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Abstract. A mode of a probability distribution is an elementary event that has more probability
mass than each of its direct neighbors, with respect to some vicinity structure on the set of
elementary events. The mode inequalities cut out a polytope from the simplex of probability
distributions. Related to this is the concept of strong modes. A strong mode is an elementary
event that has more probability mass than all its direct neighbors together. The set of probability
distributions with a given set of strong modes is again a polytope. We study the vertices, the
facets, and the volume of such polytopes depending on the sets of (strong) modes and the vicinity
structures.
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1. Introduction

Many probability models used in practice are given in a parametric form. Sometimes
it is useful to also have an implicit description in terms of properties that characterize
the probability distributions that belong to the model. Such a description can be used to
check whether a given probability distribution lies in the model or, otherwise, to estimate
how far it lies from the model. For example, if a given model has a parametrization by
polynomial functions, then one can show that it has a semialgebraic description; that
is, an implicit description as the solution set of polynomial equations and polynomial
inequalities. Finding this description is known as the implicitization problem, which in
general is very hard to solve completely. See [4] for an overview and [3, 10, 1] for examples
of implicit descriptions of probability models. Even if for a particular model it is in
practice not possible to give a full implicit description, it may be possible to confine the
model by simple polynomial equalities and inequalities. Here we are interested in simple
confinements, in terms of natural classes of linear equalities and inequalities.

We consider polyhedral sets of discrete probability distributions defined by sets of
modes. Given a vicinity structure in the set of elementary events, a mode is a local
maximum point of the probability distribution. More precisely, an elementary event x is
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a (strict) mode of a probability distribution p if and only if px > py, for all neighbors y
of x. The vicinity structure depends on the setting. For probability distributions on a
set of fixed-length strings, it is natural to call two strings neighbors if and only if they
have Hamming distance one from each other. For probability distributions on an integer
interval, it is natural to call two integers neighbors if and only if they are consecutive. In
general, a vicinity structure is just a graph with undirected edges.

Modes are important characteristics of probability distributions. In particular, the
question whether a probability distribution underlying a statistical experiment has one or
more modes is important in applications. Also, many statistical models consist of “nice”
probability distributions that are “smooth” in some sense. Such probability distributions
have only a limited number of modes. Another motivation for studying modes was given
in [7], where it was observed that mode patterns are a practical way to differentiate between
certain classes of parametric models.

Besides from modes, we are also interested in the related concept of strong modes
introduced in [7]. An elementary event x is a (strict) strong mode of a probability distri-
bution p if and only if px >

∑
y∈N(x) py, where N(x) denotes the set of neighbors of x.

Strong modes are special types of modes. They are easier to study than modes, since each
of them is defined by a single inequality.

An observation that motivates our discussion is the following. Suppose that p =∑k
i=1 λip

i is a mixture of k probability distributions. If p has a strict strong mode x, then
x must be a strict mode of at least one of the distributions pi, because if pix ≤ piyi for

some neighbor yi of x for all i, then px =
∑k

i=1 λip
i
x ≤

∑k
i=1 λip

i
yi ≤

∑
y∈N(x)

∑k
i=1 λip

i
y =∑

y∈N(x) py. In particular, a mixture of k uni-modal distributions has at most k strong
modes. Surprisingly, the same statement is not true for modes. For instance, a mixture of
k product distributions can have more than k modes [7]. The maximal possible number
of modes of a mixture of k product distributions is not known in general.

Example 1. Assume we want to know whether the following distribution of three binary
variables is a mixture of k product distributions:

p =

[
p000 p001 p100 p101

p010 p011 p110 p111

]
=

1

24

[
1 5 5 2
4 1 1 5

]
.

Product distributions have at most one strict mode. Since p has 4 strict strong modes,
001, 010, 100, 111, we can rule out mixtures of less than 4 product distributions. On the
other hand, every probability distribution of n binary variables is a mixture of at most
2n−1 product distributions [6]. We conclude that p is a mixture of 4 and not less product
distributions.

