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ABSTRACT 

 

 Brain Glioblastoma Multiforme (GBM) is one of the most dangerous types of primary malignancy, with a 

terrible 5-year survival rate of about 4% to 5% and a recurrence rate of up to 90%. Recently, the development of tumour-

treating fields has shown positive clinical trial results for further survival extension but no superior efficacy has been 

observed in the treatment of recurrent GBM. The goal of this research is to discover the Machine Learning (ML) 

technology used to predict recurrence risk in glioblastoma patients before and after surgery. Radiomics is extensively 

being applied to advanced and conventional neuro-oncologic imaging data for glial tumours’ infiltrating margin 

detection, postoperative recurrence risk, and overall survival prediction is performed utilizing the rapid evolution of 

computational methods. Pre-operative Multi-Parametric Magnetic Resonance Imaging (MP-MRI) scans may be used to 

predict future tumour recurrence and to characterise tumour infiltration. Due to data inhomogeneity, Z-score 

normalisation and spatial resampling are initially used to address the MR image pre-processing. Subsequently, to address 

the problem of unbalanced data in medical image semantic segmentation, Recurrent Generative Adversarial Architecture 

(RNN-GAN) was developed. To construct a stable and validatable preoperative from the tumour area and the peritumoral 

edema area the research work utilized the CE-T1WI (contrast-enhanced T1-weighted imaging) model to objective 

response rate (ORR) as well as predict progression-free survival (PFS) in recurrent GBM patients treated with the 

combination of Bevacizumab and Nivolumab. Additional, to forecast glioblastoma recurrence, the research work 

proposed a Random forest (RF) model and a Deep neural network is utilized. The system is successfully trained and 

internally validated, and the patients at high risk of early recurrence are also identified. Subsequently, Inheritable Bi-

objective Combinatorial Genetic Algorithm is presented as a feature optimization algorithm to select the relevant factors. 

The proposed approach has excellent accuracy in predicting GBM patient survival with recurrence rate. The proposed 

method is evaluated using Python and the proposed method is compared with existing SVM and LR models. The 

accuracy, specificity, and sensitivity of the proposed method are 3%, 4%, and 5% higher than the existing methods. 

Subsequently, this research demonstrates that predicted individual patient survival and time to recurrence produces high 

sensitivity, specificity and accuracy in a retrospective patient cohort. 

 

Keywords: Brain Glioblastoma Multiforme, Z-Score Normalisation, Resampling, Recurrent Generative Adversarial 
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1. INTRODUCTION 

 Glioblastoma Multiforme (GBM) is a Grade IV tumour that accounts for approximately 15 to 20% of all initial 

brain tumours, according to the World Health Organization. In the United States, GBM is the highest prevalence in the 

75-84 age group and it increases with age. Rapid mitotic activity, necrosis, microvascular growth, and cellular 

polymorphism are the most aggressive astrocytic tumour as histological characteristics. The GBM patients have a poor 

prognosis, based on the advancements in multimodal therapy choices and imaging technology [1]. Patients who do not 

receive any intervention after diagnosis die soon but patients who receive optimum treatment have an average survival 

time of 12 to 18 months. Subsequently, long-term survival or only a few cases of curative outcome have been reported 

[2]. Scott calculated that 2.2% of the cohort existed for more than two years in a comprehensive retrospective 

investigation. Consequently, with a near-100% final fatality rate, there is less than a 10% for survival rate in 5-years [3]. 

Subsequently, based on the high likelihood of tumour recurrence, glioblastoma has a poor prognosis [4]. Subsequently, 

after 32 to 36 weeks of median survival time, it has been indicated that GBM recurrence is unavoidable. 
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Recurrent Glioblastoma Following Nivolumab and Bevacizumab 

 Under current treatment 4-6, survival rates of patients for two years with recurrent GBM vary from 26% to 33%, 

and survival rates for five years are less than 10%. Accordingly, to improve GBM patient outcomes, novel approaches 

are required [5]. Angiogenesis, which is accompanied by elevated expression of vascular endothelial growth factor 

(VEGF), is the key pathway in GBM pathogenesis. In recurrent GBM patients, some innovative anti-angiogenesis 

techniques could be a promising treatment [6]. Due to a clear increase in PFS and encouraging radiological response 

rates in 2009, the Food and Drug Administration (FDA) approved bevacizumab for recurrent GBM patients [7]. In some 

phases, bevacizumab did not affect overall survival (OS) because of the positive PFS results. In huge RCTs, unlike many 

other anti-VEGF medications drugs, such as cediranib (VEGF inhibitor), regorafenib (VEGF-TKI), nivolumab (anti-

VEGF neutralising antibody), aflibercept (soluble VEGFR), and, bevacizumab produced mixed outcomes in terms of OS 

and PFS [8]. Consequently, to investigate the results of glioblastoma treatment for recurrent GBM patients, a meta-

analysis combining VEGF and anti-VEGF is instantly required [9]. 

Medical Image Modalities 

 MRI plays a crucial role in the grading, treatment response assessment of brain tumours, diagnosis, therapy, and 

other intracranial lesions. In order to evaluate a variety of biophysical parameters of brain tissue quantitatively, several 

complementary MR imaging techniques have been established [10]. Accordingly, for multi-parametric glioblastoma 

assessment, only a few have used modern MRI modalities, and numerous studies have been conducted on machine-

learning-based glioma classification [11]. Hsieh et al used the logistic regression (LR) method to successfully identify 

glioblastoma from diffuse lower-grade gliomas, with a 91% accuracy and precision of 85% [12]. The availability of 

experience, facilities, and the clinical challenge at hand should influence the selection of imaging sequences for the 

multiparametric assessment of brain tumours. In the different analysis and acquisition approaches, they are more 

accessible and resistant but the information about recurrent tumour issues does not use. Patients’ outcomes following 

recurrent GBM tumour excision have been assessed retrospectively in previous research [14]. Degree of surgical 

resection, the time interval between the first and second procedures, preoperative KPS score, and age were all found to be 

substantially linked with OS in at least one of these investigations [15]. In contemplating the surgery of patients, they did 

not provide any preoperative guidance. Consequently, the article presented a machine learning-based technique for 

predicting recurrence risk in glioblastoma patients. The remaining part of the work is organized as follows, section 2 

portrays the literature survey of the study, and the research problem definition and motivation are exposed in section 3. 

