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Abstract 

An issue that exists during the meta-analysis process is that one or maybe more studies may have 

sparse data, such as no events in the treatment and control groups.Estimating Odds Ratio, one of the 

three association measures, will be challenging for such a dataset.In certain cases, it is standard 

procedure to either add a constant or remove the study to estimate the unknown values.This 

technique, however, is relied on the asymptotic characteristics of the estimates and may 

underperform for sample sizes. Another strategy would be to employ Bayesian approaches to have a 

better understanding of the problem. The main motive of this work is to perform a comparative 

study in analysing the robustness of highly imbalanced datasets with zero events for various values 

of K studies (0 < k ≤ 50) in the dataset between the Binomial-Normal and Normal-Normal 

models.A Bayesian method with an appropriate prior might be a feasible option for dealing with 

sparse data, according to the findings of a comparative research.Both methodologies performed 

better in all sparse datasets and are suggested to be used in meta-analyses of similar scope. 

Keywords:Bayesian inference, Binomial-Normal, Continuity correction, Meta-Analysis, Normal-

Normal, Odds ratio, Robustness, Sparseness. 

1. Introduction 

 Clinical trials are defined as 

systematic research studies conducted in 

humans to determine the safety and efficacy 

of emerging medicines, pharmaceutical 

combinations, medical treatments, 

technologies, or tactics. It encompasses 

human illness development, clinical 

mediation, the evolution of new technologies, 

epidemiologic and behavioural studies, as 

well as outcomes and health-care analysis. 

Clinicians use clinical trials to explore better 

methods to improve treatments and the 

quality of care for patients. 

 Clinical trials are used by 

professionals to properly assess if alternative 

medications are safe and effective, and if they 

outperform conventional treatments.The 

efficiency, execution, and interpretation of 

clinical studies are all influenced by the study 

design.Each study design has its own 

advantages and limitations. There may be a 

broad hierarchy of study designs that cannot 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 4338-4355 

https://publishoa.com 

ISSN: 1309-3452 

 

4339 
 
 

be implemented effectively to all study design 

styles. 

 The researcher defines the three 

elements of studies as follows: 1) description 

and measurement of exposure in two or more 

groups, 2) estimation of health outcome(s) in 

these same groups, and 3) statistical analysis 

performed between groups to determine 

potential associations between exposure and 

outcome. 

 The outcomes of clinical trials are 

typically presented in the form of a 2X2 table, 

also known as a contingency table (Green et 

al 2004). Contingency tables are a sort of 

classification table that has been used in 

statistics to describe associations between two 

categorical variables, variable X and variable 

Y. Contingency tables, also known as two-

way tables, are a genre of table that is being 

used to summarise probability distributions 

including joint, marginal, and conditional 

distributions. 

 In clinical research, contingency tables 

are highly beneficial for evaluating observed 

effects with expected effects from a statistical 

model, and assessing adverse events between 

treatment arms.Row one of this 2 x 2 table 

represents the treatment group, while row two 

represents the control group (Agresti 2013). 

The results of a single study cannot be used to 

consider when deciding the efficacy of an 

intervention. As a consequence, multicentre 

statistical results are often collected across 

clinical domains and various groups using a 

qualitative approach. Here, each 2 x 2 table is 

considered a study, and each dataset is 

composed of k studies (k > 0). 

 Integrating the results of separate 

studies conducted at various centres but 

pertaining to the same aspect of research is a 

popular tactic in clinical trials.When the 

sample size is minimal in a two-by-two 

contingency table, there may be a number of 

cells with no observations, which is termed as 

sparse data. Adding a small constant to each 

cell of the observed table to obtain estimates 

of the unknown parameters is a common 

advice in traditional approaches in similar 

circumstances. However, because this method 

is based on the asymptotic properties of the 

estimates, it may underperform with small 

samples.  

 Bayesian techniques, on the other 

hand, provide an effective strategy for 

analysing the consistency of treatment effects 

across centres in a clinical trial dataset. It 

provides more flexibility in data analysis by 

analysing the underlying assumptions in the 

traditional approach as well as the small 

sample distributions of complex functions of 

parameters. The most important component of 

Bayesian technique, however, is determining 

an acceptable prior, which is necessary to 

arrive at a mathematically reasonable 

posterior. 

 Individual and overall odds ratios for 

sparse datasets have been shown using a 

hierarchical Bayesian (Chu et al 2018) model 

(Subbiah et al 2008).   The main objective is 

to investigate how well severely imbalanced 

(Khalilia et all 2011) sparse studies perform 

in Binomial-Normal and Normal-Normal 

models for datasets with varying k values. A 

total of 83 clinical datasets were collected and 

analysed to validate the model. To enhance 

the interpretation of sparse data, the Bayesian 

method was developed. 
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 The most prevalent way for obtaining 

marginal densities from a Bayesian 

perspective is to employ simulation 

techniques, particularly the MCMC method. 