As this example illustrates, the pattern of (strong) modes of a probability distribution
can provide sufficient information to decide whether or not the distribution belongs to a
given probability model. The same general idea can be applied to more complex types of
probability models, like the restricted Boltzmann machine [7].

Since (strong) modes are defined by linear inequalities, the set of probability distribu-
tions with a fixed pattern of (strong) modes is a polytope, which we call (strong) mode
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polytope. In this paper we describe the vertices, the facets, and the volume of these poly-
topes, depending on the vicinity structures and the considered patterns of (strong) modes.
The number of facets tells us how many linear inequalities we need to verify in order to
decide membership, and the volume tells us how likely it is to encounter a distribution
from the polytope.

This paper is organized as follows: In Section 2 we study the polytopes of modes and
discuss their relation to order and poset polytopes. In Section 3 we study the polytopes
of strong modes. In Section 4 we summarize the results and discuss examples.

2. The Polytope of Modes

We consider a finite set of elementary events V and the set of probability distributions
on this set, ∆(V ), which is the standard (|V | − 1)-simplex in RV . We endow V with a
vicinity structure described by a graph. Let G = (V,E) be a simple graph (i.e., no multiple
edges and no loops). For any x, y ∈ V , if (x, y) ∈ E is an edge in G, we write x ∼ y. Since
we assume that the graph is simple, x ∼ y implies x 6= y.

Definition 1. A point x ∈ V is a mode of a probability distribution p ∈ ∆(V ) if px ≥ py
for all y ∼ x.

Definition 2. Consider a subset C ⊆ V . The polytope of C-modes in G is the set M(G, C)
of all probability distributions p ∈ ∆(V ) for which every x ∈ C is a mode.

The set M(G, C) is always non-empty, since it contains the uniform distribution. It is a
polytope, because it is defined as a bounded intersection of finitely many closed half-spaces.
For a general overview on polytopes the reader is referred to [9].

Recall that a set of vertices of a graph is independent if it does not contain two adjacent
elements. If C is not independent, then M(G, C) is not full-dimensional as a subset of ∆(V );
that is, dim(M(G, C)) < dim(∆(V )) = |V | − 1. For, if x, y ∈ C are neighbors, then the
defining equations of M(G, C) imply that px ≥ py ≥ px and hence that any p ∈M(G, C)
satisfies px = py. This degenerate case can be easily reduced to the independent case, as
discussed in Appendix A. Therefore, in the following we assume that C is an independent
set of vertices in G; that is, x 6∼ y for all x, y ∈ C.

In some applications, for example those mentioned in the introduction, it is more
natural to study strict modes, which are points x ∈ V with px > py for all y ∼ x.
A description of the set of distributions with strict modes C is easy to obtain from a
description of M(G, C). Moreover, it may also be of interest to require that there may be
no further modes outside of C. A good understanding of M(G, C) also allows to study this
problem. We illustrate this below in Example 6.

Example 2. Let G be a square with vertices V = {00, 01, 10, 11} and edges E = {(00, 01),
(00, 10), (01, 11), (10, 11)}, as illustrated in the left part of Figure 1. A probability distri-
bution on V is a vector p = [p00, p01, p10, p11]> in RV = R4 with p00, p01, p10, p11 ≥ 0
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Figure 1: Illustration of Example 2. Left: The graph G = (V,E), with C ⊂ V shown in dark gray. Right: The
corresponding polytope M(G, C) of probability distributions with modes C in the 3-dimensional simplex ∆(V ).
Each vertex of this polytope is a uniform distribution supported on a subset of V . The corresponding support
set is highlighted within G for each vertex. See Proposition 1.

and p00 + p01 + p10 + p11 = 1. The set ∆(V ) of probability distributions on V is the
3-dimensional simplex with vertices

δ00 =


1
0
0
0

 , δ01 =


0
1
0
0

 , δ10 =


0
0
1
0

 , δ11 =


0
0
0
1

 .
Let C = {01, 10}. The set M(G, C) ⊆ ∆(V ) consists of all of probability distributions on
V that satisfy p01 ≥ p00, p11 and p10 ≥ p00, p11. This is the solution set of the following
system of linear inequalities (H-representation):

−1 −1 −1 −1
1 1 1 1

−1 0 0 0
0 0 0 −1

1 −1 0 0
0 −1 0 1
1 0 −1 0
0 0 −1 1


p ≤



−1
1

0
0

0
0
0
0


.

