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Abstract 

The proving of three big theorems, known as the uniform boundedness theorem, the open mapping 

theorem, and the closed graph theorem, is the pinnacle of any first functional analysis course. All three 

rely on the completeness of some or all of the spaces involved, and their proofs are based on Baire's 

theorem (or, the Baire category theorem), a topological conclusion. The aim of this paper is to prove the 

Uniform Boundedness Theorem without using Baire’s Theorem and to show the logical dependence of 

these above three results on each other. 

Keywords:  Uniform Boundedness; Open Mapping; Closed Graph; Norms Theorem; Sum Theorem; 

Closed Range. 

 

1. Introduction 

Many authors point out that the "main three" 

foundations of Functional Analysis (see for 

example [1], [2]) are the Uniform Boundedness 

Principle, the Open Mapping Theorem, and the 

Hahn–Banach Theorem ((HBT) for short). We 

simply present a few examples because there are 

so many references that support it: [3, Chapter 

2], [4], [5, Chapter 4], [6, p. 97], [7]. The Closed 

Graph Theorem is included to the list in certain 

texts (see [8, p. 215] or [9], for instance). The 

first two theorems are proved (independently) 

from Baire's Category Theorem in most works 

on Functional Analysis, whereas the (HBT) is 

derived from Zorn's Lemma. Closed Graph 

Theorem is an application of the Open Mapping 

Theorem. The uniform boundedness theorem, 

the open mapping theorem, and the closed graph 

theorem- all the three theorem rely on the 

completeness of some or all of the spaces 

involved, and their proofs are based on Baire's 

theorem (or, the Baire category theorem), a 

topological conclusion. The open mapping 

theorem and the closed graph theorem are 

comparable in the sense that they may both be 

inferred from each other, available in most 

textbooks, one is proved first, starting with 

Baire's theorem, while the other is deduced 

afterwards [10], [11]. The uniform boundedness 

theorem is established on its own. We may also 

find publications in the mathematical literature 

that illustrate how to derive the uniform 

boundedness theorem from the closed graph 

theorem. With some limitations, the opposite is 
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also true.  The proof of Uniform Boundednes 

Theorem implies Open Mapping Theorem can 

be found in [12]. These findings appear to be 

less well-known. The purpose of this note is to 

lay out all of the possible equivalences and 

deductions in a clear and concise manner. In the 

case of Hilbert spaces, S. Kesavan [13] 

additionally proved that all three results are 

'equivalent' to each other. 

It is important to emphasize that all of these 

findings are distributed throughout the literature, 

and no claim to uniqueness in proof procedures 

is given. The proof of the uniform boundedness 

theorem from Baire’s theorem is arguably the 

simplest of all of these proofs. However, 

multiple proofs of this result exist, in the sense 

that they do not utilize Baire's theorem, such as 

Hahn's using the “gliding hump” (also called 

“sliding hump”) argument [8, Exercise 1.76]. In 

functional analysis, "gliding hump" proofs are 

still useful: see [14] for a full survey. In the 

context of Hilbert spaces, Halmos [15] also 

proves the uniform boundedness theorem 

without using Baire's theorem. We will show 

here a really simple demonstration of the 

uniform boundedness theorem that doesn't use 

Baire's theorem [due to Alan D. Sokal, 2011]. In 

slightly modifying an argument given by Alan D. 

Sokal [16], Adrian Fellhauer, [17] (March 23, 

2018) is able to prove the uniform boundedness 

principle using nothing more than the Zermelo– 

Fraenkel system and the axiom of countable 

choice. Professor M. Victoria Velasco [18] 

recently (July, 2021) demonstrated that the 

Uniform Boundedness Theorem, the open 

mapping theorem, and five other theorems are 

fundamentally identical. Here, we don't include 

direct proofs of the open mapping or closed 

graph theorems because they can be found in 

any functional analysis textbook. 

According to many of the most important 

theorems in analysis, point-wise hypotheses 

entail uniform conclusions. The result that "a 

continuous function on a compact set is 

uniformly continuous" is perhaps the simplest 

example. The uniform boundedness theorem is 

one of the most important results in functional 

analysis. It was first published in Banach's 

thesis in 1922. Lebesgue discovered the uniform 

boundedness principle in 1908 while working 

on the Fourier series, then Banach and Steinhaus 

isolated it as a general principle. 