The introduction of high-speed computers and 

software has eased the above process and 

enable realisations from the joint posterior 

distribution of parameters of interest to be 

obtained (Higgins and Spiegelhalter, 2002). 

 The models and analytic approach for 

employing random effects models are 

described in Section 2. Section 3 focuses into 

the features of dataset definition and 

computation in R utilising Monte Carlo 

methods. Sec. 4 provides a discussion on the 

use of Bayesian techniques to sparse data, 

with a sidenote. 

2. Models and Methods 

 The standard approach in a clinical 

study is to compare the treatment and control 

groups by monitoring the incidence within 

each group with regard to a certain quality of 

interest, such as the existence of a disease or 

not, as represented in a 2 x 2 table of the 

following form for the studies i. 

                                        Table 1 : Data 

Format 

 Respo
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 As per the above table, for study i,niis 

the number of cases in the treatment group 

and mi is the number of cases in the control 

group, and ai and ci are the frequencies in the 

treatment and control groups, respectively, 

with regard to a particular attribute. 𝑝𝑖
𝑐=

𝑐𝑖

𝑚 𝑖
is 

the likelihood of an event occurring in the 

control group, whereas𝑝𝑖
𝑇 =

𝑎𝑖

𝑛𝑖
denotes the 

probability of an event occurring in the 

treatment group. Then odds ratio is defined 

as, 

𝑟𝑖 =
𝑝𝑖
𝑇 1 − 𝑃𝑖

𝑐 

𝑝𝑖
𝑐 1 − 𝑝𝑖

𝑇 
 

The range of the odds ratio𝑟𝑖 is 0 to infinity. 

When the odds ratio is exactly 1, it implies 

that treatment exposure has no effect on the 

odds of control. An odds ratio greater than 

one indicates that there is a higher likelihood 

of treatment occurring as compared to 

exposure to control. An odds ratio of less than 

one indicates that exposure to treatment has a 

greater tendency to lead to control. 

 Prior distributions (Wu et al 2007) 

play an essential role in Bayesian modelling, 

particularly when the observational issue 

involves parameter space constraints. In 

Bayesian techniques, however, prior selection 

is critical. The Bayesian approach to 

statistical inference has acquired considerable 

interest in recent years in both practical and 

theoretical statistics. The objectives of this 

article is to make use of the inherent 

advantages of the Bayesian approach in 

statistical inference on ordinal characteristics 

with binary outcomes. 
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 Bayesian software packages primarily 

involve simulation techniques such as Markov 

chain Monte Carlo (MCMC)(Sorensen et al 

2002)   to generate a sample consisting of 

many draws from the intended posterior 

distribution.Individual, overall odds ratios, 

and heterogeneity for all eighty-three datasets 

were analysed in R (R Core Team 2016) 

using the Binomial-Normal (Pezeshk et al 

2002) and Normal-Normal models (Frison et 

al 1992) to assess the robustness of 

unbalanced studies for a range of K studies. 

2.1 Random effect model 

 The usage of the random effect model 

or REM (Riley et al 2011) in clinical data is 

still a matter of great debate in both standard 

(Agresti and Hartzel, 2000; Fleiss, 1986; 

Senn, 1998) and Bayesian approach (Abrams 

and Sanso, 1998; Gould, 2005; Skene and 

Wakefield, 1990). Maximum likelihood, 

constrained maximum likelihood, and 

Bayesian methods such as fully Bayesian 

approaches are all forms of random-effect 

models. The real impact size is expected to 

vary across studies under the random-effects 

model. Although these trials are not identical, 

they have enough in common to be included 

in the meta-analysis and have their data 

synthesised. 

 The random-effects model goes 

beyond chance to account for differences in 

effect magnitude across studies. This model 

suggests that there is no general effect size, 

but rather true study-specific effect sizes that 

are normally distributed around a mean 

(known as mean effect size) with variance 

that reflects the diversity of these effect sizes. 

Our objective was to evaluate the mean and 

variance of this distribution. The mean effect 

size is used to obtain the summary effect size. 

In the random effects model, each study offers 

a varied effect size due to both within- and 

between-study variances (the latter implying 

the degree of dissimilarity of the included 

studies), whereas in the fixed-effect model, 

only within-study variation is considered. 

 These models are quite scientifically 

interesting, and they closely resemble meta-

analysis statistical principles. Several studies 

and/or meta-analyses have been published 

that address the theoretical, analytical, 

computational, and observational components 

of REM. REM is used in various fields for 

prospective research, despite the fact that 

medical, epidemiological, and wellness 

studies dominate this field. 

 In the case of a random-effects model, 

two methods are contemplated. The first is the 

fully Bayesian model (Binomial-Normal), 

which is based on the binomial method 

proposed by Smith et al. (1995), and the 

second is the Summary Statistics (Normal-

Normal) model. 