The first two inequalities mean that the entries of p add to one; the next two ensure the
non-negativity of the entries px, x ∈ V \ C; and the last 4 are mode inequalities. This
description omits the inequalities px ≥ 0, x ∈ C, as they are redundant. The vertices of
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M(G, C) are the columns of the following matrix (V-representation):
0 0 1/3 0 1/4
1 0 1/3 1/3 1/4
0 1 1/3 1/3 1/4
0 0 0 1/3 1/4

 .
In particular, all vertices are uniform distributions supported on different subsets of V .
The volume is vol(M(G, C)) = 1

6 vol(∆(V )), as 6 congruent copies of the polytope build
a perfect packing of the probability simplex. The situation is illustrated in Figure 1. We
describe the general form of the vertices, facets, and volume in Propositions 1, 2, and 3.

Vertices

We have defined M(G, C) by linear inequalities (H-representation). Next we determine
its vertices (V-representation). For any non-empty W ⊆ V \ C and y ∈ V write y ∼ W
if y ∼ x for some x ∈ W . Moreover, let NC(W ) = {y ∈ C : y ∼ W} and let eWC be the
uniform distribution on NC(W ) ∪W .

Proposition 1.

1. For any x ∈ C, the distribution δx is a vertex of M(G, C).

2. For any W ⊆ V \ C, W 6= ∅, the distribution eWC is a vertex of M(G, C) if and only
if for any x, y ∈ W , x 6= y, there is a path x = x0 ∼ x1 ∼ · · · ∼ xr = y in G with
x0, x2, · · · ∈W and x1, x3, · · · ∈ NC(W ).

3. M(G, C) is the convex hull of {δx : x ∈ C} ∪ {eWC : ∅ 6= W ⊆ V \ C}.

Proof.

1. Clearly, the vectors δx with x ∈ C belong to M(G, C) (C is independent). Since δx is
a vertex of ∆(V ), it is also a vertex of M(G, C).

2. Clearly, the vectors eWC with ∅ 6= W ⊆ V \ C belong to M(G, C). Call a path such
as in the statement of the proposition an alternating path. Suppose that there
is no alternating path from x to y for some x, y ∈ W . Let W1 = {z ∈ W :
there is an alternating path from x to z} and let W2 = W \W1. Then W1,W2 are
non-empty, and NC(W1) ∩NC(W2) is empty. Hence eWC is a convex combination of
eW1
C and eW2

C , and eWC is not a vertex.

Let W be a non-empty subset of V \ C such that any pair of elements of W is
connected by an alternating path. In view of item 3, to show that eWC is a vertex
it suffices that for any different non-empty set W ′ ⊆ V \ C, W ′ 6= W , we find a
face of M(G, C) that contains eWC but not eW

′
C . If there exists x ∈ W ′ \W , then

eW
′

C (x) > 0 = eWC (x). Hence, eWC lies on the face of M(G, C) defined by px ≥ 0,
but eW

′
C does not. Otherwise, W ′ ( W . Let x′ ∈ W \W ′ and y′ ∈ W ′ 6= ∅. By
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assumption, there exists an alternating path from x′ to y′ in W . On this path,
there exist x ∈ W \ W ′ and y ∈ C with y ∼ x and y ∈ NC(W

′). Therefore,
eW
′

C (y)− eW ′C (x) > 0 = eWC (y)− eWC (x).

3. Next we show that each p ∈ M(G, C) can be written as a convex combination
of {δx : x ∈ C} ∪ {eWC : ∅ 6= W ⊆ V \ C}. We do induction on the cardinality of
W := supp(p)\C. If |W | = 0, then p ∈ ∆(C) is a convex combination of {δx : x ∈ C}.
Now assume |W | > 0. Let λ = min{px : x ∈ W}. Then, p − λeWC ≥ 0 (component-
wise) and

∑
x(px − λeWC (x)) = (1− λ). Therefore,

p′ :=
1

1− λ
(p− λeWC ) ∈ ∆(V ).

