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ABSTRACT 

 Statistical reconstruction methods present high potential image quality as compared to analytical methods; 

however, it suffers of time complexity. To reduce reconstruction time statistical reconstruction algorithm such as 

Maximum a Posteriori via Expectation Maximization algorithm (MAPEM) is parallelized in a shared memory 

processing (SMP) environment. This work exposes a parallel MAPEM algorithm that reconstructs an image on a 

multi-core parallel environment to reduce the execution time. An attempt to optimize the iteration required to 

reconstruct an image in various angle is performed. The execution time and speed up and efficiency factors for 

both serial and parallel MAPEM are computed. The present work uses phantom data sets of various sizes under 

different number projections. The research exhibits that the parallel computing environment provides the source 

of high computational power leading to reconstruct an image instantaneously.  

Keywords—Image Processing, Image Reconstruction, Iterative Image Reconstruction, Statistical Iterative 

Methods, Likelihood Estimation, Maximum a Posteriori Expectation Maximization, Parallel Processing, 

OpenMP, Shared Memory Processor 

I.  INTRODUCTION  

Image reconstruction Techniques (IRTs) is a mathematical process that produces images from the projection data 

obtained at various angles around an object with the help of some of the medical imaging modalities like Computed 

Tomography (CT), Magnetic Resonance (MR) or Positron Emission Tomography (PET). The reconstruction shows an 

energetic role in image processing method. It increases the quality of image, accuracy. Reconstruction is the method that 

is used to drop the radioactivity dosage. The medical image reconstruction follows the set of measurements of the image 

and performs the remote sensing mechanism. CT is a method that produces a tomographic image from the X–ray 

projection at different perspective near to the patient [1]. MRI scanner use the K space method to assemble the data, it 

reframes the images. The partial type of images contains low quality images. Image processor is used to remove the K 

space mistakes, it separates and forward the image to the reconstruction process. The reconstruction algorithm is applied 

on the partial images, it reduces the noise and reconstructs the images with high quality. The PET is an imaging 

technique that uses the tiny number of energetic compounds (tracker) to identify the disease. The active compounds are 

introduced into the body either injection or gas format. It displays the organs performance and presents a nervous system 

in detail. The tracker takes more time to scan the entire human body. The PET scanning process takes minimum of 30 to 

60 minutes to finish the complete scan. The image reconstruction process takes place to avoid the blur images to obtain 

the clear images. X-Ray is a scan image that supports the reconstruction process with the help of CT image. The 

tomogram is a procedural term for a Computer Tomography image. It chooses the images in the form of slice, it 

corresponds to the what object being scanned, a CT slice represents to a specific thickness of the object being scanned. 

The voxels are used to compose the CT slice images. 

Image reconstruction has been conceded using various reconstruction algorithms [1, 2]. Reconstruction methods 

utilize projection data as input and generate the estimate value that resembles the internal structure as output [3, 4]. 

Reconstruction methods utilize projection data as input and generate the estimate that resembles the internal structure as 

output [4, 5]. The projections are obtained using the detector ring around the object and are reconstructed using various 
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reconstruction algorithm [2]. Data sets with 36 projections measured from 00to 1800 around the phantom object were 

considered in the present study. The same dataset was used for testing the capability of the algorithms from a restricted 

number of projections, by skipping projections at uniform angular distribution. The research study presented here 

explores various reconstruction techniques using these types of projections. 