The uniform boundedness theorem (UBT) 

can be used to determine whether the norms of a 

given collection of bounded linear operators 

{𝑇𝛼}  have a finite least upper bound. As we 

know that the norm of each 𝑇𝛼  must be finite 

and the norm was defined to be a real-valued 

(not an extended real-valued) function, but there 

is no guarantee that they will not form an 

increasing sequence. The uniform boundedness 

theorem provides a criterion for determining 

when such an increasing sequence is not formed. 

That is, it states that a point wise bounded 

sequence of bounded linear operators on Banach 

spaces is also uniformly bounded. The uniform 

boundedness theorem can be extended to 

relevant classes of non-normable and even 

non-metrizable topological vector spaces (see, 

for example, [19, pp. 82–87]). 

The Baire category theorem is used in the 

traditional textbook proof of the Uniform 

Boundedness Principle (e.g., [20, p. 81]), 

which dates back to Stefan Banach, Hugo 

Steinhaus, and Stanislaw Saks in 1927 [21]. 

This proof is simple, although it is not totally 
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elementary due to its dependence on the Baire 

category theorem. The initial proofs offered by 

Hans Hahn [22] and Stefan Banach in 1922 

were somewhat different: they began with the 

premise that 𝑠𝑢𝑝𝑇∈𝐹 𝑇 = ∞  and used a 

"gliding hump" (also known as "sliding hump") 

technique to construct a sequence (𝑇𝑛) in 𝐹 

and a point 𝑥 ∈  𝑋 such that 𝑙𝑖𝑚𝑛→∞ 𝑇𝑛𝑥 =

∞. Variants of this proof were later given by T. 

H. Hildebrandt [23] and Felix Hausdorff [24]. 

These proofs are simple, but the arguments are 

a little tricky. In this paper, we include a really 

simple proof along similar lines: 

Again it is important to note that the purpose 

of this article is not to minimize the significance 

of the Baire category theorem. Indeed, proofs of 

these statements using the Baire category 

theorem, which can be found in mainstream 

textbooks, are easier and more intuitive. The 

conventional Baire category technique 

produces a slightly stronger version of the 

uniform boundedness theorem than the one 

presented here:  if   𝑠𝑢𝑝𝑇∈𝐹 𝑇𝑥 < ∞  for 

a nonmeager (i.e., second category) set of 

𝑥 ∈  𝑋, then 𝐹 is norm-bounded. The fact that 

they can be proved without using Baire's 

theorem, on the other hand, indicates that the 

completeness of the spaces involved is the 

foundation for these theorems. 

2. Discussions and Result 

We shall offer all the statement of the theorems 

for the sake of thoroughness of the exposition 

and to show the logical dependence of these 

results on each other. (For proof of the following 

two theorems, see S. Kesavan [13], S. Kesavan 

[25] respectively). 

Theorem 2.1: Each of the following statements 

implies the others. 

(i) The Closed Graph Theorem: Let 𝑉 

and 𝑊  be Banach spaces and let 

𝑇:𝑉 → 𝑊  be a linear map. If the 

graph of 𝑇 is defined by  

𝐺 𝑇 = { 𝑥,𝑇𝑥 : 𝑥 ∈ 𝑉} ⊂ 𝑉 × 𝑊 

is closed in 𝑉 × 𝑊,  then 𝑇  is 

continuous. 

 

(ii) The Open Mapping Theorem: Let 

𝑉 and 𝑊 be Banach spaces and let 

𝑇:𝑉 → 𝑊  be a continuous linear 

map which is surjective. Then 𝑇 is 

an open map, i.e. 𝑇 maps open sets 

of 𝑉 onto open sets of W. 

 

(iii) The Bounded Inverse Theorem: 

Let 𝑉 and 𝑊 be Banach spaces and 

let 𝑇:𝑉 → 𝑊 be a continuous linear 

bijection. Then 𝑇 is an isomorphism, 

i.e. 𝑇−1 is also continuous. 