Moreover, one checks that p′ ∈M(G, C). By definition, supp(p′)\C ( supp(p)\C. By
induction, supp(p′) is a convex combination of {δx : x ∈ C}∪{eWC : ∅ 6= W ⊆ V \ C},
and so the same is true for p. �

Corollary 1. M(G, C) is a full-dimensional sub-polytope of ∆(V ).

Proof. The convex hull of {δx : x ∈ C} ∪ {e{y}C : y ∈ V \ C} is a (|V | − 1)-simplex and
a subset of M(G, C). Note that all vertices of this simplex are vertices of M(G, C). �

Facets

The polytope M(G, C) is defined, as a subset of ∆(V ), by the following inequalities:

px ≥ 0, for all x ∈ V, (positivity inequalities)

px ≥ py, for all x ∈ C and y ∼ x. (mode inequalities)

Next we discuss which of these inequalities define facets.

Proposition 2.

1. For any x ∈ V \ C, the positivity inequality px ≥ 0 defines a facet.

2. For x ∈ C, the positivity inequality px ≥ 0 defines a facet if and only if x is isolated
in G.

3. For any x ∈ C and y ∼ x, the mode inequality px ≥ py defines a facet.

Proof.

1. For x ∈ V \C, the inequality px ≥ 0 defines a facet of the sub-simplex from the proof
of Corollary 1 and hence also of M(G, C).
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2. If x is isolated, then x is a mode of any distribution. Therefore, M(G, C) = M(G, C \
{x}), and the statement follows from 1.

Otherwise, suppose there exists y ∈ V with x ∼ y. Since C is independent, y /∈ C.
Then px = (px−py) +py; that is, the inequality px ≥ 0 is implied by the inequalities
px ≥ py and py ≥ 0. In fact, px ≥ 0 defines a strict sub-face of the facet py ≥ 0,
since it does not contain δx. Therefore, px ≥ 0 does not define a facet.

3. Let W := {z ∈ C : z ∼ y} \ {x}. The uniform distribution on W ∪ {y} satisfies all
defining inequalities of M(G, C), except px ≥ py. �

Triangulation and volume

The polytope M(G, C) has a natural triangulation that comes from one of ∆(V ). Let
N = |V | be the cardinality of V . For any bijection σ : {1, . . . , N} → V let

∆σ = {p ∈ ∆(V ) : pσ(i) ≤ pσ(i+1) for i = 1, . . . , N − 1}.

Clearly, the sets ∆σ form a triangulation of ∆(V ). In particular, ∆(V ) =
⋃
σ ∆σ and

vol(∆σ ∪∆σ′) = vol(∆σ) + vol(∆σ′) whenever σ 6= σ′.

Lemma 1. Let Σ(G, C) be the set of all bijections σ : {1, . . . , N} → V that satisfy σ−1(x) <
σ−1(y) for all y ∈ C and x ∼ y. Then M(G, C) =

⋃
σ∈Σ(G,C) ∆σ.

Proof. If σ ∈ Σ(G, C) and p ∈ ∆σ, then p ∈ M(G, C) by definition. Conversely, let
p ∈M(G, C). Choose a bijection σ : {1, . . . , N} → V that satisfies the following:

1. pσ(i+1) ≥ pσ(i) for i = 1, . . . , N − 1,

2. If x ∈ C and y ∼ x, then σ−1(x) ≤ σ−1(y).

Clearly, σ ∈ Σ and hence p ∈ ∆σ. �

Proposition 3. vol(M(G, C)) = |Σ(G,C)|
|V |! vol(∆(V )).