Analytical and Iterative methods are classified as Image Reconstruction algorithms. The Analytical image 

reconstruction methods uses noise free images. Back Projection (BP) and Filtered Back Projection (FBP) reconstructs 

the image based on direct inversion of the radon transform derived using a continuous line integral. FBP introduces 

streak artifacts due to limited number of photon emission. Regardless of this disadvantage, FBP is expansively used in 

nuclear medicine because of its fast reconstruction time [2]. FBP reconstructs the image based on direct inversion of the 

radon transform derived using a continuous line integral. FBP introduces streak artifacts due to limited number of photon 

emission. Regardless of this disadvantage, FBP is expansively used in nuclear medicine because of its fast reconstruction 

time [6].  For noisy projection data as well as for a limited number of projections, the FBP method of image 

reconstruction shows very poor performance. Hence currently there is considerable interest to evaluate the use of other 

reconstruction methods for medical imaging techniques [5]. FBP algorithm produces high-quality images with excellent 

computational efficiency. However, FBP produces low Signal-to-Noise Ratio (SNR) images when a limited number of 

projections is used [7]. An Iterative method using a non-linear fit to the projection data has shown to give ripple free 

images [8]. Iterative Methods are based on optimization strategies incorporating specific constraints about the object and 

the reconstruction process. The iterative method can be classified into Algebraic and Statistical methods. Some of the 

accepted Algebraic iterative algorithms are Additive Algebraic Reconstruction Technique (AART) and Multiplicative 

Algebraic Techniques (MART) [7]. 

Statistical image reconstruction plays a vital role in the medical field. Statistical methods for image 

reconstruction can provide spatial resolution and noise properties over conventional Filtered Back Projection (FBP) 

methods [5]. However, such methods suffer from time complexity. The statistical method is considered as an iterative 

method in that it can be divided into weighted and likelihood [9]. As the repetition steps are high in the statistical method, 

it does not suit for all approaches. Iterative process includes the different methods for statistical reconstruction technique 

in the form of Poisson process. The Poisson statistical model supports the maximum posteriori work, maximum 

likelihood, context-based Bayesian framework. Expectation Maximization (EM) is one type of statistical method for 

image reconstruction process. EM Algorithm is an iterative algorithm that is often used for estimating parameters of 

Gaussian Mixture Model [10]. 

The present study has proven the time complexity reduction through speedup and efficiency by Amdahl’s law. This 

work exposes a parallel MAPEM algorithm that reconstructs an image on a multi-core parallel environment to reduce the 

execution time. Parallel computing is emerging as a principal theory in high performance computing. Recently Shared 

Memory Processor(SMP) has been utilized for parallel computing. The SMP environment consists of a number of 

processors accessing one or more shared memory modules. For processing the large size of data, the SMP has some 

benefit over the distributed memory parallelization 

II. METHODOLOGIES 

This research helps for the projection of medical images like MEG, EEG, MRI, CT, and PET with the reduced time 

complexity. The image reconstruction using MAPEM will improve the resolution and reduce the noise of the images. 

MAPEM is introduced with a prior knowledge as a constraint that favours convergence of the expectation maximization 

algorithm process called as regularization. The prior is usually chosen to penalize the noisy images. The goal of the 

required criterion are simultaneously maximized which leads to a scheme called One Step Late (OSL) algorithm. The 

priori term is the derivative of an energy function chosen to enforce smoothing and a value is chosen to modulate the 

importance of the priori. 

At the initial condition the reconstruction method guesses the estimate value that resembles the internal structure, by 

feeding projection data as input. This proposed work, develops MAPEM algorithm to reconstruct the image sequentially 

and works in Parallelized shared memory processing environment using different projection data sets. The experiment is 

carried out by the projection of Shepp logan phantom from Radon function available in MATLAB 

Under the estimation theory the expectation maximization is a general optimization technique, to analyse the 

maximum likelihood estimation of parameters based on the tactical model. The E–Step, and the M–Step are the two 

steps involved in the EM algorithm. For every iteration in EM, the re-estimated parameters provides a least log 

likelihood value same as the previous values. The E-step, estimated parameter will calculate the maximum likelihood 

based on true value. In the M-step the calculated value in the E-step of maximum likelihood is used to estimate the 

parameters [11]. 
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Figure 1: Three views of parallel beam projection of an EMI scanner 

The parallel beam which determines a view or direction of the projection will be measured by an array consisting of 

a number of detectors, which will determine the number of sampling of the beam. Since the X-ray source can be assumed 

as point of the beam that pass a small fan shaped track can be assumed as a small bean itself. A small beam here is 

simply called as a ray. So a projection beam (view) consists of many projection rays (samplings). The three views of 

parallel beam projection of an EMI scanner have been presented in Figure 1. 

