Vectors of Identity matrix are the only Solution for a Special Linear
 System of Equations and Linear Programming Problems

Enagandula Prasad

Associate Professor, Dept of Mathematics,
Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

V Naganjaneyulu,

Associate Professor, Lords Institute of Engineering and Technology
Hyderabad, India
*Corresponding Author:researchtophd@gmail.com

Abstract

This article is going to prove that the vectors of identity matrix are the only solutions for special kind of linear system of equations with n equations n unknown problems and for the Linear Programming Problems (LPP) problems of n variables if the objective function is Maximize and also we are also going to prove if it is given in LPPtoMinimize objective function the optimal solution is trivial solution (zero solution) and therefore MinZ=0.

Keywords:C-Matrix, LPP, System of Liner Equations, normal form

I. Introduction

Definition 1.1: A square matrix is said to be C-Matrix if all the principal diagonal elements are same, in which rest of the elements are different form Princiapal diagonal element and at least two elements are different.

Examples:

1. $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1\end{array}\right]$ is C-Matrix
2. $A=\left[\begin{array}{llll}2 & 3 & 5 & 4 \\ 3 & 2 & 6 & 8 \\ 5 & 6 & 2 & 8 \\ 6 & 6 & 7 & 2\end{array}\right]$ is C -Matrix
3. $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1\end{array}\right]$ is not C -Matrix because 1 is the principal diagonal element that should not present in other than principal diagonal element

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
4. $A=\left[\begin{array}{llll}2 & 2 & 5 & 4 \\ 3 & 2 & 6 & 8 \\ 5 & 6 & 2 & 8 \\ 6 & 6 & 2 & 2\end{array}\right]$ is not C-Matrix because 2 is the principal diagonal element that should not present in other
than principal diagonal element
Definition 1.2.A general system of n linear equations with n unknowns can be written as
$A X=B$
Where $\mathrm{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]_{n x n}, \mathrm{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
and A is called Coefficient Matrix with constants, X is a matrix with unknowns and B is a constant matrix
Definition 1.3: Linearprogrammingproblem(LPP) that can be expressed in
Minimize/Max $\mathrm{Zc}^{\mathrm{T}} \mathrm{X}$
Subject to $\quad \mathrm{Ax} \leq \mathrm{b}$
where \mathbf{x} represents the vector of variables (to be determined), \mathbf{c} and \mathbf{b} are vectors of (known) coefficients, A is a (known) matrix of coefficients,

Definition 1.4: An n-tuple ($\mathrm{x} 1, \mathrm{x} 2 \ldots . \mathrm{xn}$) of numbers which satisfies the constraints given by (b) of G.L.L.P.is called a solution to G.L.P.P.

Definition 1.5: Any solution to a G.L.P.P. which satisfies the non-negativity restrictions of the problem is called a feasible solution to a general L.P.P.

Definition 1.6: AnyFeasible solution to a G.L.P.P. which optimizes (maximizes/ minimizes) the objective function of G.L.P.P. is called an optimum solution to the G.L.L.P.

Definition 1.7:A basic solution to the system is called degenerate if one or more of the basic variables vanish i.e. if any of the basic variable has zero value then it is called degenerate basic solution.

Definition 1.8: A basic solution the system is called non-degenerate if all the basic variables are non-zero (either positive or negative)

Definition 1.9: A feasible solution to L.P.P. which is also a basic solution to the problem is called a basic feasible solution (B.F.S.) to the L.P.P.

Problem 1.1: If A is C matrix and $A X=B$ is the linear system of Equations (1) Then
i) If B is replaced with $1^{\text {st }}$ column of A in $\mathrm{AX}=\mathrm{B}$ then the solution is $(1,0,0, . .0)^{\mathrm{T}}$
ii) If B is replaced with $2^{\text {nd }}$ column of A in $A X=B$ then the solution is $(0,1,0, . .0)^{\mathrm{T}}$
iii) If B is replaced with $3^{\text {rd }}$ column of A in $\mathrm{AX}=\mathrm{B}$ then the solution is $(0,0,1, . .0)^{\mathrm{T}}$

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
iii) If B is replaced with nth column of A in $A X=B$ then the solution is $(0,0,0, . .1)^{T}$