2.1.1. Binomial-Normal :-Fully Bayesian: 

Consider the Binomial distribution as the 

likelihood of the success component. For the 

two rows of each table, 

 a1∼ Binomial (n1, p
T
)  

 c1∼ Binomial (n2, p
C
) 

The number of people in the treatment group 

in row 1 is represented by a1, which is 

calculated using n1 events with a probability 

of p
T
 each. The number of people in row 2's 

control group is represented by c1, which is 

calculated from n2 events, each with a 

probability of p
C
.  
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Then we define δ=logit(p
T
) − logit(p

C
) 

=log⁡(
𝑝𝑖
𝑇 1−𝑃𝑖

𝑐 

𝑝𝑖
𝑐 1−𝑝𝑖

𝑇 
). This is the log-odds ratio, or 

the quantity of interest in log scale, for each 

of the k tables.For k tables, we additionally 

establish μ=⁡
logit  pT +logit  (pC)

2
. 

This parameterization is the same as pT = 

logit
-1

(μ+ δ/2) = ⁡
exp ⁡(μ+ δ/2)

1+exp ⁡(μ+ δ/2)
   and  

p
C
 = logit

-1
(μ- δ/2) = ⁡

exp ⁡(μ− δ/2)

1+exp ⁡(μ− δ/2)
 

As a result, the model's second stage involves 

generating priors for μ and δ. 

     μ  ∼ N 

(μi, σi
2
)    (i = 1,2,3,…,k) 

     δ ∼ N 

(d, τ
2
) 

     τ
2
=

1

𝜂
 ~ 

Gamma (τ1, τ2) 

The rate and shape parameters of the Gamma 

distribution are τ1 and 

τ2 respectively.Additionally, suitable priors 

for the scalar parameters μ0, σ0
2
, d and τ2 can 

be specified.Within variance isσ0
2
, and 

between variance is τ2, which is a measure of 

variability among the k studies. Appropriate 

distributions are assumed for the next level of 

parameters -∞<μ<∞ and τ2>0, which 

constitute the major focus of the study. 

2.1.2. Normal – Normal:-Summary 

Statistics 

Let's say there are k independent studies, each 

with an impact parameter Yi so that 

  Yi∼N(θi , σi
2
).  

In addition, θi is supposed to come from a 

population with an impact size and is 

characterised as 

  θi∼N(μ,τ
2
).  

σi
2
 amounts to sampling variability in 

the i
th

 effect size estimate and τ
2 

is the 

variability between effect size. In this 

model, σi
2
 is assumed to be known in most of 

the occasion which is estimated from sample 

data.The sampling variability in the i
th

 impact 

size estimate is denoted by τ
2
, while the 

variability between effect sizes is denoted by 

σi
2
. σi

2
 is considered to be known in most 

cases in this model, and it is calculated from 

sample data. 

For Eighty-three clinical dataset 

 k: Number of Studies in each dataset 

 Yi: effect size – mean of k studies 

 σi
2
: Estimated sampling variability 

from k studies, using a simple formula 

 θi, μ and τ
2
 are to be estimated 

 μ evaluates the overall mean and τ
2
 

measures the amount of heterogeneity. 

 A value of τ
2
 that is close to 0 implies 

low heterogeneity. 

As a result, we model the sample mean as 

normally distributed with mean and variance 

as parameters (k studies). Then, in order to 

investigate the variability of the means, we 

form an effective level mean that follows a 

normal distribution. The required amount of 

heterogeneity estimator in the second level 

model is variance. 

3. Dataset  

3.1. Description 

 The complete dataset was culled from 

existing clinical research published in peer-

reviewed journals between 1990 and 2021. 

The obtained datasets are organised in a 

Contingency table (Green et al 2004), a two-
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by-two table that categorises two 

dichotomous variables, X and Y. In a study or 

experiment, X represents the treatment and 

control groups, while Y denotes the study's 

yes or no response. Each study in the dataset 

is represented by a table, and each dataset has 

k studies (k>0). Eighty-three datasets were 

retrieved, each having k 2x2 tables. These 

datasets were compiled in such a way that the 

study's cells had no zeros, one zero, two 

zeros, or more than two zeros. 

 Sample size is important when it 

comes to measuring significant measures. As 

a result, retrieved datasets have been 

classified as balanced (B) and unbalanced 

(IB) based on sample size. The major focus of 

this study is on evaluating the robustness of 

highly imbalanced sparse datasets for k 

studies. According to the number of studies 

(k) in each dataset, the extracted datasets have 

been divided into five groups: I, II, III, IV, 

and V. 

 The datasets have been designated D1, 

D2. . ., D83 after being collected from clinical 

studies, where studies in D1 are obtained 

from Agresti's book, D2 from Agresti 1992, 

and D83 from S.D. Walter1997.It is further 

categorized based on the number of studies, 

and as shown in Table 2, eighty-three datasets 

were sorted into five groups. The first column 

includes the names of the dataset's group. The 

second column displays the various k value 

ranges. 