The two steps will iterate continuously until the specified convergence is occurred. Applications of the EM 

algorithm include estimating class–conditional densities in supervised learning settings, density estimation in 

unsupervised clustering and for outlier detection purposes. The Spatial EM algorithm are based on the utilizes median  

based location and rank based scatter estimators to replace the sample mean and covariance matrix in the M – Step of an 

EM algorithm. Hence it improves the stability of the finite mixture model and it is well robust to outliers. There are also 

many good tutorials on EM algorithms. Thus the optimal solution, the maximum likelihood estimation directly leads to 

the accurate quantification as well as the reliability. 

 

E-Step Procedure: Estimates the expectation of the missing value i.e. unlabelled class information. This step 

corresponds to performing classification of each unlabelled document. Probability distribution is calculated using current 

parameter. 

The estimate is given from the previous iteration (m), 

 

M-Step Procedure: Calculates the maximum likelihood parameters for the current estimate of the complete data. 

 

to find 

 

IRTs prove better in producing images of superior quality than the conventional filtered back projection-based 

algorithms. But in a clinical setting the use of IRT proves problematic because of the computational demands of these 

algorithms. Statistical methods for image reconstruction or restoration, such as Penalized Maximum-Likelihood (PML), 

Maximum Likelihood (ML), or Maximum A Posteriori (MAP), this methods have the challenge in the computation 

depends on the poisson log likelihood. Three different approaches are attempted aiming at shortening the computational 

time. 
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First the iterative reconstruction methods are applied with reduction in number of iterations. In second approach 

special hardware techniques were employed to do back projection on an event-by-event basis targeting at the speed of 

computations. Both these two approaches are not free from major problems. One significant problem was that 

computational speed arrived at was not remarkable but very limited. Moreover, it requires tremendous amount of 

computation. Hence the third approach that is parallel processing is considered promising and more reliable. 

III. SYSTEM DESIGN AND IMPLEMENTATION 

A. Data Set 

In this research Shepp-Logan Phantom in various sizes 64 x 64, 128 x 128 and 256 x 256 is taken for study. The 

image data set is given in Figure 2. The Projections of the Shepp-Logan phantom are obtained using Radon function 

available in MATLAB at which angles the objects should be rotated. This system uses five different angles, such as 60, 

90, 120, 150, 180 obtaining 30, 20, 15, 12, 10 numbers of projections respectively. The data read from the projections is 

supplied into the MEX function to execute under single and multiple processors. 

 

Figure 2: The Shepp Logan Phantom Image of size (a)64x64 (b)128x128 (c) 256x256 

B. Design and Implementation 

• Sequential Version: The Figure 3 shows the flow diagram for the sequential MAPEM method. The flow shows 

that, in the initial condition it will read the projection data, apply E-step and M-step and update the vector. It then 

checks if error exists. If error exists, the process continues else the projection image will be displayed or else the 

process will be continued.  

 

Figure 3: Flowchart showing the steps of MAPEM to reconstruct an image in sequential version 

 The EM technique is separated into two sections as E-step and M-step. The E-step, calculates the maximum 

likelihood based on true value. The M-step update the values using the value obtained from the E-step to estimate 

the parameters. Once the error value is not found it will be moved for the smoothness process for improving the 

resolution and to reduce the noise of the projection images. This operation will happen sequentially resulting in 

time complexity. The algorithm for the sequential version of MAPEM is given in Algorithm 1. 