The proposed research methodology is disclosed in section 4, section 5 elucidates the experimentation and result 

discussion section, and section 6 reveals the conclusion of the research work. 

2. LITERATURE SURVEY 

 

 The literature survey is based on the study of glioblastoma recurrence risk prediction among different patients. 

The utilizes different methods for brain glioblastoma Multiforme recurrence risk prediction. 

Clément Acquitter et al [16] investigated the potential added value of multiparametric MRI harmonization in 

improving a radiomics-based categorization challenge. They found that the “scanner effect” is reduced by harmonization, 

which is caused by enhancing the radiomics-based classification model’s predictive performance and differences in 

multiparametric MRI protocol settings between participating centres. The most accurate classification of tumour 

development and radionecrosis was achieved using radiomics characteristics retrieved from MRI perfusion. Before any 

injection of contrast product, had accuracies that were comparable to the perfusion model, the study found that radiomics 

characteristics recovered from T1-weighted MRI alone. 

Kellen Mulford et al [17] investigated the usage of radiomics to forecast glioblastoma cell motility. From 31 

patients who had their glioblastoma surgically removed, the tissue samples were collected. Specimen cells’ time-lapse 

videos were used to compute mean tumour cell motility. The normalised image volumes extract the 107 radiomics 

features and the enhancing tumour’s border T1-weighted MR images were defined manually. The adaptive lasso 

technique was used to estimate model parameter coefficients, which were then validated using permutation tests and 

leave-one-out cross-validation (LOOCV). The prediction model’s -values for each parameter estimate were less than 

0.0001 and the R-squared value was 0.60. 

In clinical routine imaging, to discriminate treatment-related changes (TRC) and recurrent glioblastoma (GBM), 

the MRI models for single multiparametric are examined by Felix Eisenhut et al [18]. Accordingly, they performed the 

mean, minimum, and maximum cerebral blood volume (CBV) as well as the unselective and selective apparent diffusion 

coefficient (ADC) in the lesion. CBVlesion to CBVhealthy white matter ratios were calculated at the mean, minimum, 
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and maximum ratios of CBD. Subsequently, for lesion discrimination, all of the data was tested. In an independent 

patient cohort, multiple logistic regression is used to compile a multiparametric model using data revealing a substantial 

difference between TRC and GBM and assessed for diagnostic strength. 17 patients are affected with TRC and 17 

patients are affected with recurrent GBM, a total of 34 patients were utilized in the study. Consequently, there was no 

discernible difference in ADC readings between the two entities. 

Yae Won Park et al [19] distinguish recurrent glioblastoma (GBM) from radiation necrosis (RN) after 

radiotherapy or concurrent chemoradiotherapy (CCRT) from the diffusion MRI and a high-performing radiomics 

technique that used ML from conventional is developed. Following radiotherapy or CCRT, in the training set, 86 GBM 

patients were enrolled and within the radiation field on follow-up MRI, a contrast and new enhancement is presented. 

Either clinicoradiologically or pathologically (23 RN and 63 recurrent GBM), a diagnosis was made. The test group 

included 41 patients (18 with RN and 23 with recurrent GBM) from a separate hospital. A 263 radiomic features were 

extracted from conventional MRI sequences (postcontrast T1-weighted and T2-weighted images) and ADC. 

Oversampling approaches were utilized to train several ML models with combinations of MRI sequences, which were 

then confirmed in the test set, which is performed after feature selection. 

 Using machine-learning techniques, Samy Ammari et al [20] found a biomarker collected from clinical and 

MRI data that might predict PFS and OS in GBM patients treated with bevacizumab. Radiomics data from 

gadoliniuminjected MRI images and pre-treatment T2 FLAIR, as well as clinical characteristics, were analysed in a 

group of 194 recurrent GBM patients (ages 18–80). Subsequently, at 9, 12, and 15 months, binary classification models 

for OS were tested. The OS was successfully stratified using their classification models. Subsequently, for the 9-, 12-, 

and 15- month endpoints, the AUCs on the test sets, are 0.78, 0.85, and 0.76 and on the training sets, the AUC is 0.79, 

0.82, and 0.87. 

Bin Sheng Wong et al [21] proposed that a microfluidic technique for quantifying proliferation and cell 

migration might be used to categorize glioblastoma patients based on their PFS. The ability of primary glioblastoma cells 

is assessed to proliferate (as measured by the protein biomarker Ki-67) as well as squeeze into microfluidic channels, 

simulating brain parts parenchyma's narrow perivascular conduits and white-matter parenchyma. With an 86% accuracy, 

the test retrospectively classified 28 patients based on PFS (short-term or long-term), based on survival, and 

prospectively classified five more patients, and predicted time to recurrence. The highly motile cells' RNA sequencing 

identified differentially expressed genes that were linked to a bad prognosis. To predict patient-specific outcomes, the 

amounts of proliferation and cell migration can be used which implies in the findings.  