 The dataset's columns are divided into 

four categories: B-0, B-1, IB ≥ 0, and IB≥ 1. 

B-0 refers to the number of datasets 

containing only balanced studies and no 

zeros. The number of datasets containing 

solely balanced studies with one or more than 

one zero is included in B 1. The number of 

datasets containing an imbalanced study with 

no zero is included in IB-0. IB ≥ 1 is the 

number of datasets containing an imbalanced 

study that contains one or more zeros.A few 

cells in Table 3 appear to be NA, indicating 

that no studies fall into that category. For 

instance, in group I,for k ≥ 0, B -0 indicates 

NA. Similarly, NA is present in a few cells in 

Table 2. 

 

Table 2: Classification of the extracted datasets on characteristics 

Group k -Values 
Categorisation of Datasets 

B-0 B ≥1 IB – 0 IB ≥ 1 

I K<10 NA D1, D40 

D20,D3, D21, D23, D24, D25, D61, D30, 

D32, D33, D62, D8, D35, D67, D68, 

D69, D36, D11, D72, D74, D75, D76, 

D77, D78, D81 

D58, D2, D59, D5, 

D31, D7, D63, D9, 

D10, D44, D45, D73, 

D12, D15 

II 10≤K<20 D65 NA D19, D28, D66, D37, D41, D50, D53, 

D54, D56 

D60, D38, D64, D43, 

D47, D46, D48, D79, 

D51, D52, D83 

III 20≤K<30 NA  D29 D4, D22, D71 

D34, D26, D39, D70, 

D49, D80, D13, D14, 

D57, D55 
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IV 30≤K<40 NA D27 NA D42, D82 

V 40≤K<50 NA NA NA D18, D6, D16, D17 

 

3.2. Analysis 

 As previously stated, the purpose of 

this study is to determine the reliability of the 

studies included in each dataset using a 

comparison study between groups. With the 

exception of the fact that all 83 datasets have 

been studied and analysed, it's hard to 

compare since the balanced group (B-0 and 

B-1) includes NA in the majority of the cells. 

As a result, our primary focus has moved to 

the highly imbalanced category with more 

than one zero (IB ≥ 1), despite the fact that 

datasets exist in all of the categories. As a 

result, the behaviour of severely imbalanced 

datasets is investigated over a wide range of k 

values.  

 This seems to be accomplished by 

either running a prolonged single MCMC 

chain or a huge number of shorter chains. 

Kernel density charts and other graphical 

tools can aid in analysing the convergence of 

MCMC chains.   The primary challenge in 

MCMC is to identify the number of 

preliminary iterations M that should be 

discarded, and then to store every Kth result 

for the next N iterations.In the context of a 

single lengthy run of MCMC iterations, the 

methods for finding these numbers are 

explored (Rafter et al. 1992; Casella et al 

1992). 

 The two models presented here are 

fully Bayesian, popularly known as the 

Binomial-Normal model (M1), and summary 

statistics, as well known as the Normal-

Normal model (M2). These two models may 

be used to investigate the behaviour of 

balanced and unbalanced groups.Out of the 

eighty-three datasets, 41 fall into the IB≥ 1 

group. There seem to be 14 datasets in Group 

I, 11 datasets in Group II, 10 datasets in 

Group III, 2 datasets in Group IV, and 4 

datasets in Group V. Despite the fact that all 

forty-one datasets have been investigated and 

evaluated, just a handful have been shown 

here owing to space constraints. 

3.2.1 Group I :K ≤ 10 

 Seven datasets exhibit variance 

between the two models M1 and M2 in group 

I, out of 14 datasets. Only few studies in 

specific datasets showssignificant outcome 

for both models. As a result, we may deduce 

that study sparsity and characteristics may 

have an impact on the results. Despite the fact 

that the group is imbalanced, the robustness 

of the research in the dataset can be shown. 

 

Table 3: OR estimate of the dataset D15 with 95% confidence interval estimates 

Dataset Title 

M1 M2 

OR 

Estimate 

Lower 

Limit 

Upper 

Limit 

OR 

Estimate 

Lower 

Limit 

Upper 

Limit 

D15 
Study1 0.30 0.10 0.90 0.37 0.13 1.07 

Study2 0.23 0.05 1.01 0.30 0.07 1.25 
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Study3 0.24 0.06 0.74 0.29 0.09 0.92 

Study4 0.17 0.05 0.46 0.21 0.06 0.70 

Study5 0.26 0.06 0.91 0.32 0.09 1.07 

Study6 0.22 0.05 0.86 0.28 0.06 1.16 

Study7 0.29 0.15 0.54 0.31 0.17 0.59 

 

 Table 3 shows that this dataset 

contains a total of seven imbalanced studies. 