Algorithm 1 MAPEM Algorithm 

Input: a, p, M, numIter 

Output: retv 

1: function mlem(a, p, M, numIter) 

2:      retV   zeros(numel(a), numIter) 

3:      retV (:, 1)   a(:) 

4:      nai2   full(sum(abs(M.* M), 2)) 

5:      I   f ind(nai2 > 0)’ 

6:      si  size(I, 2) 

7:     for j   1 to si do 

8:         Mi  f ull(M(j, :)) 
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9:         norm  norm + Mi’ 

10:     end for 

11:     for i  1 to numIter do 

12:         add_proj    zeros(size(a)) 

13:         for j  1 to si do 

14:             if (j < numel(a) – 1) && (j # 1) &&  

                                                                            (M(j) # 1) then 

15: 

               

K  j – 1 

16:                while k  j do 

17: 

                   

s  s + M(j, k) * (a(j) – a(k)) 

18: 

                   

k  k + 2 

19:                end while 

20:           end if 

21:           add_proj  add_proj + (Mi’*p(j))   

                                                                           /(sum(Mi’ * a)) 

22:        end for 

23:        a    a * add_proj/(norm + s) 

24:        retV (:, i)   a 

25:     end for 

26:     return retv 

27: end function 

 

 

Figure 4: Flowchart of MAPEM to reconstruct an image in parallel mode 

Parallel Version: The parallel version of MAPEM implemented on a multi-core environment is termed as parallel 

Maximum A Posteriori Expectation Maximization (pMAPEM). pMAPEM is same as the sequential operation, but 

with the help of OpenMP the operation will be functioned in multiple processes. For all the projection the E- step 

followed by the M-step will be carried out. In this method the operation will be done in parallel to reduce the time 

complexity. The master thread controls the worker thread by assigning the job to them. At the end the master 

thread collects all the values from worker thread and updates the value. The flowchart at Figure 3 illustrates the 

parallel version of pMAPEM. The parallel version Algorithm is given in Algorithm 2. 

 

Algorithm 2 pMAPEM Algorithm 
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Input: a, p, M, numIter 

Output: retv 

1: function mlem(a, p, M, numIter) 

2:     retV   zeros(numel(a), numIter) 

3:     retV (:, 1)   a(:) 

4:     nai2   f ull(sum(abs(M.* M), 2)) 

5:     I  f ind(nai2 > 0)’ 

6:     si  size(I, 2) 

7:     omp_set_num_threads(numCore) 

8:     n  ceil(size(I, 1)/numCores 

9:     for j  1 to si do 

10: Mi  f ull(M(j, :)) 

11:   norm  norm + Mi’ 

12: end for 

13: for i  1 to numIter do 

14: add_proj   zeros(size(a)) 

15: for j  1 to si do 

16:    #pragma omp parallel f or shared(si) private(j)  

                                                     schedule(dynamic, n) reduction(+ : v) 

18:    if (j < numel(a)  1) && (j 6= 1) && (M(j) 6= 1) then 

19:     k  j+1 

20:     while k ≤ j do 

21:         s  s + M(j, k) * (a(j) – a(k))   

22:         k  k + 2 

23:      end while 

24:      end if 

25:        add_proj  add_proj + (Mi’ * p(j))/(sum(Mi’ * a)) 

26:    end for  

27:      a   a * add_proj/(norm + s) 

28:      retV (:, i)   a 

29:    end for 

30:   return retv 

31: end function 

 

IV. RESULTS AND DISCUSSION 

 

In this research work statistical image reconstruction method MAPEM reconstruct a good quality image even in 

minimum number of projections compared to the Algebraic iterative methods. Figure 5 shows the GUI Designed and 

result obtained using MAPEM and pMAPEM. 
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Figure 5: GUI of an MAPEM & pMAPEM 

 

The parameters used to reconstruct an image size 64 x 64, 128 x 128 and 256 x 256 are projection matrix at angles 

180, 150, 120, 90 and 60 angles obtaining 10, 12, 15, 20 and 30 number of projections respectively, the weight vector as 

sparse matrix and optimized number of iterations based on the number of projections. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 64 x 64 image reconstructed using FBP, SIRT, SART, ART, MLEM, MAPEM and pMAPEM. Column 

represents the image reconstructed using the (a) data taken at 180 angles with 10 number of projections, (b) 150 angles 

with 12 number of projections, (c) 120 angles with 15 number of projections, (d) 90 angles with 20 number of projections, 

(e) 60 angles with 30 number of projections. 