The formation of glioblastoma multiforme (GBM) with similar imaging characteristics to human GBM is 

examined by Seunghyun Lee et al [22] in an orthotopic xenograft canine GBM model using multiparametric MRI. In a 

total of 15 surgical success instances, with dynamic susceptibility CE perfusion-weighted imaging (PWI), diffusion-

weighted imaging (DWI), and conventional MRI, at one week and two weeks after surgery, the multiparametric MRI was 

performed. On the histologic specimen, the tumour's microvessel density (MVD), the presence of tumour cells and the 

necrotic area fraction were all evaluated. Subsequently, between the histologic parameters and imaging, a Spearman 

correlation analysis was performed. 

In order to predict recurrence patterns in glioblastoma, two different neural network models are proposed by Ka 

Young Shim et al [23] using high-dimensional radiomics profiles based on perfusion MRI for each patient in the 

validation set: 0.864 (0.726–0.976) for distant recurrence, for local recurrence, is 0.969 (0.903–1.000), (95% confidence 

interval) for the area under the curve (AUC). In contrast to research that looks at only group differences, this opens up 

the possibility of providing tailored medicine. In order to intratumoral perfusion heterogeneity, for each recurrence 

pattern, the salient radiomic features are related and discovered by interpretable deep learning.  

A post-surgery multiparametric magnetic resonance-based support vector machine (SVM) technique is 

developed by Yi Lao et al [24], which included an estimate of stem cell niche (SCN) proximity. The analysis of 50 

patients with recurrent GBM begins approximately two months prior to clinically diagnosed recurrence , this data is 

utilized for post-surgery MRI scans. In order to recognize regions with a High Risk of Recurrence (HRRs), a proximity-

based estimator was used and to offer voxel-wise prediction in HRRs, an SVM classifier was used. During training and 

testing, the cohort was randomly divided into two groups of 40% and 60%. Subsequently, for earlier recurrence 

prediction, the learned SVMPE was projected to an earlier time point.  

The efficacy in patients with recurrent glioblastoma was studied by Beatrice Detti et al [25], with the impact on 

acceptable toxicity profile and survival endpoints. Subsequently, recurring disease must be treated systemically at least 

once , high-grade glioma was treated at their institution that underwent histological or radiological progression for the 
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patients’ retrospective review data. Until the unacceptable toxicity or the disease progression, combining chemotherapy 

with bevacizumab was common. OS and PFS were measured utilizing the bevacizumab regimen. In PFS, performance 

status, usage of corticosteroids and age at diagnosis (< 65 or > 65 years) was strongly associated during bevacizumab 

therapy. 

This study provides an overview of recent advances in MRI sample processing for early detection of brain 

tumours and gliomas utilising a deep learning technique by Disha Wankhede et al [27]. In MRI image processing, the 

benefit of learning capability and finer processing efficiency has acquired an edge, allowing for improved processing 

efficiency and accuracy in early diagnosis. The usefulness of picture coding based on chosen characteristics and state-of-

the-art processing in diagnosis has been demonstrated using a deep learning technique. The accuracy of the MRI sample 

processing assessment goal was higher than that of comparable current techniques. The current technique for MRI 

diagnosis is discussed in terms of recent trends, benefits, and limitations. 

This study discusses recent advances in medical diagnostics and deep learning applications for heart disease 

detection by Trupti Bhandare et al [28]. The application, database, and learning system employed in the automation 

process are examined, and the evolution of the deep learning technique for medical data analysis is explained. 

In this paper, weighted clustering is proposed as a diagnostic method for heart disease by Trupti Bhandare et al 

[29]. 

A new model for glioblastoma survival prediction based on CNN features was created in the paper by Disha 

Wankhede et al [30]. 

3. RESEARCH PROBLEM DEFINITION AND MOTIVATION 

 Glioblastoma has a terrible prognosis, with a less than 10% of survival rate for 5-years. Following standard-of-

care surgical radiotherapy, temozolomide, and resection, nearly all patients have a recurrence. Extremely, the biology of 

recurrent glioblastoma is relatively unknown but the majority of current glioblastoma research focuses on primary 

tumours, which are those that are freshly identified and untreated tumours. Subsequently, this knowledge gap can be 

credited to several factors. A large-scale systematic tissue banking is hampered for the surgical treatment for this only 

20–30% of recurrent glioblastomas are accessible. In comparison to original glioblastoma tissues, recurrent glioblastoma 

tissues have less viable tumour cell concentration and more necrotic tissue. Subsequently, for recurrent glioblastoma, 

currently, there is no conventional treatment and during the initial diagnosis, most patients die within 12–15 months. In 

this patient population, this emphasises the importance of innovative therapeutic strategies. 

In the treatment of glioblastoma, immunotherapy has been used to increase antitumor immune response in the 

area of recent research. T-cell costimulatory cytokines on activation and major histocompatibility complex III antigens 

are expressed by resident macrophages and the central nervous system (CNS) in this accumulating evidence suggests that 

immune cells can function, proliferate, and enter. In patients with recurrent GBM, antibodies targeting immunological 

checkpoints have demonstrated little efficacy. These data, as well as results from murine glioma models that demonstrate 

checkpoint inhibitors improve survival, imply that immune checkpoint blockade could be a viable therapy option for 

glioblastoma. In order to boost the immune response to tumour cells, preclinical research has shown that moderate 

hypofractionated radiation works in tandem with immunotherapy. Accordingly, this inspires researchers to use ML and 

quality improvement to examine the efficacy of bevacizumab and nivolumab in patients with GBM recurrence. 