 

(iv) The Two Norms Theorem: Let 𝑉 

be a vector space and let  .  1  and 

 .  2 be two norms on 𝑉. If 𝑉 is a 

Banach space with respect to either 

norm and if there exists a constant 

𝐶 > 0 such that  𝑥 1 ≤ 𝐶 𝑥 2  for 

every 𝑥 ∈ 𝑉 then the two norms are 

equivalent. 

 

(v) Uniform Boundedness Theorem: 

Let 𝑉 be a Banach space and 𝑊 be 

a normed linear space. Let 𝑇𝑖 :𝑉 →

𝑊  be a continuous linear map for 

each 𝑖 ∈ 𝐼. If 𝑠𝑢𝑝𝑖∈𝐼 𝑇𝑖𝑥 < ∞) for 

each 𝑥 ∈ 𝑉  then there exists a 
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constant 𝐶 > 0  such that  𝑇𝑖 ≤ 𝐶 

for each 𝑖 ∈ 𝐼. 

The closed graph theorem was the beginning 

point in the first article of S. Kesavan [13], and in 

order to finish the loop of the different 

implications, the argument that the uniform 

boundedness principle entails the closed graph 

theorem required the reflexivity of the target 

space. This consequence was demonstrated in 

the context of Hilbert spaces in the article 

referenced above. Ramaswamy and Ramasamy 

deal with the scenario where W is a reflexive 

Banach space.  

But in later, S. Kesavan [25] began with the 

Uniform Boundedness theorem and were able to 

conclude the loop without the use of additional 

hypotheses.  S. Kesavan [25] also proved that 

the uniform boundedness theorem implies the 

closed graph theorem without any further 

hypotheses. [For observing the order, we state 

the theorem 2.2] 

Theorem 2.2: Each of the following statements 

implies the others. 

(i) Uniform Boundedness Theorem: 

Let 𝑉 be a Banach space and 𝑊 be 

a normed linear space. Let 𝑇𝑖 :𝑉 →

𝑊  be a continuous linear map for 

each 𝑖 ∈ 𝐼. If 𝑠𝑢𝑝𝑖∈𝐼 𝑇𝑖𝑥 < ∞) for 

each 𝑥 ∈ 𝑉  then there exists a 

constant 𝐶 > 0  such that  𝑇𝑖 ≤ 𝐶 

for each 𝑖 ∈ 𝐼 . 

 

(ii) The Open Mapping Theorem: Let 

𝑉  and 𝑊 be Banach spaces and let 

𝑇 :𝑉 → 𝑊  be a continuous linear 

map which is surjective. Then 𝑇  is 

an open map, i.e. 𝑇  maps open sets 

of 𝑉  onto open sets of W. 

(iii) The Bounded Inverse Theorem: 

Let 𝑉  and 𝑊 be Banach spaces and 

let 𝑇 :𝑉 → 𝑊 be a continuous linear 

bijection. Then 𝑇  is an 

isomorphism, i.e. 𝑇 −1  is also 

continuous. 

 

(iv) The Closed Graph Theorem: Let 𝑉  

and 𝑊 be Banach spaces and let 

𝑇 :𝑉 → 𝑊 be a linear map. If the 

graph of 𝑇  is defined by  

𝐺 𝑇  = { 𝑥 ,𝑇𝑥  :𝑥 ∈ 𝑉 }

⊂ 𝑉 × 𝑊 

is closed in 𝑉 × 𝑊,  then 𝑇  is 

continuous. 

 

(v) The Two Norms Theorem: Let 𝑉  

be a vector space and let  .  1 and 

 .  2 be two norms on 𝑉 . If 𝑉  is a 

Banach space with respect to either 

norm and if there exists a constant 

𝐶 > 0  such that  𝑥  1 ≤ 𝐶  𝑥  2 

for every 𝑥 ∈ 𝑉  then the two norms 

are equivalent. 

In the year 2021, M. Victoria Velasco [18] 

demonstrated the equivalence of the eight 

theorems that make up Theorem 2.3 below. The 

proof of Theorem 2.3 given by M. Victoria 

Velasco is relatively brief and straightforward. 