The images obtained for various sizes considered for study using the designed GUI application is given in the Figure 

6, Figure 7 and Figure 8. 
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In all the figures the image reconstructed using FBP is at First row, SIRT is at second row, SART is at third row, 

ART is at fourth row, MLEM is at fifth row, MAPEM and pMAPEM is at sixth and seventh rows respectively. The 

column named (a), (b), (c), (d) and (e) denotes the image reconstructed using 10, 12, 15, 20 and 30 number of 

projections. SIRT, SART, ART, MLEM and MAPEM are executed sequentially where pMAPEM are implemented as 

parallel version. The last row in all the figures shows only pMAPEM that uses 2, 4 or 8 cores. The image reconstructed 

using any number of cores reconstructs same quality of image as MAPEM reconstruct in sequential version. 

 

Figure 7: 128 x 128 image reconstructed using FBP, SIRT, SART, ART, MLEM, MAPEM and pMAPEM. Column 

represents the image reconstructed using the (a) data taken at 180 angles with 10 number of projections, (b) 150 angles 

with 12 number of projections, (c) 120 angles with 15 number of projections, (d) 90 angles with 20 number of projections, 

(e) 60 angles with 30 number of projections. 

Figure 8: 256 x 256 image reconstructed using FBP, SIRT, SART, ART, MLEM, MAPEM and pMAPEM. Column 

represents the image reconstructed using the (a) data taken at 180 angles with 10 number of projections, (b) 150 angles 

with 12 number of projections, (c) 120 angles with 15 number of projections, (d) 90 angles with 20 number of projections, 

(e) 60 angles with 30 number of projections. 

A. Iterations 

The optimized number of iteration obtained using MAPEM image reconstruction algorithm is tabulated in the Table 

1. The SIRT, SART algorithm uses the same iterations that have been optimized by the MAPEM algorithm. 

TABLE I.  OPTIMIZED ITERATION TO RECONSTRUCT 64 X 64, 128 X 128 256 X 256 IMAGE WITH HIGH PERCEPTUAL 

FIDELITY. 

Size 
Iteration 

10 12 15 20 30 

64 x 64 19 23 10 18 20 

128 x 128 41 23 35 27 27 

256 x 256 61 39 45 29 61 

 

From the Table 1 it is clear that as the image size increases the number of iterations gradually increases. Although 

number of projections increases the iterations remains the same for maximum number of projections as for the minimum 

number of projections. 

B. Peak Signal-to-Noise Ratio 

Table 2 is used to analyse the PSNR value for different image sizes with various number of projections. It is 

observed that the PSNR for different size of images using various angles is above 60 db which shows the tremendous 

perceptual fidelity. 
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TABLE II.  MEASURED PSNR VALUES USING FBP, SIRT, SART, MAPEM AND PMAPEM ALGORITHMS WITH 10, 12, 15, 

20 AND 30 NUMBER OF PROJECTIONS FOR VARIOUS IMAGE SIZES 64 X 64, 128 X 128 AND 256 X 256.. 

Size Algorithm 
PSNR 

10 12 15 20 30 

64 

x 

64 

FBP 49.497 50.0059 50.7319 51.4147 51.9243 

SIRT 52.2959 52.5904 52.2921 53.0862 53.3409 

SART 52.3645 52.6329 52.5692 53.2317 53.4897 

MAPEM 53.5372 53.5798 53.5974 53.5882 53.3685 

pMAPEM 53.5372 53.5798 53.5974 53.5882 53.3685 

128 

x 

128 

FBP 49.497 54.6397 55.8001 57.0232 58.7456 

SIRT 59.0597 59.231 59.8758 60.306 60.9639 

SART 59.0982 59.2974 59.9331 60.4298 61.1544 

MAPEM 61.6712 61.233 62.1311 62.0966 62.1582 

pMAPEM 61.6712 61.233 62.1311 62.0966 62.1582 

256 

x 

256 

FBP 58.0899 59.0863 60.4143 62.0325 64.4252 

SIRT 65.3235 65.6486 66.345 66.9003 68.5452 

SART 65.351 65.6801 66.3955 67.0409 68.6266 

MAPEM 69.5812 69.7039 70.251 70.3148 71.0151 

pMAPEM 69.5812 69.7039 70.251 70.3148 71.0151 

 