4. PROPOSED RESEARCH METHODOLOGY 

 Glioblastoma is a WHO grade IV brain tumour that causes patients to have a poor OS. Response rate and PFS 

prediction of recurrent glioblastoma (GBM) patients are greatly wanted by oncologists and clinicians for therapeutic 

planning and precise surgery. A range of imaging variables collected from many MR scans is used for radiomic research 

aims to predict disease prognosis, therefore useful information is offered for individualised treatment. PFS and ORR are 

used to measure the delay of tumour recurrence and tumour shrinkage is a potentially important supplementary goal if 

they correspond with improvements in either patient well-being or OS. Subsequently, for glioblastoma (GBM), 

historically limited consistency is established and for other malignancies, these links have been established regularly. 
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Figure 1: Block Diagram of the Proposed Work 

 Figure 1 depicts the general framework of the proposed strategy. Pre-processing, Z-score normalisation and 

spatial resampling; step 2: recurrent generalised adversarial network tumour segmentation; step 3: texture feature 

extraction (FE) using wavelet band-pass filtering; step 4: random forest to forecast recurrent glioblastoma are the four 

steps involved in this research. Among the glioblastoma patients treated with a combination of Bevacizumab and 

Nivolumab, this study aimed to assess the efficiency of the pre and post operative recurrence risk. In the training cohort, 

there were 84 patients and in the testing cohort, there were 42 patients, separated based on pretherapy imaging date. From 

contrast-enhanced T1-weighted images, tumour volumes of interest were segmented. In patients with gliomas, to 

determine their relationships with response OS and PFS, the radiomic feature-based MRI signatures were extracted from 

multiparametric MRI data. The random forest method is used for recurrence rate prediction for GBM patients based on 

multi-scale textural traits. CE-T1W-MRI imaging data was used to extract the features from MRIs. The following 

subsections detailly explain each stage. 

a. Patient Population  

 It was approved by the local Institutional Review Board and no written informed consent was required for this 

retrospective study. Consequently, for this investigation, a total of 45 patients were gathered. Except for Grade I gliomas, 

for patients with pathologically confirmed newly diagnosed gliomas; before any treatment or surgery, multiparametric 

MRI examinations were performed. Based on a 10-fold cross-validation, the area under the receiver operating 

characteristic (ROC) curve of this model was obtained and an ML method (multivariate random forest and univariate 

logistic regression) is used to develop a prediction model. The machine learning method's performance was compared to 

Bevacizumab and Nivolumab. Finally, 173 patients and their clinical features were enrolled. 

i. Multi-Parametric MRI Dataset 

 The features obtained from a multiparametric MRI-based radiomic analysis can be utilised to inform imaging 

prediction, diagnosis, and prognostic evaluation in precision medicine treatment selection. DWI, PWI, and cMRI are 

included in the MP-MRI acquisition protocol for all patients. Before and after contrast injection, cMRI consisted of a 3-

dimensional T1-weighted gradient-echo sequence (MPRAGE) with isotropic voxels and with isotropic voxels, a 3-

dimensional T2-weighted inversion recovery sequence (FLAIR). 

b. Image Pre-Processing 

 Pre-processing is frequently required after image acquisition to reduce artefacts and bias in neuroimaging data 

caused by inhomogeneous magnetic fields in MRI, as well as body motions including respiration motions and head 

movements. Subsequently, it includes picture pixel size resampling to reduce resolution fluctuation, bias field correction, 
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intensity normalisation, image co-registration, and skull stripping (i.e. brain segmentation to exclude surrounding 

structures such as contents, orbital, bone, and so on). 

i. Resampling Image Pixel  

 In radiomics research, interpolation and pixel size resampling are required pre-processing steps, the impact of 

pixel size and slice thickness on radiomic characteristics is not well understood. Subsequently, for interpolation and pixel 

size resampling, ICC was utilised to test feature robustness. The following equation is the ICC: 

    

( ) ( )ECER
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 Where the number of patients is denoted as n , RMS  denotes the mean square for feature values, the mean 

square for repeated measures is described as CMS , the number of repeated acquisitions is k , the mean square for error 

is represented as EMS . The reliability and repeatability of numeric measurements in groups are assessed using the ICC 

method. In addition to comparisons between more than two groups of variables, it has the benefit of being able. 

ii. Z-Score Normalization 

 The Z-Score approach involves dividing each voxel value by the corresponding standard deviation after 

subtracting the mean intensity of the region or an entire image of interest. The brain mask B  for image I is used in Z-

score normalisation to obtain the standard deviation zs  and mean zs  of the intensities inside the brain mask. The 

image is then normalised by Z-score. 

         ( )
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 In order to guarantee that voxels across images have relationships and similar spatial placement, spatial pre-

processing is necessary before training and it is significant as CNNs do not typically take into consideration metadata 

associated with medical images. Resampling is a common spatial pre-processing procedure used in medical imaging 

(e.g., for all training samples make voxel spacing isotropic). 

c. Recurrent Generative Adversarial Network for Image Segmentation 

 The recurrent generative adversarial network is presented in this paper for medical image semantic 

segmentation. The algorithm combined adversarial loss with categorical accuracy loss to mitigate uneven pixel labelling. 

The generative model g  in a traditional generative adversarial network decides to learn a mapping from a random noise 

vector z  to an output image y , yzg →: . Rather than the generator fakex , a discriminative model D  calculates the 

likelihood of a sample coming from the training data realx . Two-player mini-max game with a value function ( )dgV ,  

is the GAN objective function. 

         ( ) ( )  ( )( )( ) zgdEydEgdV zy
dg

−+= 1loglog,maxmin     (3) 

The conversion of a set of 2D medical images ix  to the semantic segmentation of matching labels 
segiy ; 

 
segii yzxg →,:  is learned by the generative model, in this proposed RNN-GAN network. In order to regulate 

whether the predicted label is real or fake, the discriminator uses the ground truth and the generator's output while the 

generator predicted segmentation at the pixel level. 
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( ) ( )  ( )( )( ) zxgxdEyxdEgdVL zxsegyx
dg

adv seg
,,1log,log,maxmin ,, −+=    (4) 

 Furthermore, By allocating a greater cost to the less represented group of pixels, the article used mixed 

categorical accuracy loss accl  (4) to minimise imbalanced training data, during the learning process increasing their 

importance. The final adversarial loss for the RNN-GAN semantic segmentation challenge is then determined (5). 