Five studies contain no zeros, whereas studies 

2 and 6 contain precisely one zero. Study 2, 

an imbalanced with one zero, yields 

insignificant outcomes as its confidence 

interval exceeds one. The remaining studies 

show that the M1 model produces significant 

results. Study 1 has the greatest OR 0.303 

with interval estimates (0.096, 0.904), while 

Study 4 has the lowest OR 0.165 with interval 

estimates (0.047, 0.456). The overall estimate 

of 0.24 shows that the study has a lower 

likelihood of favouring the exposed group, 

with a variance of 40%. 

 Only studies 3, 4, and 7 are 

statistically significant for M2 since their OR 

is lesser than one. The other studies seem to 

have an OR less than one, but their interval 

limit is greater than one, thus they are not 

statistically significant. For M2, studies 1,5 

and 6 become insignificant. This fluctuation 

might be due to the imbalanced nature of the 

studies. Both M1 and M2 exhibit significant 

results in studies 3, 4 and 7. As a result, we 

can see the robustness of these studies. 

 

Fig 1 & 2 are the forest plots of D15 for M1 and M2 models. 

 

Only study 2 meets the line of null effect for 

M1 in the forest plot, yielding an insignificant 

result. Except for studies 3, 4, and 7, all of the 

other studies in M2 cross the line of null 

effect and provide insignificant results. As a 

result, we may assume that this variation is 

owing to the sparseness in the studies. 

3.2.2 Group II : 10 ≤ K < 20 

 Eleven datasets are included in this 

group, where studies in this dataset contains 

one or more than one zero. Only four datasets 

shows significant result for both the models. 
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Table 4: OR estimate of the dataset D60 with 95% confidence interval estimates 

Dataset 

 

Title 
 

M1 M2 

OR                    

Estimate 

Lower                       

Limit 

Upper                          

Limit 

OR 

Estimate 

Lower 

Limit 

Upper                                

Limit 

D60 

Study1 0.513 0.185 1.351 0.538 0.206 1.406 

Study2 0.630 0.459 0.865 0.636 0.466 0.868 

Study3 0.375 0.144 0.894 0.499 0.187 1.264 

Study4 0.552 0.312 0.973 0.566 0.325 0.984 

Study5 0.542 0.399 0.726 0.544 0.404 0.736 

Study6 0.352 0.170 0.676 0.380 0.182 0.753 

Study7 0.408 0.168 0.916 0.448 0.176 1.035 

Study8 0.612 0.378 0.966 0.624 0.396 0.980 

Study9 0.668 0.447 1.019 0.680 0.455 1.026 

Study10 0.462 0.181 1.156 0.496 0.199 1.198 

Study11 0.614 0.245 1.675 0.624 0.258 1.574 

Study12 0.510 0.194 1.384 0.540 0.200 1.433 

Study13 0.406 0.206 0.793 0.424 0.216 0.801 

Study14 0.504 0.301 0.819 0.517 0.315 0.842 

Study15 0.620 0.414 0.930 0.625 0.415 0.945 

Study16 0.537 0.332 0.845 0.546 0.339 0.880 

 

 

From Table 4, it is observed that all the 

studies seemed to have an OR less than 1, 

however studies 1,9,10,11, and 12 are 

considered insignificant since their confidence 

interval exceeds 1. The outcomes of the 

remaining 11 studies (2,3,4,5,6,7,8,13,14,15, 

and 16) are significant. Study 9 has the 

greatest OR of 0.668 (interval estimate: 0.446, 

1.019), while study 6 has the lowest OR of 

0.351 (95 % confidence interval: 0.169, 

0.675). With a heterogeneity of 0.23, the 

overall OR is 0.51. According to the results of 

the present findings, M1 is significant in the 

majority of the highly skewed studies in this 

dataset. 

 In perspective of M2, the outcome of 

the following seven studies are insignificant: 

1,3,7,9,10,11, and 12. The imbalanced group's 

studies 3 with one zero and 7 with no zero 

yield insignificant conclusions. This might be 

related to the study's data qualities. There is a 

substantial outcome in the remaining trials 

2,4,5,6,8,13,14,15, and 16. Study 9 has the 

highest OR of 0.68, whereas study 6 has the 

lowest (0.38).  
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Fig 3 & 4 are the forest plots of D15 for M1 and M2 models. 

 

M2 widens the forest plot of study 3 

compared to M1. There was not much of a 

difference between the models in the 

remaining studies. 

 

3.2.3. Group III :20 ≤ K <30 

 Three datasets of ten shows 

significance in few of its studies. And these 

studies show significance for both the models 

M1 and M2. 