Solution

Case i)Let a general system of 3 linear equations with 3 unknowns can be written as
$1 x+2 y+3 z=1$
$2 x+1 y+4 z=2$
$3 x+4 y+1 z=3$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and first column are same in $A X=B$
Claim: The solution is $x=1, y=0, z=0$
The solution by Normal form method
The Augmented matrix
$[A B]=\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 2 & 1 & 4 & 2 \\ 3 & 4 & 1 & 3\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2}-2 \mathrm{R}_{1} ; \mathrm{R}_{3}->\mathrm{R}_{3}-3 \mathrm{R}_{1} ;$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 0 & -2 & -8 & 0\end{array}\right]$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 0 & -2 & -8 & 0\end{array}\right]$
$\mathrm{R}_{2}>\mathrm{R}_{2} /-3$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 0 & 0 & 2 / 3 & 0 \\ 0 & -2 & -8 & 0\end{array}\right]$
$\mathrm{R}_{1}>\mathrm{R}_{1}-2 \mathrm{R}_{2}$
$\approx\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & -2 & -8 & 0\end{array}\right]$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
$\mathrm{R}_{3}>\mathrm{R}_{3}+2 \mathrm{R}_{2}$
$\approx\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & 0 & -20 / 3 & 0\end{array}\right]$
$\mathrm{R}_{3}->(-3 / 20) \mathrm{R}_{3}$
$\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\mathrm{R}_{1}->\mathrm{R}_{1}-(5 / 3) \mathrm{R}_{3}$
$\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2}-(2 / 3) \mathrm{R}_{3}$
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
It is in normal form Therefore the solution is $x=1, y=0, z=0$
Case ii)Let a general system of 3 linear equations with 3 unknowns can be written as
$1 x+2 y+3 z=2$
$2 x+1 y+4 z=1$
$3 x+4 y+1 z=4$
If we observe the coefficient matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and secondand last column are same in $\mathrm{AX}=\mathrm{B}$

Claim: The solution is $\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=0$
The solution by Normal form method
The Augmented matrix
$[A B]=\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 1 & 4 & 1 \\ 3 & 4 & 1 & 4\end{array}\right]$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
$\mathrm{R}_{2}->\mathrm{R}_{2}-2 \mathrm{R}_{1} ; \mathrm{R}_{3}->\mathrm{R}_{3}-3 \mathrm{R}_{1} ;$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 2 \\ 0 & -3 & -2 & -3 \\ 0 & -2 & -8 & -2\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2} /-3$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 2 \\ 0 & 1 & 2 / 3 & 1 \\ 0 & -2 & -8 & -2\end{array}\right]$
$\mathrm{R}_{1}>\mathrm{R}_{1}-2 \mathrm{R}_{2}$
$\approx\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 0 \\ 0 & 1 & 2 / 3 & 1 \\ 0 & -2 & -8 & -2\end{array}\right]$
$\mathrm{R}_{3}->\mathrm{R}_{3}+2 \mathrm{R}_{2}$
$\approx\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 0 \\ 0 & 1 & 2 / 3 & 1 \\ 0 & 0 & -20 / 3 & 0\end{array}\right]$
$\mathrm{R}_{3}->(-3 / 20) \mathrm{R}_{3}$
$\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\mathrm{R}_{1}->\mathrm{R}_{1}-(5 / 3) \mathrm{R}_{3}$
$\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 2 / 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2}-(2 / 3) \mathrm{R}_{3}$
$\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
It is in normal form Therefore the solution is $\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=0$
Case iii)Let a general system of 3 linear equations with 3 unknowns can be written as