    ( ) ( ) ( ) ( )gLgLgdLgdL
acclLadvGANRNN ++=− 1,,     (5) 

 The proposed RNN-GAN is trained with complimentary masks in addition to ordinary masks to limit the 

influence of imbalanced pixels’ labels on medical images. Categorical cross-entropy loss with the adversarial loss gives 

an unbiased estimator for minimising the risk because the system assumes transition probabilities are identical. In 

addition to typical losses, complimentary labels can yield more accurate results for a semantic segmentation task.  

Due to their irregular morphologies and infiltrative growth patterns, which can be seen as gradual changes in 

morphology and intensity on MRI, however, brain tumour segmentation is particularly difficult, especially in diffuse 

gliomas. Consequently, appearance with similar grey levels, precise segmentation might be challenging when the 

imaging sequence is not dedicated to tumour identification, and two separate lesions may appear almost identical. 

d. Radiomic Feature Extraction  

 More elements from derived and original images are added to the radiomics signature to develop it. In terms of 

survival, more features based on the Wavelet transform have greater significance coefficients, which influenced the 

radiomics signature model. Based on FE may accurately and quickly estimate survival time (PFS and OS) with speed and 

precision beyond the scope of human visual analysis (10, 19, 20), that previous research has demonstrated multiscale 

texture analyses of MRI. 

i. Contrast-Enhanced T1-Weighted MRI Imaging 

 The workhorse of brain tumour imaging is contrast-enhanced T1-weighted MRI imaging. The margins of dural-

based lesions and most brain metastases are precisely depicted and it is simple to perform. The tumours frequently have 

infiltrative components or are non-enhancing, it is less reliable in the case of primary brain neoplasms, notably gliomas. 

Due to that, it clearly distinguishes aberrant signals from normal brain parenchyma, T2 fluid-attenuated inversion 

recovery (FLAIR) imaging is frequently used in these situations. T2 FLAIR imaging is particularly useful for 

determining tumour extent because low-grade gliomas rarely demonstrate vasogenic oedema. On T2 FLAIR sequences, 

both are hyperintense, the T2 FLAIR imaging has difficulties in high-grade gliomas since it cannot effectively 

distinguish infiltrating tumours from vasogenic oedema. In order to distinguish recurrent/residual tumours from post-

treatment alterations, improved imaging techniques are frequently used. MR spectroscopy, PWI, and DWI are the most 

frequent advanced imaging techniques. A tumour is correctly separated from post-treatment changes, all of them can 

usually allow the radiologist to use for a thoughtful synthesis, subsequently, none of these techniques has proven very 

specifically. In order to determine the radiomic characteristics, as the input volume, the preoperative T1W contrast-

enhanced lesion was manually sketched. Nine separate MR sequences yielded 87 radiomic features, including filtered 

wavelet, and first, and second-order analysis. In the study, a total of 11 shape features were employed. 

ii. Wavelet Band-Pass Filtering Technique 

In a family of scaled and translated functions ( )rnm, , the wavelet transforms correlates to the disintegration 

of a quadratic integrable function ( ) ( )QLxS 2 . 

( ) 






 −
= −

m

nr
mrnm  21

,
. The function ( )x  is referred to as the wavelet function, and it exhibits 

bandpass behaviour. The wavelet coefficients nmd ,  are calculated in the following way: 
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Where the entire conjugate function is represented as 
+Qk  , 

+Qk  , and    . In terms of shifted and 

dialled versions of a prototype bandpass wavelet function and low pass scaling function’s ( )zR  shifted versions, a 

single-dimensional signal ( )zy  is described by the discrete wavelet transform (DWT): 

( )r  can be represented as: 

      ( )
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The Haar function nm,  is defined on the real line Q  by the formula ( ) ( )nrr m

nm

m

−=− 22 2

,  , Qr   

for each pair nm,  of integers in Z . 

The three subbands provide information and one provides an approximation, that the single-dimension DWT 

divides the image into sub-images. The image obtained through approximation will resemble the original in appearance 

but will vary in size. According to low resolution, horizontal a diagonal component, vertical, the DWT divides an image. 

The image is divided into several subbands by the high and low pass filters. The final consequence generated from the 

local mean is used for the image approximation method when considering the DWT. The procedure is stopped and the 

mean of the final result is determined when the approximation image is obtained.  

Subsequently, the measured vibration signal’s convolution with the wavelet is given by 

  ( ) ( ) ( )thtsts cb =       (8) 

Where ( )tsb  is the component of the original signal ( )ts  in the passband HL ff ~ . 

The wavelet as a band-pass filter provides a lot of advantages. Its design and adjustment are simple and 

convenient. Appropriate filter characteristics can be obtained by adjusting a  and f  depending on the actual 

requirements, selecting suitable Lf  and Hf , defining the frequency band to be analysed. The wavelet-based band-pass 

filter was carefully developed to have zero phase shift. While also performing envelope demodulation in one step, the 

wavelet cluster as a digital filter generates the analytical signal. 