Table 5: OR estimate of the dataset D13 with 95% confidence interval estimates 

Datasets 

 

Title 
 

M1 M2 

OR                    

Estimate 

Lower                       

Limit 

OR                    

Estimate 

Lower                       

Limit 

OR                    

Estimate 

Lower                       

Limit 

D13 

Study1 0.21 0.09 0.46 0.23 0.11 0.50 

Study2 0.12 0.04 0.29 0.15 0.06 0.37 

Study3 0.37 0.20 0.66 0.38 0.22 0.68 

Study4 0.12 0.03 0.39 0.18 0.05 0.56 

Study5 0.23 0.10 0.50 0.25 0.12 0.51 

Study6 0.15 0.05 0.41 0.20 0.07 0.52 

Study7 0.27 0.14 0.48 0.28 0.15 0.52 

Study8 0.11 0.03 0.30 0.17 0.05 0.50 

Study9 0.15 0.04 0.44 0.20 0.06 0.61 

Study10 0.10 0.03 0.24 0.13 0.05 0.34 

Study11 0.66 0.38 1.13 0.65 0.38 1.12 

Study12 0.58 0.35 0.96 0.58 0.36 0.96 

Study13 0.57 0.24 1.39 0.57 0.26 1.33 

Study14 0.42 0.25 0.71 0.43 0.26 0.72 

Study15 0.16 0.04 0.64 0.26 0.06 0.91 

Study16 0.39 0.23 0.64 0.39 0.24 0.63 

Study17 0.26 0.10 0.67 0.29 0.12 0.71 

Study18 0.63 0.39 1.01 0.62 0.39 1.02 
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Study19 0.19 0.08 0.40 0.21 0.10 0.45 

Study20 0.17 0.06 0.44 0.21 0.08 0.52 

Study21 0.10 0.02 0.32 0.24 0.06 0.88 

Study22 0.33 0.11 0.96 0.37 0.14 0.95 

  

Table 5 displays the detail of D13. This 

dataset actually includes 22 studies, with 17 

balanced and 5 imbalanced. In M1, though the 

ORs for studies 11[0.65: (0.38, 1.131), 

13[0.57;(0.24,1.38)], and 18[0.62: (0.39, 

1.009)] are less than 1, their confidence 

intervals are greater than one, indicating that 

their results are insignificant. Study 15 has an 

OR of 0.16 with a 95% confidence interval of 

(0.03, 0.63), while Study 21 has an OR of 

0.101 with interval estimates of (0.02,0.318). 

Both studies 15 and 21 belong to the category 

of unbalanced studies, which have one zero in 

its cell. Study17, a balanced study with no 

zero, is statistically significant. The remaining 

studies 1 to 10, 12, 14, 15, 16, 19, 20, and 22 

also show significant results. 

 For M2, the OR of 15 [0.258: (0.064, 

0.914)] and 21 [0.243: (0.058, 0.879)] studies 

is more than 1. As a result, these studies are 

regarded as statistically significant. The OR in 

studies 11[0.653: (0.381, 1.121)], 13[0.57: 

(0.257, 1.328)], and 18[0.623: (0.389, 1.016)] 

is less than 1, but the confidence interval 

bounds are beyond the null effect line, 

therefore these three studies are not 

statistically significant. The outcomes of 

investigations 1 through 10, 12, 14, 15, 16, 

19, 20, and 22 are also significant.  

 
 

 

Fig 5 & 6 are the forest plots of D13 for M1 

and M2 models. 

 It has been observed that the forest 

Plot for a few studies 1 to 10 has become 

wider in M2 than in M1. Other studies for 

both M1 and M2 follow a similar pattern. As 

a result, there was no much variation 

observed. 

3.2.4. Group III : 30 ≤ K < 40 

 This category includes two datasets, 

but only D82, shows significant results in a 

handful of its studies. There are 35 studies in 

D82, 32 of which are imbalanced. There are 

no zeros in 29 studies, while there are zeros in 

6 studies. From Table 6, we could observe 
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that only three of the studies are statistically 

significant: 1, 6, and 11. Study 1's OR is 

0.564 with a 0.05 significance range of 

(0.359, 0.873), Study 6's OR is 0.703 with a 

95 % confidence interval estimate of (0.494, 

0.995), and Study 11's OR is 0.649 with a 95 

% confidence interval estimate of (0.421, 

0.986). Despite the fact that they are 

imbalanced, these studies are statistically 

significant. Only two studies 1 and 11 are 

significant for M2. With a variance of 20%, 

the overall estimate of 0.95 indicates that the 

study had a lower likelihood of favouring the 

exposed group. 