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
$1 x+2 y+3 z=3$
$2 x+1 y+4 z=4$
$3 x+4 y+1 z=1$
Claim: The solution is $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=1$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and $3^{\text {rd }}$ and last column are same in $A X=B$
The solution by Normal form method
The Augmented matrix
$[A B]=\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 2 & 1 & 4 & 4 \\ 3 & 4 & 1 & 1\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2}-2 \mathrm{R}_{1} ; \mathrm{R}_{3}->\mathrm{R}_{3}-3 \mathrm{R}_{1} ;$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 3 \\ 0 & -3 & -2 & -2 \\ 0 & -2 & -8 & -8\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2} /-3$
$\approx\left[\begin{array}{cccc}1 & 2 & 3 & 2 \\ 0 & 1 & 2 / 3 & 2 / 3 \\ 0 & -2 & -8 & -8\end{array}\right]$
$\mathrm{R}_{1}->\mathrm{R}_{1}-2 \mathrm{R}_{2}$
$\approx\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 5 / 3 \\ 0 & 1 & 2 / 3 & 2 / 3 \\ 0 & -2 & -8 & -8\end{array}\right]$
$\mathrm{R}_{3}->(-3 / 20) \mathrm{R}_{3}$
$\left[\begin{array}{cccc}1 & 0 & 5 / 3 & 5 / 3 \\ 0 & 1 & 2 / 3 & 2 / 3 \\ 0 & 0 & 1 & 1\end{array}\right]$
$\mathrm{R}_{1}->\mathrm{R}_{1}-(5 / 3) \mathrm{R}_{3}$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 2 / 3 & 2 / 3 \\ 0 & 0 & 1 & 1\end{array}\right]$
$\mathrm{R}_{2}->\mathrm{R}_{2}-(2 / 3) \mathrm{R}_{3}$
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
It is in normal form Therefore the solution is $x=0, y=0, z=1$
\therefore If the coefficient matrix is C matrix and B is changing column $1,2,3$ in $A X=B$ then the solution is
$\mathrm{X}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{X}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{X}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Problem1.2:Solve the linear Programming Problem using Simplex (Big M) method when the coefficient matrix is C matrix when objective function is Maximum and subjective to $A X \leq B, X \geq 0$
i) If B is replaced with $1^{\text {st }}$ column of A in $\mathrm{AX}=\mathrm{B}$ then the solution is $(1,0,0, . .0)^{\mathrm{T}}$
ii) If B is replaced with $2^{\text {nd }}$ column of A in $A X=B$ then the solution is $(0,1,0, . .0)^{T}$
iii) If B is replaced with $3^{\text {rd }}$ column of A in $A X=B$ then the solution is $(0,0,1, . .0)^{T}$
iii) If B is replaced with nth column of A in $A X=B$ then the solution is $(0,0,0, . .1)^{T}$

Case \boldsymbol{i})The last and first columns are same in $\mathrm{AX} \leq \mathrm{B}$
and A is C matrix in LPP
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3$
Subject to,
$\mathrm{x} 1+5 \times 2+2 \times 3 \leq 1 ;$
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 2$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \times 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 1$;
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 2$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and first column are same in $A X=B$

Claim: The solution is $\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S1
1.As the constraint -2 of the type \leq we should add slack variable S 2
1.As the constraint -1 of the type \leq we should add slack variable S3

After introducing slack variables
Max $\mathrm{Z}=5 \times 1+10 \times 2+8 \times 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$
Subject to

$\mathrm{x} 1+5 \times 2+2 \times 3+\mathrm{S} 1$	$=1$
$4 \mathrm{x} 1+1 \times 2+4 \mathrm{x} 3+\mathrm{S} 2$	$=4$
$2 \mathrm{x} 1+4 \times 2+\mathrm{x} 3+\mathrm{S} 3$	$=2$

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S1	0	1	1	$\mathbf{(5)}$	2	1	0	0	$1 / 5 \longleftarrow-$
S2	0	4	4	1	4	0	1	0	$4 / 1$
S 3	0	2	2	4	1	0	0	1	$2 / 4$
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0} \mathbf{4}$	-8	0	0	0	

R1(new)=>R1(old)/5
R2(new)=>R2(old)-R1(new)
R3(new)=>R3(old)-4R1(new)
Negative minimum $Z j$ - $C j$ is -10 and its column index is 2 . So, the entering variable is $x 2$.
Minimum ratio is 0.2 and its row index is 1 . So, the leaving basis variable is $S 1$.
\therefore The pivot element is 5 .
Entering $=x 2$, Departing $=S 1$, Key Element $=5$

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

Iteration 2		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{x B}{x 2}$
$\mathbf{X 2}$	10	$1 / 5$	$1 / 5$	1	$\mathbf{2 / 5}$	$1 / 5$	0	0	$1 / 2$
S 2	0	$19 / 5$	$19 / 5$	0	$18 / 5$	$-1 / 5$	1	0	$19 / 18$
S 3	0	$6 / 5$	$6 / 5$	0	$-3 / 5$	$-4 / 5$	0	1	$2 / 4$
$\mathrm{Z}=2$		Zj	2	10	4	2	0	0	
	$\mathrm{Zj}-\mathrm{Cj}$	-3	0	$\mathbf{4}$	2	0	0		