A protocol for extracting features has been followed to ensure that retrieval accuracy is reflected for each 

technique. All of the rudimentary elements are combined as this architecture demonstrates. 

e. Recurrence Risk Prediction  

 Predicting the probability of recurrence of glioblastoma cancer is important since it improves survival rates and 

lowers patient mortality. To forecast the probability of brain cancer recurrence over a five-year or longer length of time 

depending on the outcome attribute is the aim of this research. The performance of the RF and DNN techniques is 

estimated to address this issue. Accordingly, for estimating the relevance of features and balancing data, RF is a powerful 

tool that is utilized in classification tasks. 

i. Random Forest for Classification 

 In the training cohort, an RF classifier was utilised to differentiate patients who survived less than or more than 

the 50th percentile of PFS. Several decision trees are integrated into a single predictive algorithm for the RF algorithm, it 
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is a type of ensemble learning system. By bagging, each decision tree was trained using data. The ability to estimate 

generalisation error from the calculation of an out-of-bag error and the ability to use high-dimensional data (where the 

number of characteristics is much greater than the number of patients) are the advantages of RF. The mean prediction 

error in each patient within the training set, considering just the trees that did not have that patient in the bagged sample, 

was designated as the out-of-bag error. The generalisation error converges to a limit as the forest expands by adding more 

decision trees. The RF approach is resistant to overfitting because of the large number of decision trees in the forest, 

making it excellent for heterogeneous datasets like those containing patients with recurrent glioblastoma. The ROC curve 

analysis is used to compute the AUC based on these all features were first evaluated for their predictive value. In the 

random forest algorithm, the top 128 features were fed. The trained RF algorithm was used to validate the RF algorithm 

on the testing cohort. 

ii. Deep Neural Network (DNN) Technique 

A DNN is employed in this study to forecast the probability of glioblastoma recurrence. The hidden layers are 

used to create a hierarchy in DNN designs. The combination of lower-level information from each layer extracts higher 

level features implicitly. An input layer, many hidden layers, and an output layer make up a DNN model. The layers' 

units are all fully connected. One or more dimensions of data make up the input layer with an input vector x . The 

outputs’ weighted sum for the previous layer 
1−kh  is utilized to determine the output 

k

jh  for the layer k  comprising j  

units (especially xh =0
 ). 

      NkbhWg kkkk += − 1,1
     (9) 

     ( )kk gfh =                 (10) 

The 
thk  weight matrix between 

thk  layer and ( )thk 1−  layer can be represented as 
kW , 

thk  the layer 
thb  is 

the bias vector. Hidden units are activated via hyperbolic tangent (TANH) activation ( ).f  and N  are the number of 

layers (here 5=N , including the output layer), which naturally capture the nonlinear relations within the data. 

Simultaneously, in the DNN structure, the softmax function for the output layer (
thN  layer) is employed as an activation 

function and is specified as:  

          
( )
( )

=

j

N

j

N
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h
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exp
               (11) 

Subsequently, using a truncated normal distribution, the weights across layers are initialized, which is described 

by 

   
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              (12) 

Where the number of units' input and output can be represented as in  and on , respectively. The architecture 

diagram of the DNN is portrayed in figure 2. Subsequently, it consists of input layers, hidden layers, and output layers. 
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Figure 2: Basic Architecture Diagram of Deep Neural Network 

In this work, the glioblastoma recurrence risk prediction task is a binary classification task (short-term survival 

and long-term survival), and in the final output layer, it uses cross-entropy loss as the DNN model's objective function. 

L2 regularisation is also included in this loss function, which is extensively utilised in deep learning studies, to further 

minimise the overfitting of the deep learning model. Finally, the proposed DNN approach, which is defined as follows, 

tries to minimise the loss function. 
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Where L  measures errors between predictive scores and the actual labels. ( )iyt  is the actual label for the 
thi  

class, ( )iyt
ˆ  is the predictive scores obtained from the output layer of the method. N  is the batch size. 

 
kk nm

k

ji

k wW


=  is the 
thk  weight matrix and K  is the number of weight matrices in the DNN model (here 5=K ). 

A common issue in training a DNN model is named “internal-covariate-shift”, which is that input distributions 

change in each layer during training due to the update of parameters from previous layers. Finally, a DNN model 

employed in our work comprises one input layer, four hidden layers and an output layer. Batch normalization is added to 

each hidden layer and a dropout is added before the output layer. Consequently, this model classifies and predicts the 

glioblastoma recurrence risk prediction of cancer patients. 

iii. Inheritable Bi-objective Combinatorial Genetic Algorithm (IBCGA) 

IBCGA is an evolutionary approach for solving large-parameter combinatorial optimization problems. 

Additionally, for obtaining a comprehensive set of non-dominating solutions, IBCGA employs an Orthogonal 

Experimental Design (OED) based on an orthogonal array. Simultaneously, the impact of numerous factors on the 

response variable is examined by OED. The OED is used to find the best level combination and the level of an element 

determines its value. Subsequently, due to the analysis, minimising the number of levels needed and in a balanced 

manner, an orthogonal array can compare levels of items. While the column illustrates which elements can be changed 

for each combination, each row in an orthogonal array displays the level of components in a given combination. The 

main effect of one element has no bearing on the main effect of another element and the main effect is denoted as the 

primary effect of one element on the response variable. For example, an orthogonal design with p  rows and 1−p  
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columns having two levels (values of elements) is designated as ( )12 −P

PL . The main effect of an element x  having a 

level y  is denoted as 

       kkxy FfS = . ,  Pk ,,1               (14) 

     1,,1 −= Px                 (15) 

         0,1=y                 (16) 

In equation (14), kf  is the value of function which is usually the prediction accuracy obtained from the 

combination k  and 1=kF , if, in combination k , the level of element x  is y  else 0=kF . Here, 01 xx SS  , if level 1 

of an element x  is preferable to level 0 of an element x  in maximizing the objective function. The variable with the 

highest main effect difference ( )01 xx SSMED −=  is the most impacting one. IBCGA chooses important MiRNAs 

from a search space of ( )rnC ,  based on MED, where the range of r  is initially provided. Tenfold cross validation is 

used as the fitness function and a set of solutions, PX , is obtained where startendstartstart ppppp .,,, 1 +=  and endp  

is initially specified. The IBCGA algorithm's major steps are shown in the pseudo-code represented as following table 1. 