He concludes that because a straightforward and 

elementary proof of the Uniform Boundedness 

Principle that does not require Baire's Theorem 

can be given, this is also true for all of the 

outcomes involved in Theorem 2.3. Thus, he 

does not present a brief and simultaneous proof 

of all of them; he only demonstrates that they are 
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all equally relevant since they are logically 

equivalent, as Theorem 2.3 establishes. In fact, 

the derivation of this result demonstrates how 

closely the eight theorems involved are related. 

(For details, see [18]) 

Theorem 2.3: The following statements are 

equivalent: 

(i) Uniform Boundedness Theorem 

(UBP): Let  𝑇 𝑖  , 𝑖 ∈ 𝐼  be a 

family of bonded linear maps from 

Banach space 𝑋  into a normed 

linear space 𝑌 𝑖 .  If  𝑇 𝑖  , 𝑖 ∈ 𝐼  is 

pointwise bounded then 

𝑠𝑢𝑝 𝑖 ∈𝐼  𝑇 𝑖  ≤ ∞  

(ii) The Open Mapping Theorem 

(OMT): Let 𝑋  and 𝑌  be Banach 

spaces and let 𝑇 :𝑋 → 𝑌  be a 

continuous linear map which is 

surjective. Then 𝑇  is an open map. 

(iii) The Open Mapping Theorem (bis) 

(OMTbis): Let 𝑋  be a Banach 

space,  𝑌  a normed space, and  

𝑇 ∈ 𝐿 (𝑋 ,𝑌 ) a surjective map. Then 

𝑇  is open if and only if 𝑌  is 

complete. 

(iv) Banach Isomorphism Theorem 

(BIT): Let 𝑋  and 𝑌  be Banach 

spaces. If  𝑇 ∈ 𝐿 (𝑋 ,𝑌 )  is 

bijective, then  𝑇 −1 is continuous. 

(v) Norms Theorem (NT): Let  .   and 

 .   be complete norms on a linear 

space 𝑋  such that they are 

comparable. Then   .   and  .   are 

equivalent. 

(vi) Closed Graph Theorem (CGT): If  

𝑋  and 𝑌  are Banach spaces then a 

linear operator 𝑇 :𝑋 → 𝑌  is 

continuous if and only if its graph is 

closed (i.e. the separating subspace of 

𝑇  is zero.) 

(vii) Sum Theorem (ST): Let 𝑀 and 𝑁 

be closed subspace of a Banach space 

𝑋 . Then 𝑀+ 𝑁 is closed if and only 

if the map  𝑚,𝑛  → 𝑚+ 𝑛  from 

𝑀× 𝑁 into 𝑀+ 𝑁 is open. 

(viii) Closed Range Theorem (CRT): ): 

Let 𝑋  and 𝑌  be  Banach spaces 

and  𝑇 :𝐷 𝑇  ⊆ 𝑋 → 𝑌   a closed 

linear operator whose domain 𝐷(𝑇 ) 

is dense in 𝑋  . Let 𝑅 (𝑇 )  be the 

range of  𝑇     and 𝑇 ∗:𝐷(𝑇 ∗) ⊆

𝑌 ∗ → 𝑅 (𝑇 ∗) ⊆ 𝑋 ∗ the transpose of 

𝑇 . Then, the following assertions are 

equivalent:   

(a)       𝑅 𝑇   is closed in 𝑌 . 

(b)      𝑅 (𝑇 ∗) is closed in 𝑋 ∗     

(c)     𝑅 𝑇 ∗ = (ker𝑇 )⊥      

(d)     𝑅 𝑇  = (ker𝑇 ∗)
𝑇

 

(e)     𝑇 :𝐷(𝑇 ) → 𝑅 (𝑇 ) is open. 

(f)    𝑇 ∗:𝐷(𝑇 ∗) → 𝑅 (𝑇 ∗) is open. 