R1(new) $=>$ R1(old) $* 5 / 2$
R2(new)=>R2(old)-(18/5)R1(new)
R3(new)=>R3(old)+(3/5)R1(new)
Negative minimum $Z j-C j$ is - 4 and its column index is 3 . So, the entering variable is $x 3$.
Minimum ratio is 0.5 and its row index is 1 . So, the leaving basis variable is $x 2$.
\therefore The pivot element is $2 / 5$
Entering $=x 3$, Departing $=x 2$, Key Element $=2 / 5$

Iteration 3		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
X 3	8	$1 / 2$	$1 / 2$	$5 / 2$	$\mathbf{1}$	$1 / 2$	0	0	1
S 2	0	2	2	-9	0	-2	1	0	1
S 3	0	$3 / 2$	$\mathbf{3 / 2}$	$\mathbf{3 / 2}$	0	$-1 / 2$	0	1	1
$\mathrm{Z}=4$		Zj	4	20	8	4	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-1	$\mathbf{1 0}$	$\mathbf{0}$	4	0	0	

R3(new) $=>$ R3(old) $* 2 / 3$
R1(new) $=>$ R1(old)-(1/2)R3(new)
R2(new)=>R2(old)-2R3(new)
Negative minimum $Z j$ - $C j$ is -1 and its column index is 1 . So, the entering variable is $x 1$.
Minimum ratio is 1 and its row index is 3 . So, the leaving basis variable is $S 3$.
\therefore The pivot element is $3 / 2$.
Entering $=x 1$, Departing $=S 3$, Key Element $=3 / 2$

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

Iteration 4		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
X 3	8	0	0	2	$\mathbf{1}$	$2 / 3$	0	$-1 / 3$	
S 2	0	0	0	-11	0	$-4 / 3$	1	$-4 / 3$	
X 1	5	1	1	1	0	$-1 / 3$	0	$2 / 3$	
$\mathrm{Z}=5$		Zj	5	21	8	$11 / 3$	0	$2 / 3$	
		$\mathrm{Zj}-\mathrm{Cj}$	0	11	$\mathbf{0}$	$11 / 3$	0	$2 / 3$	

Since all $\mathrm{Zj}-\mathrm{Cj} \geq 0$
Hence, optimal solution is arrived with value of variables as : $\mathrm{x} 1=1, \mathrm{x} 2=0, \mathrm{x} 3=0$
Max Z=5
Caseii) The last and second columns are same in $\mathrm{AX} \leq \mathrm{B}$, and A is C matrix in LPP
Solve the linear Programming Problem using Simplex (Big M) Method
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \times 3$
Subject to,
$\mathrm{x} 1+5 \times 2+2 \times 3 \leq 5$;
$4 \times 1+1 \times 2+4 \times 3 \leq 1 ;$
$2 \times 1+4 \times 2+x 3 \leq 4$

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \mathrm{x} 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 5$;
$4 \times 1+1 \times 2+4 \times 3 \leq 1 ;$
$2 \times 1+4 \times 2+x 3 \leq 4$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and second column are same in $A X=B$
Claim: The solution is $\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S1
1.As the constraint -2 of the type \leq we should add slack variable S 2
1.As the constraint -1 of the type \leq we should add slack variable S3

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

After introducing slack variables
Max $\mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$
Subject to

$\mathrm{x} 1+5 \times 2+2 \mathrm{x} 3+\mathrm{S} 1$	$=5$
$4 \mathrm{x} 1+1 \times 2+4 \times 3+\mathrm{S} 2$	$=1$
$2 \times 1+4 \times 2+\mathrm{x} 3$	+S 3

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S1	0	5	1	5	2	1	0	0	$5 / 5$
S2	0	1	4	1	4	0	1	0	$1 / 1$
S3	0	4	2	$\mathbf{(4)}$	1	0	0	1	$4 / 4$ -
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0}$	$\mathbf{4}$	-8	0	0	0

Negative minimum Zj-Cjis -10 and its column index is 2 . So, the entering variable is $x 2$.
Minimum ratio is 1 and its row index is 3 . So, the leaving basis variable is $S 3$.
\therefore The pivot element is 4 .
Entering $=x 2$, Departing $=S 3$, Key Element $=4$
R3(new) $=>$ R3(old)/4
R1(new)=>R1(old)-5R3(new)
R2(new)=>R2(old)-R3(new)