Table 1: Inheritable Bi-objective Combinatorial Genetic Algorithm 

Input: Expression profiles 

Output: Reduced set consisting of key 

 Begin 

 0−t  

 Generate the initial population randomly with n  binary genes having 1p  and 0− pn  

 where startpp= . 

 Set the fitness function as the accuracy of prediction concerning 10- fold cross-validation. 

 While (! Stop condition) do 

 Select best fit individuals using tournament selection to form the mating pool. 

 Perform orthogonal cross over on pair of parents selected. 

 Apply mutation on randomly selected individuals. 

 Evaluate the individuals. 

 Replace the least performance population with new individuals. 

 If endpp , transform one gene bit chosen randomly from 1 to 0. 

 1+− tt  

 End While. 

 Subsequently, different combinations were applied on trial and error bases and the algorithm performed with the 

highest accuracy with the above parameter setting. IBCGA output was further developed by applying factor analysis for 

picking out the most relevant MiRNAs. 

5. EXPERIMENTATION AND RESULT DISCUSSION 

 The results of the proposed model for intelligent detection of brain tumours and their types using a Random 

forest and Deep neural network. RF-DNN based smart healthcare system is planned for accurate recognition and 

classification of brain tumours. The dataset was collected from Kaggle, which comprised four classes, including one no-

tumour and three tumour types. The sample images for brain tumour is depicted in figure 3, respectively. 
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Figure 3: Sample Images for MRI Brain Tumour 

The proposed model used 253 MRI brain tumour images for the pituitary, meningioma, and glioma classes, 

respectively. The training and validation phases of the proposed model are separated. 81% of input images are chosen 

from each class in the training phase, and in the validation phase, 19% are used. The model's efficiency is evaluated by 

miss rate (MR) and accuracy (ACC). 

Table 2: Simulation System Configuration 

Simulation System Configuration 

Operation System Windows 10 Home 

Memory Capacity 6GB DDR3 

Processor Intel Core i5 @ 3.5GHz 

Simulation Time 10.190 seconds 

 The simulation system configuration of the proposed work is portrayed in table 2. Subsequently, the proposed 

technique is evaluated and tested. The proposed work operates under windows 10 home and its memory capacity is 6GB 

DDR3. Additionally, it utilizes an Intel Core i5 @ 3.5GHz processor and the simulation time of the work is 10.190 

seconds. 

Statistical Analysis 

The Kaplan- Meier method was employed to evaluate PFS and OS predictions. Subsequently, for survival analysis, the 

proposed method was calculated using a significance level of P 05 for a 2-sided comparison.  

 

Figure 4: Survival Analysis Using Proposed Method 
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 Figure 4 illustrates the Survival analysis of GBM patients. Subsequently, it described Patient-Derived primary 

GBM Cells, and it is predicted for long term and short term survival. Subsequently, the analysis is utilized for narrow 

entry, highly motile cells, highly motile Ki67, and Unsorted Ki67. The survival analysis is represented as < 14.6 months 

as short term survival and > 14.6 months represented as long term survival. Accordingly, the threshold value for the 

proposed work is 3%, 2%, 45%, and 40% for narrow entry, highly motile cells, highly motile Ki67, and Unsorted Ki67. 

Subsequently, the different patients with long time survival are less than the short time survival, respectively. 

Each imaging feature was subjected to ROC analysis in the classification of both long and short-term survival. 

Shape, shape, texture, and texture were the highest performing individual features for pre-therapy features predicting 

PFS, pre-therapy features predicting OS, pre-and post-therapy features predicting OS, and pre-and post-therapy features 

predicting OS excluding early progresses. 

 

Figure 5: Progression-Free Survival 

 The PFS of the proposed model is depicted in figure 5. PFS; is defined as the time from randomization to 

disease progression or death from any cause). Subsequently, for different months, PFS was not substantially different 

between the GBM and the control. 

 

Figure 6: Overall Survival of the Proposed Work 
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 Figure 6 represents the predict the OS using the proposed method. The Kaplan-Meier method was used to 

calculate the OS, it was a primary outcome and it is defined as the time from randomization to death from any cause. 

Between the GBM and the control, the OS did not differ significantly. 

 

Figure 7: Object Response Rate 

The objective response rate of the proposed work is portrayed in figure 7. Accordingly, it represents patients on 

nivolumab treatment had a significantly better objective response rate than those on bevacizumab treatment. 

Consequently, this means that more patients responded to treatment with nivolumab than to treatment with bevacizumab. 

Validation 

Based on the experienced radiologist, the pathological tissue regions' segmentation results were compared to manual 

segmentation. In terms of spatial alignment between manual and semi-automated segmentation, the Dice score was 

utilized to compare: 

           
   

   mantissueNBtissue

mantissueNBtissue
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              (17) 

Where  mantissueA ,  is the area manually segmented by the radiologist for the same tissue type and  NBtissueA ,  is the area 

segmented by the combination of Bevacizumab and Nivolumab.  

 

Figure 8: Hausdorff Distance of the Proposed Work 
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 Figure 8 depicted the Hausdorff distance of the proposed model. In order to govern the distance between 

segmentation boundaries, the Hausdorff distance was also calculated. The Hausdorff distance for ED RNN-GAN, ES 

RNN-GAN, ED cGAN, and ES cGAN. In one segmentation mask, the Hausdorff distance is the total distance between 

all points and the nearest point in the other segmentation mask.  