3.1 Gliding hump argument 

As mentioned earlier, we now see a variant 

derivation of the uniform boundedness principle 

that does not use any version of the Baire 

category theorem. The argument is a "gliding 

hump" (also known as "sliding hump") argument, 

which is mostly attributable to Hahn. The only 

use of completeness in the argument is to assure 

that a certain absolutely convergent series 

converges. The proof of uniform boundedness 

principle without using any other form of the 

Baire category theorem is essentially from 

Hahn’s 1922 paper; though he stated the result 

only for sequences of linear functionals. This is 

called a gliding hump argument. 
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Gliding hump arguments probably first appeared 

in work by Henri Lebesgue from 1905. Hahn 

specifically stated in his paper that the basic 

method for his proof was taken from a 1909 

paper by Lebesgue. The original proofs given by 

Hans Hahn and Stefan Banach in 1922 were 

quite different: they began from the assumption 

that  𝑇  = ∞𝑇∈𝐹
𝑆𝑢𝑝  and used a “gliding hump” 

(also called “sliding hump”) technique to 

construct a sequence  𝑇 𝑛   in 𝐹  and a point 

𝑥  ∈  𝑋  such that   𝑇 𝑛 𝑥  = ∞𝑛 →∞
𝑙𝑖𝑚  

 

3.2 A non-Baire Proof of Banach Steinhaus 

Theorem 

We now have a proof for the uniform 

boundedness theorem that can be understood 

easily. In Halmos's sense of the work, the proof is 

elementary because it does not use the Baire 

category theorem or any associated lemmas. It 

employs a technique known as "gliding-hump." 

It is weaker than the Baire-based proof in that the 

latter establishes that an unbounded family of 

operators can only be pointwise bounded on a 

meager set of points, whereas this proof just 

shows only that some sequence may be 

constructed on which an unbounded family of 

operators is unbounded at some point. 

3.3 Banach-Steinhaus Theorem: [26] Let 𝑋  

be Banach Space and 𝑌  be a normed space and 

𝐹 ∈ 𝐵(𝑋 ,𝑌 ). Then if sup{ 𝑇𝑥  :𝑇 ∈ 𝐹 } < ∞ 

for all 𝑥 ∈ 𝑋  we must have that 

sup{ 𝑇  :𝑇 ∈ 𝐹 } < ∞ 

Proof:  Suppose that 𝐹  is uniformly bounded, 

ie. sup 𝑇  = ∞    𝑤ℎ𝑒𝑟𝑒  𝑇 ∈ 𝐹 . We wish to 

establish the existence of a point at which 𝐹  is 

not bounded. 