Proof. All simplices ∆σ have the same volume. Moreover, vol(∆σ ∩ ∆σ′) = 0 for
σ 6= σ′. In turn, vol(M(G, C)) = |Σ(G, C)| vol(∆σ) and vol(∆(V )) = |V |! vol(∆σ). �

It remains to compute the cardinality of Σ(G, C). It is not difficult to enumerate
Σ(G, C) by iterating over the set V . However, Σ(G, C) may be very large and enumerating
it can take a very long time. In fact, this is a special instance of the problem of counting the
number of linear extensions of a partial order (see below); a problem which in many cases is
known to be #P -complete [2]. In our case, a simple lower bound is |Σ(G, C)| ≥ |C|!|V \C|!.
Equality holds only when G is a complete bipartite graph and C is one of the maximal
independent sets.
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Relation to order polytopes

The results in this section can also be derived from results about order polytopes. To
explain this, it is convenient to slightly generalize our settings. Instead of looking at a
graph G and an independent subset C of nodes, consider a partial order � on V and let

M(�) := {p ∈ ∆(V ) : px ≥ py whenever x � y}.

The polytope M(G, C) arises in the special case where � is defined by

x � y :⇐⇒ x ∼ y and x ∈ C.

The relation � defined in this way from G and C is a partial order precisely when C is
independent.

The order polytope of a partial order arises by looking at subsets of the unit hypercube
instead of subsets of the probability simplex (see [8] and references):

O(�) :=
{
p ∈ [0, 1]V : px ≥ py whenever x � y

}
.

One can show that M(�) is the vertex figure of O(�) at the vertex 0. This observation
allows to transfer the results from [8] to M(G, C) and, more generally, to M(�).

In particular, our results about vertices, facets and volumes can be generalized to
M(�). Such generalizations appear interesting in their own right, but would go beyond
the scope of this work. For more on order polytopes the reader is referred to [5].

3. The Polytope of Strong Modes

Definition 3. A point x ∈ V is a strong mode of a probability distribution p ∈ ∆(V ) if
px ≥

∑
y∼x py.

Definition 4. Consider a subset C ⊆ V . The polytope of strong C-modes in G is the set
S(G, C) of all probability distributions p ∈ ∆(V ) for which every x ∈ C is a strong mode.

Again, in applications one may be interested in strict strong modes, which are defined
by strict inequalities of the form px >

∑
y∼x py.

If x ∼ y for two strong modes of p ∈ ∆(V ), then px = py and pz = 0 for all other
neighbors z of x or y. In order to avoid such pathological cases, in the following we always
assume that C is an independent subset of G.

Example 3. Consider the graph G = (V,E) from Example 2. Let C = {01, 10}. The set
S(G, C) ⊆ ∆(V ) consists of all probability distributions on V that satisfy p01 ≥ p00 + p11

and p10 ≥ p00 + p11. This is the polytope with H-representation

−1 −1 −1 −1
1 1 1 1

−1 0 0 0
0 0 0 −1

1 −1 0 1
1 0 −1 1

 p ≤


−1
1

0
0

0
0

 .
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Figure 2: Illustration of Example 3. Left: The graph G = (V,E), with C ⊂ V shown in dark gray. Right: The
corresponding polytope S(G, C) of probability distributions with strong modes C in the 3-dimensional simplex
∆(V ). Each vertex of this polytope is a uniform distribution supported on a subset of V . The corresponding
support set is highlighted within G for each vertex. See Proposition 4.

The first two inequalities ensure that the entries of p add to one; the next two ensure the
non-negativity of the entries px, x ∈ V \ C; and the last two are strong mode inequalities.
The V-representation is 

0 0 1/3 0
1 0 1/3 1/3
0 1 1/3 1/3
0 0 0 1/3

 .
In particular, all vertices are uniform distributions supported on different subsets of V .
The volume is vol(S(V, C)) = 1

9 vol(∆(V )), which can be computed using Proposition 6.
The situation is illustrated in Figure 2. We describe the general form of the vertices,
facets, and volume in Propositions 4, 5, and 6.

The next proposition describes the vertices of the polytope S(G, C). For any x ∈ V let
NC(x) = {y ∈ C : y ∼ x} and let fxC be the uniform distribution on NC(x) ∪ {x}.

Proposition 4. S(G, C) is a (|V | − 1)-simplex with vertices fxC , x ∈ V .