MAPEM shows better performance even for limited number of projections. The above result strongly reveals that 

statistical algorithm works fine even for small size images in minimum number of projections yielding a good PSNR 

value in a reasonable time. An attempt is made to reduce the time which can survey as a tool in medical field to 

reconstruct an image instantaneously. 

 

C. Time Complexity 

Time complexity is measured as the time taken by MAPEM for various image sizes to reconstruct in sequential and 

parallel using 1, 2, 4 and 8 cores in AMD processor. This time complexity of the reconstructed images with various size 

is given by the 2, 4, 8 cores in regard to the number of projections. Tables 3 tabulates the time complexity. 

TABLE III.  TIME TAKEN TO IMAGE OF VARIOUS SIZES WITH VARYING ALGORITHMS USING 10, 12, 15, 20 AND 30 NUMBER 

OF PROJECTIONS. 

Size Algorithm 
Time Taken 

10 12 15 20 30 

64 

x 

64 

FBP 0.002 0.008099 0.006877 0.00332 0.011966 

SIRT 0.74811 0.62328 0.55388 1.385 1.9381 

SART 0.48602 0.6842 0.42174 1.0409 1.6463 

MAPEM 2.66441 3.79177 2.09434 5.26602 8.26126 

pMAPEM 

(2 Cores) 
2.25607 3.20836 1.3518 3.20718 6.32703 

pMAPEM 

(4 Cores) 
1.33296 2.15583 1.14649 3.01207 4.43421 

pMAPEM 

(8 Cores) 
1.12781 1.57789 0.86358 2.00983 3.07759 

128 

x 

128 

FBP 0.005284 0.0037 0.004395 0.005571 0.009635 

SIRT 8.2162 4.5569 11.0323 8.057 18.671 

SART 6.9792 4.9261 8.5043 9.9196 13.096 

MAPEM 43.4195 29.3706 56.6291 54.7103 84.1047 

pMAPEM 

(2 Cores) 
39.0638 23.9133 47.5634 48.2149 67.2989 

pMAPEM 26.928 18.3259 44.5746 36.3727 50.3595 
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(4 Cores) 

pMAPEM 

(8 Cores) 
21.8957 11.1107 21.8165 22.1902 31.908 

256 

x 

256 

FBP 0.008455 0.007704 0.00781 0.015839 0.021083 

SIRT 75.6588 76.6664 91.628  56.3881 176.8353 

SART 50.5161 57.6855 56.3243 56.3881 202.067 

MAPEM 726.522 532.309 727.098 532.317 771.465 

pMAPEM 

(2 Cores) 
502.087 332.341 502.65 332.347 463.192 

pMAPEM 

(4 Cores) 
398.953 297.146 399.495 297.143 447.483 

pMAPEM 

(8 Cores) 
198.488 145.926 199.045 145.934 259.513 

A graph has been plotted for the values tabulated in Table 3 in the Figure 9, Figure 10 and Figure 11 for image sizes 

64 x 64, 128 x 128 and 256 x 256 respectively. 

Graph plotted shows that MAPEM algorithm takes maximum time to reconstruct the image in all considered sizes. 

The objects of applying MAPEM algorithm are to reduce the time consumption and to improvise the quality of the 

reconstructed image. Quality of the image is already proved by measuring the PSNR value tabulated in Table 2. The time 

consuming objective is obtained by parallelizing the algorithm under 2, 4 and 8 cores. The graph shows that image is 

reconstructed in minimum number of seconds using MAPEM under 8 Cores. 

