden-GRU 

Algorithm’ button to get below output 

 

Fig. 10 Hidden-GRU output 

In above diagram we can see Hidden-GRU output and now close above graph and then click on ‘Run Input-Hidden-

GRU Algorithm button to get below output 

 

Fig. 11. Input-Hidden-GRU’ output 

In above diagram we can see ‘Input-Hidden-GRU’ output and now in above output we can see Input-Hidden-GRU got 

high accuracy compare to other algorithms and now close above graph and then click on ‘All Algorithms Performance 

Graph’ button to get below graph. 
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Fig. 12. Input-Hidden-GRU 

In above graph x-axis represents algorithm names with different bars representing different metrics and y-axis 

represents metric values. In above graph Input-Hidden-GRU has got high values compare to other algorithms. From 

above graph we can conclude that ‘Input-Hidden-GRU’ is giving better result 

Extension Outcomes: 

In this paper we have introduced GRU algorithm with various versions like HIDDEN and INPUT HIDDEN and getting 

accuracy up to 99.50% and in extension we have added Convolution2D neural network with multiple filters and 4 

dimensional data as input features which allow CNN to optimize features with much more flexibility with more filters 

and multi dimension data. This optimize features helps in improving accuracy.  As extension we have added two 

algorithms called CNN to further optimize accuracy and PREDICTION module to detect malware or normal records 

from Test data 

 

Fig. 13 Malware and normal records 

In above graph getting number of malware and normal records and now close above graph to get below output 

 

Fig. 14.GRU Accuracy 
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In above diagram with GRU we got 98% accuracy and with Input GRU we got 98.67 accuracy and now close graph to 

get below output 

 

Fig. 15. Hidden GRU 

In above diagram with Hidden GRU we got 99.09 accuracy and close graph to get below output 

 

Fig.16. Input Hidden GRU 

In above diagram with Input Hidden GRU we got 99.50% accuracy and close graph to get below output 

 

Fig. 17 Extension CNN 

In above diagram with Extension CNN we got 99.59% accuracy and recall as 100% and this value is more than other 

algorithms and in above training graph we can see CNN validation and training accuracy reached to 100% and now 

close above graph to get below graph. 
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Fig. 18. CNN Extension 

In above graph x-axis represents algorithm names and y-axis represents accuracy and other metrics in different colour 

bar and in above graph we can see CNN extension got high accuracy and RECALL values compare to other algorithms 

and now close above graph to get below output. 

 

Fig. 19 CNN prediction 

In above diagram in square bracket you can see the TEST data values and after =➔ arrow symbol you can see CNN 

prediction as NORMAL or MALWARE for each record 

CONCLUSION 

This paper introduces the GRU algorithm with various versions such as HIDDEN and INPUT HIDDEN and achieves 

an accuracy of up to 99.50%, and in an extension we have added the Convolution2D neural network with multiple 

filters and 4 dimensional data as input features, which allows CNN to optimise features with much more flexibility with 

multiple filters and multi-dimensional data. As a result of these enhanced features, accuracy has been improved. 

Additional CNN algorithms have been added to improve the accuracy and prediction of detecting malware or normal 

records from test data. 
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