 

 Table 6: OR estimate of the dataset D82 with 95% confidence interval estimates 

Dataset 

 

Title 
 

M1 M2 

OR                    

Estimate 

Lower                       

Limit 

Upper                          

Limit 

OR 

Estimate 

Lower 

Limit 

Upper                                

Limit 

D82 

Study1 0.565 0.360 0.873 0.573 0.366 0.885 

Study2 1.133 0.745 1.700 1.130 0.746 1.720 

Study3 0.694 0.433 1.100 0.700 0.447 1.096 

Study4 0.729 0.312 1.605 0.744 0.323 1.657 

Study5 0.756 0.304 1.711 0.909 0.372 2.167 

Study6 0.703 0.495 0.995 0.709 0.500 1.000 

Study7 0.741 0.490 1.105 0.740 0.491 1.108 

Study8 0.889 0.521 1.516 0.891 0.525 1.490 

Study9 0.973 0.755 1.253 0.975 0.745 1.266 

Study10 1.014 0.679 1.548 0.999 0.661 1.507 

Study11 0.650 0.422 0.986 0.657 0.434 0.994 

Study12 1.247 0.683 2.440 1.240 0.682 2.274 

Study13 1.138 0.624 2.132 1.144 0.647 2.048 

Study14 0.756 0.310 1.692 0.912 0.372 2.185 

Study15 1.006 0.905 1.118 1.007 0.907 1.117 

Study16 0.953 0.731 1.228 0.954 0.735 1.240 

Study17 0.885 0.549 1.406 0.891 0.562 1.413 

Study18 0.969 0.650 1.449 0.974 0.654 1.457 

Study19 0.896 0.420 1.943 0.907 0.434 1.886 

Study20 0.789 0.525 1.164 0.792 0.535 1.173 

Study21 1.393 0.886 2.190 1.380 0.879 2.162 

Study22 1.287 0.597 2.928 1.182 0.523 2.757 

Study23 0.859 0.415 1.805 0.868 0.429 1.743 

Study24 1.076 0.911 1.279 1.077 0.906 1.285 

Study25 0.782 0.536 1.126 0.790 0.550 1.127 

Study26 0.874 0.347 2.028 0.929 0.384 2.219 
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Study27 1.305 0.753 2.360 1.300 0.749 2.285 

Study28 0.949 0.698 1.298 0.955 0.694 1.320 

Study29 0.999 0.675 1.455 1.004 0.685 1.469 

Study30 1.496 0.791 2.959 1.373 0.690 2.866 

Study31 2.455 1.957 3.132 2.436 1.915 3.095 

Study32 1.036 0.433 2.471 1.000 0.418 2.394 

Study33 0.860 0.343 2.013 0.927 0.389 2.190 

Study34 1.024 0.445 2.496 0.994 0.413 2.396 

Study35 0.891 0.378 2.091 0.917 0.405 2.080 

 

  

Fig 7 & 8 are the forest plots of D82 for M1 and M2 models. 

 

Study 6 yields an insignificant result since its 

confidence interval crosses the null effect 

line. As a result, we could see the robustness 

studies 1 and 11 from the forest plot. The 

remaining studies for M1 and M2 follow a 

similar structure. 

3.2.5. Group III : 40 ≤ K < 50 

 This category contains four datasets. 

Only one dataset, D6, yields a significant 

outcome, whereas the other three are 

insignificant. There are forty-one studies in 

Efron's 1996 dataset. D6 is a dataset with 

seven balanced studies and thirty-four 

imbalanced studies in it. This dataset contains 

thirty-one studies with no zeros, six studies 

with one zero, three studies with two zeros, 

and Study 4 is an unique case in which all of 

the arms contain zero.  

 

Table 7: OR estimate of the dataset D6 with 95% confidence interval estimates 

Dataset 

 

Title 
 

M1 M2 

OR                    

Estimate 

Lower                    

Limit 

Upper 

limit 

OR 

Estimate 

Lower                

Limit 

Upper 

limit 

D6 
Study1 0.15 0.03 0.67 0.27 0.08 0.83 

Study2 0.56 0.17 1.96 0.52 0.20 1.37 
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Study3 1.06 0.28 4.07 0.72 0.27 2.07 