Fix 0 < 𝛿 <
1

2
    Select 𝑇 1  from 𝐹 . Let 𝑥 1 

in 𝑋  so  𝑥 1 = 𝛿  and   𝑇 1𝑥 1 > (1 −

𝛿 ) 𝑇 1  𝑥 1  

We now conduct an induction. Having selected  

𝑇 1,……𝑇 𝑛 −1  and 𝑥 1,… . . 𝑥 𝑛 −1  select 𝑇 𝑛  

from 𝐹  for which    𝑇 𝑛  >
𝑀𝑛 −1+𝑛

(1−2𝛿 )𝛿 𝑛   where 

𝑀𝑛 −1 =  𝑇 (𝑥 1 + ⋯ . +𝑥 𝑛 −1)  𝑇∈𝐹
𝑠𝑢𝑝  and then 

choose 𝑥 𝑛  in 𝑋 0  with  𝑥 𝑛  = 𝛿 𝑛   and 

 𝑇 𝑛 𝑥 𝑛  >  1 − 𝛿   𝑇 𝑛   𝑥 𝑛  = (1 −

𝛿 )𝛿𝑛  𝑇 𝑛   

Notice that the series  𝑥 𝑘
∞
𝑘 =1  has Cauchy 

sequence of partial sums, hence converges in the 

Banach space 𝑋 . Observe that the choices of 

𝑇 𝑛  and 𝑥 𝑛  entail that  

 1 −
𝛿

1 − 𝛿
  𝑇 𝑛 𝑥 𝑛  =

1 − 2𝛿

1 − 𝛿
 𝑇 𝑛 𝑥 𝑛  

>  1 − 2𝛿  𝛿 𝑛  𝑇 𝑛  

> 𝑀𝑛 −1 + 𝑛  

while    

 𝑇 𝑛  𝑥 𝑘
∞
𝑘 =𝑛 +1  ≤  𝑇 𝑛   𝛿 𝑘∞

𝑘 =𝑛 +1 =

 𝑇 𝑛  
𝛿 𝑛 +1

1−𝛿
<

𝛿

1−𝛿
  𝑇 𝑛 𝑥 𝑛   

We put this together to compute for 𝑥 =

 𝑥 𝑘
∞
𝑘 =1  that 

  𝑇 𝑛 𝑥  ≥  𝑇 𝑛 𝑥 𝑛  −  𝑇 𝑛  𝑥 𝑘
𝑛 −1
𝑘 =1  −

 𝑇 𝑛  𝑥 𝑘
∞
𝑘 =𝑛 +1  >  1 −

𝛿

1−𝛿
  𝑇 𝑛 𝑥 𝑛  −

𝑀𝑛 −1 > 𝑛  

Hence 𝐹  is not pointwise bounded on all of 𝑋  

which contradicts the assumption. Thus the 

proof is completed. 

Now we want to present the proof of Uniform 

Boundedness theorem given by the Alan D. 
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Sokal [16].  To prove the Uniform Boundedness 

theorem, we need the following trivial result. 

Lemma 3.4: Let  𝑇  be a bounded linear 

operator from a normed linear space 𝑋  to a 

normed linear space 𝑌 . Then for any 𝑥 ∈ 𝑋  

and 𝑟 > 0, we have  

𝑠𝑢𝑝 𝑥 ′∈𝐵(𝑥 ,𝑟 ) 𝑇 𝑥 ′ ≥  𝑇  𝑟 …………(1) 

Where 𝐵 𝑥 , 𝑟  = {𝑥 ′ ∈ 𝑋 :  𝑥 ′ − 𝑥  < 𝑟 } 

Proof: For 𝜉 ∈ 𝑋   we have  

max{ 𝑇 (𝑥 + 𝜉 ) , (𝑥 − 𝜉 ) } ≥
1

2
[ 𝑇 (𝑥 +

�)+�(�−�)]≥��……(2) 

where the ≥ uses the triangle inequality in the 

form  𝛼 − 𝛽  ≤  𝛼  +  𝛽  . 

Now take the supremum over 𝜉 ∈ 𝐵(0, 𝑟 ). 

Theorem 3.5 (Uniform Boundedness 

Theorem (Alan D Sokal)): Let ℱ be a family 

of bounded linear operator form a Banach Space 

𝑋  to a normed linear space 𝑌 . If ℱ is point 

wise bounded (i.e. 𝑠𝑢𝑝 𝑇∈ℱ 𝑇𝑥  < ∞ for all 

𝑥 ∈ 𝑋 , then ℱ  is norm bounded. 

(i.e. 𝑠𝑢𝑝 𝑇∈ℱ 𝑇  < ∞) 

Proof of theorem 3.5 : Suppose 

𝑠𝑢𝑝 𝑇∈ℱ 𝑇𝑥  = ∞  and choose (𝑇 𝑛 )𝑛 =1
∞  in 

ℱ  such that  𝑇 𝑛  ≥ 4𝑛 . Then set 𝑥 0 = 0 and 

for 𝑛 ≥ 1 use the lemma to choose inductively 

𝑥 𝑛 ∈ 𝑋  such that  𝑥 𝑛 − 𝑥 𝑛 −1 ≤ 3
−𝑛

 and 

 𝑇 𝑛 𝑥 𝑛  ≥
2

3
3
−𝑛  𝑇 𝑛  . The sequence (𝑥 𝑛 ) is 

a Cauchy, hence convergent to some 𝑥 ∈ 𝑋 ; and 

it is easy to see that  𝑥 − 𝑥 𝑛  ≤
1

2
3
−𝑛

 and 

hence  𝑇 𝑛 𝑥  ≥
1

6
3
−𝑛  𝑇 𝑛  ≥

1

6
(

4

3
)𝑛 → ∞. 

Now, we present here, another proof of the 

Uniform Boundedness Theorem that does not 

require the Baire’s Theorem in a similar fashion 

as proved by Alan D Sokal but in a slightly 

different way. 