 

Figure 9: Time achieved to reconstruct 64 x 64 image with 10, 12, 15, 20 and 30 number of projections using FBP, 

SIRT, SART, MAPEM and pMAPEM using 2, 4 and 8 cores. 



JOURNAL OF ALGEBRAIC STATISTICS  

Volume 13, No. 3, 2022, p. 4211-4223 

https://publishoa.com  

ISSN: 1309-3452  

  

4221 

 

 

Figure 10: Time achieved to reconstruct 128 x 128 image with 10, 12, 15, 20 and 30 number of projections using FBP, 

SIRT, SART, MAPEM and pMAPEM using 2, 4 and 8 cores. 

D. Speed Up 

The performance analysis of a multi-core system can be estimated by the speedup factor of the number of processors 

used to execute. The speedup measures increase in running time due to parallelism. Speedup measures how much faster 

the computation executes versus the best serial code. The speedup is measured in ghz. The theory of speedup is 

established by Amdahl’s law. The performance analysis measure is tabulated in Table 4. 

 

 
 

Figure 11: Time achieved to reconstruct 256 x 256 image with 10, 12, 15, 20 and 30 number of projections using FBP, 

SIRT, SART, MAPEM and pMAPEM using 2, 4 and 8 cores. 
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TABLE IV.  TIME TAKEN TO IMAGE OF VARIOUS SIZES WITH VARYING ALGORITHMS USING 10, 12, 15, 20 AND 30 NUMBER 

OF PROJECTIONS. 

Size Cores 10 12 15 20 30 

64 

 x 

 64 

1 

Core 1 1 1 1 1 

2 

Cores 1.47544 1.97114 1.98946 1.98291 1.97556 

4 

Cores 1.95798 3.80297 3.94194 3.88316 3.88814 

8 

Cores 
2.30998 7.0474 7.69289 7.39583 7.16673 

128 

x 

128 

1 

Core 1 1 1 1 1 

2 

Cores 1.38349 1.97346 1.99118 1.97773 1.99661 

4 

Cores 1.73617 3.87638 3.95761 3.93252 3.93043 

8 

Cores 
1.94444 7.62123 7.76133 7.58582 7.86187 

256 

x 

256 

1 

Core 1 1 1 1 1 

2 

Cores 1.27736 1.97445 1.99581 1.98687 1.99471 

4 

Cores 1.51692 3.91267 3.95574 3.8835 3.91221 

8 

Cores 
1.6212 7.50019 7.74031 7.91742 7.71174 

 

Figure 12: A graph showing the Performance Analysis of the multi-core environment for the image reconstructed for 

64x64 at varying number of projections under 1, 2, 4 and 8 cores. 

The Figure 12, Figure 13 and Figure 14 plots the speedup calculation against various projection angles considered 

for study and different number of cores 1, 2, 4 and 8 for different reconstructed image sizes. 
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Figure 13: A graph showing the Performance Analysis of the multi-core environment for the image reconstructed for 

128 x 128 at varying number of projections under 1, 2, 4 and 8 cores. 

 
 

Figure 14: A graph showing the Performance Analysis of the multi-core environment for the image reconstructed for 256 

x 256 at varying number of projections under 1, 2, 4 and 8 cores 

 

All the graphs show that the performance gradually increases with increase in the number of cores. The speed up 

graph for all the sizes specified at different angles shows a good efficiency. This survey as the evidence of parallel 

programming applied at any field gives a better performance in reduction of time complexity. 

V. SUMMARY 

This paper deals with the Statistical reconstruction methods for high potential image quality as compared to analytical 

methods. However, it suffers from time complexity. In the proposed work the parallel MAPEM algorithm that 

reconstructs an image on a single as well as multi-core parallel environment is designed and implemented and proved 

that at multi core environment time complexity is reduced. The number of iteration mandatory to reconstruct an image is 

optimized. The images are reconstructed sequentially as well as in parallel environment using different projection data 

sets. 
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