Study4 0.19 0.01 4.71 0.37 0.08 1.68 

Study5 2.55 0.31 29.82 0.45 0.11 2.03 

Study6 0.08 0.00 0.93 0.32 0.07 1.29 

Study7 0.23 0.06 0.82 0.31 0.11 0.84 

Study8 0.03 0.00 0.15 0.16 0.04 0.56 

Study9 0.42 0.09 1.79 0.44 0.16 1.29 

Study10 0.10 0.02 0.34 0.20 0.06 0.57 

Study11 0.05 0.00 0.48 0.31 0.07 1.24 

Study12 0.12 0.02 0.72 0.27 0.07 0.88 

Study13 1.35 0.42 4.52 0.87 0.35 2.39 

Study14 1.41 0.40 5.20 0.86 0.32 2.48 

Study15 0.22 0.05 0.81 0.31 0.11 0.84 

Study16 0.30 0.05 1.47 0.37 0.12 1.08 

Study17 0.08 0.01 0.42 0.22 0.06 0.71 

Study18 0.17 0.02 1.02 0.30 0.09 1.03 

Study19 0.17 0.05 0.54 0.25 0.09 0.65 

Study20 0.30 0.11 0.80 0.34 0.15 0.77 

Study21 0.11 0.03 0.35 0.19 0.07 0.48 

Study22 1.21 0.28 5.08 0.79 0.29 2.39 

Study23 1.07 0.46 2.42 0.86 0.41 1.83 

Study24 0.54 0.17 1.82 0.51 0.20 1.35 

Study25 0.02 0.00 0.18 0.30 0.06 1.26 

Study26 0.18 0.02 1.15 0.32 0.09 1.06 

Study27 0.62 0.15 2.38 0.53 0.19 1.54 

Study28 0.02 0.00 0.12 0.28 0.06 1.16 

Study29 0.04 0.00 0.30 0.30 0.06 1.21 

Study30 0.13 0.03 0.53 0.25 0.08 0.74 

Study31 0.08 0.01 0.41 0.22 0.06 0.74 

Study32 0.40 0.10 1.42 0.41 0.16 1.11 

Study33 0.10 0.02 0.52 0.24 0.07 0.75 

Study34 0.04 0.00 0.33 0.30 0.07 1.23 

Study35 1.18 0.24 6.67 0.68 0.23 2.29 

Study36 0.21 0.07 0.60 0.27 0.11 0.66 

Study37 0.88 0.15 4.90 0.60 0.19 2.02 

Study38 0.32 0.08 1.18 0.37 0.13 1.00 

Study39 0.30 0.11 0.82 0.34 0.15 0.79 

Study40 0.00 0.00 0.01 0.28 0.06 1.11 

Study 41 0.19 0.01 5.09 0.38 0.09 1.64 
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 From Table 7, it is observed that twenty-two studies show significant result. The remaining 

studies are not statistically significant. The overall OR estimate is 0.19 with heterogeneity measure 

of 2.68 for M1. 

 

 

Fig 9&10 are the forest plots of D6 for M1 and M2 models. 

 Only 15 studies show a significant 

outcome for M2. For M2, the remaining 

studies 6, 11, 25, 28, 29, 34, 38, and 40 

become insignificant. As a result, the 

aforementioned 15 studies demonstrate its 

reliability for both the M1 and M2 models. 

The majority of studies in D6 achieved 

significant results for both M1 and M2. As a 

consequence, we may conclude that study 

sparsity and characteristics may influence the 

outcomes. Despite the fact that the group is 

imbalanced, the dataset's robustness may be 

established. 

4. Summary 

 The data used in analysis consisted of 

83 datasets that have been used to look at 

treatment variation among datasets. Since the 

cell frequencies in certain studies were so 

minimal, the studies were sparse. In such 

situations, the Bayesian technique appears to 

be more flexible since it is independent of the 
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study design and allows for the integration of 

data from several sources, as is required in 

clinical studies. However, like any Bayesian 

analysis, establishing priors that are 

compatible with prior knowledge of the issue 

and data is critical, and the implementation 

process takes on added importance. 

 The present study has demonstrated 

that when pooling several studies with sparse 

data, it is fundamental to use the Binomial – 

Normal and Normal-Normal models. In the 

presence of heterogeneity, however, study-

specific data must be assessed in depth in 

addition to overall estimates. The primary 

goal is to make reasonable conclusions about 

the overall impact measure and between-

variance. As a result, the goal of this paper is 

to give a thorough list of methods for meta-

analytic techniques, with a focus on between-

variance estimators under REM and their 

influence on point and interval dataset 

estimates. A hierarchical Bayesian model was 

used to illustrate individual and overall odds 

ratios for sparse datasets.  

 The analysis section demonstrates 

how well highly imbalanced sparse studies 

perform in Binomial-Normal and Normal-

Normal models for datasets with varied k 

values. In group I, study in more than 60% of 

the dataset reveals significant findings. The 

second group (II), which includes 10 to 20 

research, offers a dataset. In this section, 

significant aspects are identified from 36% of 

the dataset.30 percent of the dataset in group 

III is significant. Sections IV and V, 

meanwhile, provide significant results in 50% 

and 25% of the datasets, respectively. 

We could see from the above analysis 

that as the number of studies increases, there 

is a variance in the dataset’s outcomes. The 

dataset’sconsistency, however, has been 

noticed. For all datasets, a positive 

heterogeneity measure is obtained, indicating 

that there is a variance between the studies in 

the datasets. Both approaches outperformed 

in all other sparse datasets and are 

recommended for use in comparable meta-

analyses. Finally, the model to adopt is related 

to the number of studies and data nature. 

As a consequence, the study includes a 

summary of the findings as well as an 

evaluation of various clinical data 

components. The current study is not 

complete in and of itself, and there is always 

scope for improvements; for the sake of 

research continuation, a few prospective 

expansions have been highlighted. The 

discussion has been structured thus far in the 

process of dealing with sparse data in a 

Bayesian framework. 
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