Proof. The set of vectors {fxC : x ∈ V } is linearly independent. To see this, note that
the matrix with columns fxC is in tridiagonal form when V is ordered such that the vertices
in C come before the vertices in V \ C. Therefore, the probability distributions fxC span a
(|V | − 1)-dimensional simplex.

It is easy to check that fxC ∈ S(G, C) for any x ∈ V . It remains to prove that any
p ∈ S(G, C) lies in the convex hull of {fxC : x ∈ V }. We do induction on the cardinality of
W := supp(p) \ C. If |W | = 0, then p ∈ ∆(C) is a convex combination of {δx : x ∈ C} =
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{fxC : x ∈ C}. Otherwise, let x ∈W . Then

p′ :=
1

1− px
(p− pxfxC ) ∈ ∆(V ),

since p ∈ M(G, C). Moreover, p′ ∈ M(G, C). The statement now follows by induction,
since supp(p′) \ C = W \ {x}. �

Proposition 5. The facets of S(G, C) are px ≥ 0, x ∈ V \ C, and px ≥
∑

y∼x py, x ∈ C.

Proof. Each inequality defines a hyperplane that contains |V | − 1 vertices. �

Proposition 6. vol(S(G, C)) =
( ∏
x∈V

1

|NC(x)|+ 1

)
vol(∆(V )).

Proof. After rearrangement of columns, the matrix

(fxC )x∈V =

(
(δx)x∈C ,

(
1

|NC(x)|+11NC(x)

)
x∈V \C,x∼C

, (δx)x∈V \C,x 6∼C

)
is in upper triangular from, with diagonal elements 1

|NC(x)|+1 , x ∈ V . The statement now
follows from the next Lemma 2. �

Lemma 2. Let ∆ = conv{e0, . . . , ed} be the standard d-simplex in Rd+1 and let s0, . . . , sd ∈
∆. Then the d-volume of S = conv{s0, . . . , sd} satisfies vol(S) = | det(s0, . . . , sd)| vol(∆).

Proof. The volume of the (d + 1)-dimensional parallelepiped spanned by s0, . . . , sd ∈
Rd+1 is | det(s0, . . . , sd)|. The volume of an n-simplex with vertices v0, . . . , vn in Rn is
1
n! |det(v1 − v0, . . . , vn − v0)|. Hence the volume of the (d + 1)-simplex P with vertices
(0, s0, . . . , sd) is vol(P ) = 1

(d+1)! |det(s0, . . . , sd)|. Note that P is a pyramid over S of

height h = 1√
d+1

. Thus vol(P ) = h
d+1 vol(S). The volume of the regular d-simplex is

vol(∆) =
√
d+1
d! . The statement follows by combining these formulas. �

4. Summary and Examples

The description of the mode polytope given in Section 2 can be summarized as follows.
There is one vertex for each mode and one for each non-empty set of non-modes that is
connected in G by a path that alternates between non-modes and modes (Proposition 1).
There is one facet for each non-mode and one for each edge connecting a mode with a
non-mode (Proposition 2). The volume of the mode polytope, relative to the probability
simplex, is equal to the number of linear extensions of the partial order defined by the
mode inequalities, divided by the total number of linear orders of the set of elementary
events (Proposition 3).

The description of the strong mode polytope given in Section 3 can be summarized as
follows. This polytope is a full dimensional simplex (Proposition 4). The volume, relative
to the ambient probability simplex, is equal to the inverse of the product of |NC(x) + 1|,
x ∈ V , where NC(x) are the neighbors of x that are declared strong modes (Proposition 6).
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Example 4. Let G be the complete bipartite graph with C on one side and V \ C on the
other. Let m = |C| and n = |V \ C|.

Then the polytope of modes M(G, C) has m+2n−1 vertices, n+mn facets, and volume
vol(M) = m!n!

(m+n)! vol(∆). For the volume, note that in this example the number of linear

extensions |Σ(G, C)| is equal to the number of permutations of the modes times the number
of permutations of the non-modes.

The polytope of strong modes S(G, C) is a simplex with n+m vertices and n+m facets.
The volume is vol(S) = 1

(m+1)n vol(∆).