The new proof of theorem 3.5 (UBT): Assume 

that 𝑠𝑢𝑝 𝑇∈ℱ 𝑇𝑥  = ∞ and choose (𝑇 𝑛 )𝑛 =1
∞  

in ℱ  such that  𝑇 𝑛  ≥ 6
𝑛

. Then set 𝑥 0 = 0 

and for 𝑛 ≥ 1  use the lemma 3.4 to choose 

inductively 𝑥 𝑛 ∈ 𝑋  such that  𝑥 𝑛 −

𝑥 𝑛 −1 ≤ 5−𝑛  and  𝑇 𝑛 𝑥 𝑛  ≥
4

5
5−𝑛  𝑇 𝑛  . 

The sequence (𝑥 𝑛 )  is a Cauchy, hence 

convergent to some 𝑥 ∈ 𝑋 ; 

Now if 𝑚 > 𝑛  we have          𝑥 𝑛 − 𝑥 𝑚 ≤

5−(𝑛 +1) + 5−(𝑛 +2) + ⋯+ 5−𝑚 

Keeping 𝑛  fixed and letting 𝑚→ ∞ we deduce 

that 

 𝑥 𝑛 − 𝑥  ≤
5−𝑛−1

1 −
1
5

=
1

4
5−𝑛  

Then by the triangle inequality, we get 

 𝑇 𝑛 𝑥  =  𝑇 𝑛 𝑥 𝑛 − 𝑇 𝑛 𝑥 𝑛 + 𝑇 𝑛 𝑥  ≥

 𝑇 𝑛 (𝑥 𝑛 ) −  𝑇 𝑛 (𝑥 − 𝑥 𝑛 ) >  
4

5
5−𝑛 −

145−���=11205−���=112065�→∞,  a 

contradiction. 

As stated in [16], the above proof is most easily 

represented in terms of a sequence  𝑥 𝑛   that 

converges to 𝑥 , as we have seen. This differs 

from previous "gliding hump" proofs, which 

employed a sequence that added up to 𝑥 . Of 
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course, because sequences and series are 

equivalent, each proof can be expressed in 

either language; it is a matter of personal 

preference. Moreover from a quantitative 

standpoint, this proof is incredibly wasteful. 

Ball's "plank theorem" [27] leads to a 

quantitatively sharp version of the uniform 

boundedness theorem: namely, if  

  𝑇 𝑛  
−1 < ∞

∞

𝑛 =1

 

then there exists 𝑥  ∈  𝑋  such that   

𝑙𝑖𝑚 𝑛→∞ 𝑇 𝑛 𝑥  = ∞ (see also [28]). 

 

A similar (but slightly more complicated) 

elementary proof of the uniform boundedness 

theorem can be found in [29, p. 83] 

Apart from the Uniform Boundedness 

Theorem and other great theorems of Functional 

Analysis, we will look at two more conclusions 

included in most functional analysis textbooks 

that may be proved without utilising Baire's 

Theorem in this article. These are, without a 

doubt, consequence of UBT. 

Theorem 3.6: Let 𝑦 =  𝜂 𝑖  , 𝜂 𝑖 ∈ 𝐶  be such 

that  𝜉 𝑖 𝜂 𝑖  converges for every 𝑥 = (𝜉 𝑖 ) ∈

𝑐 0 where 𝑐 0 ⊂ 𝑙 ∞is a subspace of all complex 

sequences converging to zero. Then   𝜂 𝑖  < ∞. 

 Theorem 3.7: Let 𝑋  be a Banach space, 𝑌  a 

normed space and 𝑇 𝑛 ∈ 𝐵(𝑋 ,𝑌 )  such that 

(𝑇 𝑛 𝑥 )  is Cauchy in 𝑌   for every 𝑥 ∈ 𝑋 . 

Then ( 𝑇 𝑛  ) is bounded 

To prove these results we have to use 

UBT and as proof of UBT is Baire-free so these 

results are also Baire-free. 

 

4. Conclusion 

As these results (involved in the above theorems 

2.1, 2.2, 2.3) are interdependent and the Uniform 

Boundedness Theorem can be proved without 

appealing to Baire’s Theorem, so these results 

are also Baire Free and we can use the Uniform 

Boundedness Theorem as a tool to prove these 

results. 
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