Iteration 2		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
$\mathbf{S} 1$	0	0	$-3 / 2$	0	$3 / 4$	1	0	$-5 / 4$	0
S 2	0	0	$7 / 2$	0	$(\mathbf{1 5 / 4})$	0	1	$-1 / 4$	$0 \longrightarrow$
X 2	10	1	$1 / 2$	1	$1 / 4$	0	0	$1 / 4$	4
$\mathrm{Z}=10$		Zj	5	10	$5 / 2$	0	0	$5 / 2$	
		$\mathrm{Zj}-\mathrm{Cj}$	0	0	$\mathbf{- 1 1 / 2} \mathbf{4}$	0	0	$5 / 2$	

Negative minimum $Z j-C j i s-11 / 2$ and its column index is 3 . So, the entering variable is $x 3$.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is s 2 .
\therefore The pivot element is $15 / 4$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
Entering $=x 3$, Departing $=\mathrm{s} 2$, Key Element $=15 / 4$
R2(new) $=>$ R2(old) $* 4 / 15$
R1(new)=>R1(old)-(3/4)R2(new)
R3(new)=>R3(old)-(1/4)R2(new)

Iteration 3		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $X B$
S 1	0	0	$-11 / 5$	0	$\mathbf{0}$	1	$-1 / 5$	$-6 / 5$	
X 3	8	0	$14 / 5$	0	1	0	$4 / 5$	$-1 / 15$	
$\mathbf{X 2}$	10	1	$\mathbf{4 / 5}$	$\mathbf{1}$	0	0	$-1 / 15$	$4 / 15$	
$\mathrm{Z}=10$		Zj	$152 / 1$ 5	10	8	0	$22 / 15$	$32 / 15$	
		$\mathrm{Zj}-\mathrm{Cj}$	$77 / 15$	8	$\mathbf{0}$	0	$22 / 15$	$32 / 15$	

Since all $\mathrm{Zj}-\mathrm{Cj} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$\mathrm{x} 1=0, \mathrm{x} 2=1, \mathrm{x} 3=0$
Max $Z=10$
Caseiii) The last and third columns are same in $A X \leq B$, and A is C matrix in LPP
the linear Programming Problem using Simplex (Big M) Method
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3$
Subject to,
$\mathrm{x} 1+5 \times 2+2 \mathrm{x} 3 \leq 2$;
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 1 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Max} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \mathrm{x} 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 2$;
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 1 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and third column are same in $A X=B$
Claim: The solution is $\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S 1
1.As the constraint -2 of the type \leq we should add slack variable S 2
1.As the constraint -1 of the type \leq we should add slack variable S3

After introducing slack variables
Max $\mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$
Subject to

$\mathrm{x} 1+5 \times 2+2 \times 3+\mathrm{S} 1$	$=2$
$4 \times 1+1 \times 2+4 \times 3+\mathrm{S} 2$	$=4$
$2 \times 1+4 \times 2+\mathrm{x} 3$	+S 3

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S1	0	2	1	5	2	1	0	0	0.4
S2	0	4	4	1	4	0	1	0	4
S3	0	1	2	$\mathbf{(4)}$	1	0	0	1	0.25
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0}$	$\mathbf{4}$	-8	0	0	0

Negative minimum Zj- Cjis - 10 and its column index is 2 . So, the entering variable is $x 2$.
Minimum ratio is 0.25 and its row index is 3 . So, the leaving basis variable is $S 3$.
\therefore The pivot element is 4 .
Entering $=x 2$, Departing $=S 3$, Key Element $=4$
R3(new) $=>$ R3(old)/4
R1(new)=>R1(old)-5R3(new)
R2(new)=>R2(old)-R3(new)

Iteration 2		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

									$\frac{X B}{x 2}$
S1	0	$3 / 4$	$-3 / 2$	0	$3 / 4$	1	0	$-5 / 4$	1
S2	0	$(\mathbf{1 5 / 4})$	$7 / 2$	0	$\mathbf{(1 5 / 4)}$	0	1	$-1 / 4$	$1 \longrightarrow$
X 2	10	$1 / 4$	$1 / 2$	1	$1 / 4$	0	0	$1 / 4$	1
$\mathrm{Z}=5 / 2$		Zj	5	10	$5 / 2$	0	0	$5 / 2$	
		$\mathrm{Zj}-\mathrm{Cj}$	0	0	$\mathbf{- 1 1 / 2} \mathbf{4}$	0	0	$5 / 2$	