 

Figure 9: Local Recurrence Graph of Proposed Work 

 The local recurrence graph of the proposed method is depicted in figure 9. In this, the true positive rate (TPR) 

and the false positive rate (FPR) are calculated based on the ROC and AUC. Additionally, it depicted the ROC fold 

number as 1 to 5 and the AUC as 0.73, 0.81, 0.73, 0.88, and 0.95. Subsequently, the mean AUC is 0.82, and the TPR is 

gradually increased with the increasing false positive rate. 

 

Figure 10: Distant Recurrence Graph of Proposed Work 

 Figure 10 represents the distant recurrence graph of the research work. Additionally, it consists of increasing the 

TPR by increasing the FPR. Besides the ROC curve, the corresponding AUC value for each method is also calculated 

and displayed. Subsequently, it portrays the AUC values as 0.90, 0.94, 0.83, 0.85, and 0.79 and the mean AUC value is 

0.82, respectively. 
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Figure 11: Survival Probability Graph 1 

 The Performance graph for survival probability is portrayed in figure 11. Additionally, it represents the 

standardised uptake value (SUV). The figure consists of two plots one is the maximum SUV of the figure is greater than 

3.15 and the other is the maximum SUV is less than or equal to 3.15. Subsequently, it reveals that the maximum SUV is 

greater than 3.15 and produce a better survival probability than other.  

 

Figure 12: Survival Probability Graph 2 

 Figure 12 demonstrates the graph for mean survival probability. Subsequently, it consists of the mean SUV is 

greater than 1.64 and the mean SUV is less than or equal to 1.64. The mean probability value greater than 1.64 produce 

high probability than the other survival probability for different months, respectively. 
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Figure 13: Survival Probability Graph 3 

 Figure 13 demonstrates the performance graph for survival probability for different months. Accordingly, it 

consists of two types; one is the SUV value is greater than 2.47 and the other one is less than or equal to 2.47. The 

survival probability of the work decreases with increasing months, subsequently, when the number of months increases, 

the survival probability decreases. 

 

Figure 14: Performance Graph for Accuracy 

 The accuracy graph for the proposed work is illustrated in figure 14. The figure depicted the training and 

validation accuracy. Subsequently, it consists of training and testing accuracy. The training set size of the work is 0 to 

4000. Consequently, it depicted that the training accuracy has a high accuracy value and the validation accuracy is 

gradually increased. 
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Figure 15: Sensitivity Vs Specificity Graph 

 Figure 15 portrays the specificity and sensitivity graph of the proposed method. Importantly, the sensitivity, and 

specificity of employing composite MAqCI scores to correctly identify short- and long-term survival patients markedly 

improved to ~98%. Subsequently, the sensitivity of the proposed work is increasing and the specificity of the research is 

also increased. 

 

Figure 16: Comparison Graph for Sensitivity 

 The comparison graph for sensitivity is depicted in figure 16. Subsequently, the proposed model is compared 

with existing SVM [26], and local recurrence (LR) prediction mode [15] methods. The proposed technique yields higher 

performance than the other two existing methods, like 10% higher than the existing SVM method and 2% higher than the 

existing LR methods.  
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Figure 17: Comparison Graph for Specificity 

 The comparison graph for specificity is demonstrated in figure 17. Additionally, it depicts that the presented 

model is compared with the SVM and LR prediction models. The proposed method performs nearly 1% higher than the 

existing SVM methods and nearly 6% high than the existing LR prediction model. 

 

Figure 18: Comparison Graph for Accuracy 

 Figure 18 portrays the comparison graph for accuracy. The proposed method’s accuracy is compared with SVM 

and LR methods. Subsequently, the proposed technique is 4% greater than the existing SVM method and 2% higher than 

the LR prediction models. Consequently, the proposed method has the best performance of the other methods. 

6. CONCLUSION  

Glioblastoma remains the most lethal brain tumour despite effective treatment, because of the high risk of 

recurrence. Clinical trials and treatment plans for distant recurrences differ from those for local recurrences because of 
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the significant genomic changes associated with distant recurrences. Tumour perfusional features are linked to prognosis, 

which is demonstrated by perfusion-weighted MRI. Subsequently, in glioblastoma recurrence risk prediction, very few 

research has been conducted, however, the glioblastoma recurrence patterns like local and distant recurrence. In this 

research, the machine learning technique of the Random Forest model and Deep Neural Network method is proposed to 

predict the glioblastoma recurrence risk. Initially, Resampling and Z-Score Normalisation are the images pre-processing 

that are used to remove bias and artefacts in neuroimaging data. The pre-processed image is then segmented using the 

Recurrent Neural Network-Generative Adversarial Network (RNN-GAN), which mitigates the impact of imbalanced 

pixel labels. Subsequently, the Wavelet Band-Pass Filtering technique is presented to extract the texture features and the 

CE-T1WI model predicts PFS and ORR in recurrent GBM patients treated with the combination of Nivolumab and 

Bevacizumab. Accordingly, Random Forest and DNN techniques are proposed for patients’ recurrence risk. 

Additionally, a feature optimization algorithm like IBCGA has been introduced for patients’ survival time prediction. 

The proposed techniques are evaluated using Python. 

➢ The performance of the proposed work is recurrence prediction, survival probability, PFS, ORR, accuracy, 

specificity, and sensitivity. The proposed method is compared with existing SVM and LR prediction methods. 

➢ The accuracy of the proposed method is 3% higher than the existing methods, the specificity of the work is 

approximately 4% higher than the existing methods, and the sensitivity of the proposed method is nearly 5% 

higher. 

Subsequently, utilizing this proposed method, accurately predicts the glioblastoma recurrence risk and future 

research is needed to identify the unique immune microenvironment of the brain under tumour conditions respectively. 
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