Example 5. Generalizing Examples 2 and 3, let G be the edge graph of an n-cube, such
that V = {0, 1}n and two points are adjacent if and only if they are Hamming neighbors.

• Let C have cardinality |C| = k and minimum distance minx,y∈C |{i ∈ {1, . . . , n} : xi 6=
yi}| ≥ 3. Then M(G, C) has k+k(2n−1)+2n−k(n+1) vertices, 2n−k+kn facets,

and volume vol(M) = |Σ|
2n! vol(∆) ≥ k!(2n−k)!

2n! vol(∆).

S(G, C) is a (2n − 1)-simplex with vol(S) = 2−kn vol(∆).

• Let C be the set of all even-parity strings, C = {x ∈ V :
∑n

i=1 xi = 0 mod (2)}.

Then M(G, C) has 2n−1 + 22n−1 − 1 vertices, 2n−1 + 2n−1n facets, and volume

vol(M) = |Σ|
2n! vol(∆) ≥ 2n−1!2n−1!

2n! vol(∆). For n = 2 we have |Σ| = 4 and for
n = 3 we have |Σ| = 720. The next open case is n = 4.

S(G, C) is a (2n − 1)-simplex with vol(S) = (n+ 1)−2n−1
vol(∆).

Example 6. Suppose we are interested in probability distributions that have exactly one
mode. First, suppose that G is the complete graph on V , i.e., any pair of nodes (x, y) ∈
V × V is an edge. Any distribution p ∈ ∆(V ) that is generic, in the sense that p(x) 6=
p(y) for any x 6= y, has a unique mode. Thus, the set of distributions with exactly one
mode arises from ∆(V ) by removing hyperplanes, and so its volume is vol(∆(V )). By
symmetry, for any fixed x ∈ V , the set of distributions with exactly one mode x ∈ V has
volume 1

|V | vol(∆(V )). This result can also be derived from our Proposition 3, noting that

there are (|V | − 1)! linear orders of V in which x is maximal.
The situation is more complicated in other graphs, and one is led to inclusion-exclusion

formulas. We illustrate this by means of the square G = (V,E) from Figure 1 left. A
distribution p ∈ ∆(V ) has a unique mode 01 if and only if 01 is a mode and 10 is not
a mode. Thus, using Proposition 3, for the vicinity structure G the set of distributions
p ∈ ∆(V ) with unique mode 01 has volume

vol(M(G, {01}))− vol(M(G, {01, 10})) =
8− 4

4!
vol(∆(V )) =

1

6
vol(∆(V )).

In total, by symmetry, the set of distributions with a unique mode has volume 4
6 vol(∆(V )).

This says that two thirds of all distributions have precisely one mode, and one third of all
distributions have two modes.
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A. Description of Degenerate Cases

When looking at M(G, C), the case that C is not independent can be reduced to
the independent case: For any nodes x, y ∈ C with x ∼ y, any p ∈ M(G, C) satisfies
p(x) = p(y). In this case we can contract the edge (x, y) and identify x and y. To
be precise, we construct a new graph G′ = (V ′, E′), where V ′ = V \ {y} and E′ =
(E ∩ (V ′×V ′))∪{(x, z) : z ∈ V ′ \ {x}, (z, y) ∈ E}, and we let C′ = C \ {y} = C ∩V ′. Then
the truncation ψ : ∆(V )→ ∆(V ′) defined by

ψ(p)z =
pz∑

z′∈V ′ pz′
, for all z ∈ V ′,

restricts to a bijection M(G, C) ∼= M(G′, C′). Furthermore, as a projective map, it pre-
serves the face structure of the polytopes. The inverse of the restricted map is given by
ψ−1(q)z = qz/(qx +

∑
z′∈V ′ qz′), if z ∈ V ′, and ψ−1(q)y = qx/(qx +

∑
z′∈V ′ qz′). Note that

for any z ∈ C and p ∈M(G, C), z ∈ C′ is a mode of p if z is a mode of ψ(p).
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[5] Jǐŕı Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002. http://dx.doi.org/10.1007/978-1-4613-0039-7.
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