Negative minimum $Z j$ - $C j$ is $-11 / 2$ and its column index is 3 . So, the entering variable is $x 3$.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is s 2 .
\therefore The pivot element is $15 / 4$
Entering $=x 3$, Departing $=\mathrm{s} 2$, Key Element $=15 / 4$
R2(new) $=>$ R2(old) $* 4 / 15$

R1(new)=>R1(old)-(3/4)R2(new)
R3(new)=>R3(old)-(1/4)R2(new)

Iteration 3		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S 1	0	0	$-11 / 5$	0	$\mathbf{0}$	1	$-1 / 5$	$-6 / 5$	
X 3	8	0	$14 / 5$	0	1	0	$4 / 5$	$-1 / 15$	
$\mathbf{X 2}$	10	1	$\mathbf{4 / 5}$	$\mathbf{1}$	0	0	$-1 / 15$	$4 / 15$	
$\mathrm{Z}=8$		Zj	$152 / 1$ 5	10	8	0	$22 / 15$	$32 / 15$	
		$\mathrm{Zj}-\mathrm{Cj}$	$77 / 15$	0	$\mathbf{0}$	0	$22 / 15$	$32 / 15$	

Since all $\mathrm{Zj}-\mathrm{Cj} \geq 0$
Hence, optimal solution is arrived with value of variables as :
$\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=1$
Max $\mathrm{Z}=8$
\therefore The vectors of Identity matrix are the solutions of LPPspacial problems
Problem1.3:Solve the linear Programming Problem using Simplex (Big M) method when the coefficient matrix is C matrix when objective function is Minimum and subjective to $A X \leq B, X \geq 0$, the solution of is trivial solution and MinZ=0 for each case given below
i) If B is replaced with $1^{\text {st }}$ column of A in $\mathrm{AX}=\mathrm{B}$ then the solution is $(0,0,0, . .0)^{\mathrm{T}}$
ii) If B is replaced with $2^{\text {nd }}$ column of A in $A X=B$ then the solution is $(0,0,0, . .0)^{\mathrm{T}}$
iii) If B is replaced with $3^{\text {rd }}$ column of A in $\mathrm{AX}=\mathrm{B}$ then the solution is $(0,0,0, . .0)^{\mathrm{T}}$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
iii) If B is replaced with nth column of A in $A X=B$ then the solution is $(0,0,0, . .0)^{T}$

Case i)The last and first columns are same in $A X \leq B$
and A is C matrix in $L P P$
$\operatorname{Min} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \times 3$

Subject to,
$\mathrm{x} 1+5 \times 2+2 \mathrm{x} 3 \leq 1 ;$
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+\times 3 \leq 2$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Min} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \times 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 1$;
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 2 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and first column are same in $A X=B$
Claim: The solution is $x=0, y=0, z=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S1
1.As the constraint -2 of the type \leq we should add slack variable S 2
1.As the constraint -1 of the type \leq we should add slack variable S3

After introducing slack variables
Max $\mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$
Subject to

$\mathrm{x} 1+5 \times 2+2 \times 3+\mathrm{S} 1$	$=1$
$4 \times 1+1 \times 2+4 \times 3+\mathrm{S} 2$	$=4$
$2 \times 1+4 \times 2+\mathrm{x} 3$	+S 3

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S1	0	1	1	$\mathbf{(5)}$	2	1	0	0	
S2	0	4	4	1	4	0	1	0	
S 3	0	2	2	4	1	0	0	1	
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0}$	-8	0	0	0	

Since all $\mathrm{Zj}-\mathrm{Cj} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=0$;
Min $\mathrm{Z}=0$

Case ii)The last and second columns are same in $\mathrm{AX} \leq \mathrm{B}$
and A is C matrix in LPP
$\operatorname{Min} \mathrm{Z}=5 \mathrm{x} 1+10 \mathrm{x} 2+8 \mathrm{x} 3$
Subject to,
$x 1+5 \times 2+2 \times 3 \leq 5 ;$
$4 \times 1+1 \times 2+4 \times 3 \leq 1 ;$
$2 \times 1+4 \times 2+x 3 \leq 4 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Min} \mathrm{Z}=5 \times 1+10 \times 2+8 \times 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 5$;
$4 \times 1+1 \times 2+4 \times 3 \leq 1 ;$
$2 \times 1+4 \times 2+x 3 \leq 4 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and first column are same in $A X=B$
Claim: The solution is $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S1

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
1.As the constraint -2 of the type \leq we should add slack variable S2
1.As the constraint -1 of the type \leq we should add slack variable S3

After introducing slack variables
Max $\mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \times 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$

Subject to

$\mathrm{x} 1+5 \mathrm{x} 2+2 \times 3+\mathrm{S} 1$	$=1$
$4 \mathrm{x} 1+1 \times 2+4 \times 3+\mathrm{S} 2$	$=4$
$2 \mathrm{x} 1+4 \times 2+\mathrm{x} 3$	+S 3

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{x 2}$
S1	0	5	1	$\mathbf{(5)}$	2	1	0	0	
S2	0	1	4	1	4	0	1	0	
S 3	0	4	2	4	1	0	0	1	
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0}$	-8	0	0	0	

Since all $\mathrm{Zj}-\mathrm{Cj} \leq 0$
Hence, optimal solution is arrived with value of variables as :
$\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=0$;
Min Z=0
Case iii)The last and third columns are same in $\mathrm{AX} \leq \mathrm{B}$
and A is C matrix in LPP
$\operatorname{Min} \mathrm{Z}=5 \times 1+10 \times 2+8 \times 3$
Subject to,
$\mathrm{x} 1+5 \times 2+2 \mathrm{x} 3 \leq 2$;
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 1 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
Sol. Given Linear Programming Problem
$\operatorname{Min} \mathrm{Z}=5 \mathrm{x} 1+10 \times 2+8 \mathrm{x} 3$
Subject to, $\mathrm{x} 1+5 \times 2+2 \times 3 \leq 2$;

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 567-585
https://publishoa.com
ISSN: 1309-3452
$4 \times 1+1 \times 2+4 \times 3 \leq 4 ;$
$2 \times 1+4 \times 2+x 3 \leq 1 ;$
Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \geq 0$
If we observe the coefficient matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1\end{array}\right]$ is a C matrix and last and first column are same in $A X=B$
Claim: The solution is $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$
The Problem is converted to canonical form by adding slack,surplus and artificial variables
1.As the constraint -1 of the type \leq we should add slack variable S1
1.As the constraint -2 of the type \leq we should add slack variable S 2
1.As the constraint -1 of the type \leq we should add slack variable S3

After introducing slack variables
Max $\mathrm{Z}=5 \times 1+10 \times 2+8 \times 3+0 \mathrm{~S} 1+0 \mathrm{~S} 2+0 \mathrm{~S} 3$
Subject to

$\mathrm{x} 1+5 \times 2+2 \times 3+\mathrm{S} 1$	$=2$
$4 \mathrm{x} 1+1 \times 2+4 \times 3+\mathrm{S} 2$	$=4$
$2 \times 1+4 \times 2+\mathrm{x} 3$	+S 3

Where $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 . \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3 \geq 0$

Iteration 1		C_{J}	5	10	8	0	0	0	
B	CB	XB	X 1	X 2	X 3	S 1	S 2	S 3	Min Ratio $\frac{X B}{X 2}$
S1	0	5	1	$\mathbf{(5)}$	2	1	0	0	
S 2	0	1	4	1	4	0	1	0	
S 3	0	4	2	4	1	0	0	1	
$\mathrm{Z}=0$		Zj	0	0	0	0	0	0	
		$\mathrm{Zj}-\mathrm{Cj}$	-5	$\mathbf{- 1 0} \mathbf{4}$	-8	0	0	0	

Since all $\mathrm{Zj}-\mathrm{Cj} \leq 0$

Hence, optimal solution is arrived with value of variables as : $\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=0 ; \mathrm{Min} \mathrm{Z}=0$

II.Conclusions

Therefore we have proved the vectors of identity matrix are the only solutions for special kind of linear system of equations with n equations n unknown problems and for the Linear Programming Problems (LPP) problems of n variables if the objective function is Maximize and also we have proved if it is given in LPP to Minimize objective function the optimal solution is trivial solution (zero solution) and therefore MinZ=0.

REFERENCE

[1] http://atozmath.com/default.aspx
[2] Griva, Igor; Nash, Stephan G.; Sofer, Ariela. Linear and Nonlinear Optimization (2nd ed.). Society for Industrial Mathematics. ISBN 978-0-89871-661-0.
[3] Charles G. Cullen (1990). Matrices and Linear Transformations

