
JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 4459-4466 

https://publishoa.com 

ISSN: 1309-3452 

 

4459 

Modular Chromatic Number of Certain Cyclic Graphs 

P. Sumathi1, S.Tamilselvi2* 

1 Associate professor, Department of Mathematics, C. Kandaswami Naidu College for Men, Anna Nagar, Chennai 600 

102, India. 

2*Research scholar, Department of Mathematics, C. Kandaswami Naidu College for Men, Anna Nagar, Chennai 600 

102, India. 

Received 2022 March 15; Revised 2022 April 20; Accepted 2022 May 10. 

Abstract 

A modular 𝑘- coloring, 𝑘 ≥ 2 of a graph without isolated vertices is vertex coloring of G with the positive integers 𝑘, 

for all  𝑘 ∈ 𝕫𝑘, where the adjacent vertices may be colored by the same integer and sums of the colors of their neighbors 

are different in 𝕫𝑘. The minimum 𝑘 for which the 𝐺 has a modular 𝑘- coloring is the modular chromatic number 𝑀𝑐(𝐺) 

of  𝐺. In this paper, the modular chromatic number of generalized Jahangir graph, generalized Petersen graph, and 

generalized uniform theta graph are found.  

Keywords: Modular K-coloring, Modular chromatic number, Generalized Jahangir graph, Generalized Petersen Graph, 

Generalized Uniform Theta Graph. 

1. Introduction  

 Graphs considered in this paper are simple, nontrivial, finite, connected, and undirected. The concept of modular 

coloring was first proposed by Okamoto, E.salehi, and P. Zhang in 2010. They executed the modular chromatic number 

of several well-known graphs and presented number of bounds in [1, 2, 3].The modular coloring technique has been 

applied to many fields, such as scheduling, electrical circuits, networking, etc. 

 Let 𝑣 be a vertex of graph 𝐺 and let 𝑁(𝑣) is the neighborhood of  𝑣 it is denote the set of vertices adjacent to 𝑣 in 𝐺. 

For a graph without isolated vertices, let 𝐶: 𝑉(𝐺) → 𝕫𝑘, (𝑘 ≥ 2) be a vertex coloring of 𝐺 where adjacent vertices may 

be colored the same. The color sum  𝒮(𝑣) of a vertex 𝑣 of 𝐺 is defined as the sum of the colors of the vertices in 𝑁(𝑣), 

that is  𝒮(𝑣) = ∑ 𝐶(𝑢)𝑢∈𝑁(𝑣) . The coloring C is called a modular sum 𝑘- coloring or simply a modular 𝑘- coloring of 𝐺 

if  𝒮(𝑥) ≠  𝒮(𝑦) in  𝕫𝑘 for all pairs 𝑥, 𝑦 of adjacent vertices of 𝐺. A coloring C is a modular coloring if C is a modular 

𝑘- coloring for some integer 𝑘 ≥ 2. The modular chromatic number 𝑚𝑐(𝐺) of 𝐺 is the minimum k for which 𝐺 has a 

modular 𝑘- coloring.  

  In this paper we prove that the generalized Jahangir graph, generalized Petersen graph and generalized uniform theta 

graph admits modular coloring.  

2.  Preliminaries 

Definition 2.1 The Generalized Jahangir graph 𝐽𝑛,𝑚 for  𝑚 ≥ 3  is a graph on 𝑚𝑛 + 1 vertices, consisting of a cycle 

𝐶𝑛𝑚 with one additional vertex that is adjacent to 𝑛 vertices of 𝐶𝑛𝑚 at distance 𝑚 to each other on 𝐶𝑛𝑚.  

 Let 𝐽𝑛,𝑚 be a Generalized Jahangir graph, Let 𝑣0 be the centre vertex, 𝑣𝑖: 𝑖 = 1,2,3, … ,𝑚 be the join vertices and 

𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛 − 1 be the petal vertices. Let 𝐸(𝐽𝑛,𝑚)= {𝑣𝑖𝑣𝑖+1: 𝑖 = 1,2, … ,𝑚(𝑛 − 1)} ∪

{𝑢𝑚𝑛 , 𝑣1} ∪ {𝑣0𝑣1+(𝑚(𝑖−1)): 𝑖 = 1,2,3, … ,𝑚} be the set of edges of 𝐽𝑛,𝑚. Then |𝑉| = 𝑚𝑛 + 1, |𝐸| = (𝑛 + 1)𝑚.  

Definition 2.2 The generalized Petersen graphs 𝑃(𝑛, 𝑘) are defined to be a graph on 2𝑛 (𝑛 ≥ 3) vertices with 

𝑉(𝑃(𝑛, 𝑘)) = {𝑣𝑖 , 𝑢𝑖: 0 ≤ 𝑖 ≤ 𝑛 − 1} and 𝐸(𝑃(𝑛, 𝑘)) = {𝑣𝑖𝑣𝑖+1, 𝑣𝑖𝑢𝑖 , 𝑢𝑖𝑢𝑖+𝑘: 0 ≤ 𝑖 ≤ 𝑛 − 1}. 
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Definition 2.3 A generalized theta graph 𝜃(𝑛,𝑚) or simply a theta graph with n vertices has two vertices N and S of 

degree m such that every other vertices is of degree 2 and lies in one of the m paths joining the vertices N and S. A theta 

graph 𝜃(𝑛,𝑚) is said to be uniform if  |𝐿1| + |𝐿2| + ⋯+ |𝐿𝑖|, where 𝐿𝑖 is a path between N and S. 

Theorem 2.1 [1]: For every non trivial connected graph 𝑚𝑐(𝐺) ≥ 𝜒(𝐺). 

3. Main results  

In this section generalized Jahangir graph, generalized Petersen graph and generalized uniform theta graph are dealt and 

proved to admit modular coloring.   

3.1 Generalized Jahangir Graph 

Theorem 3.1 

Let 𝐽𝑛,𝑚 be a generalized Jahangir graph. Then  𝑚𝑐(𝐽𝑛,𝑚) = {
2       𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  , 𝑛 ≥ 3. 

Proof: 

 Let 𝐽𝑛,𝑚 be a generalized Jahangir graph on 𝑛 ≥ 3, and   𝑉(𝐽𝑛,𝑚) =  {𝑣0} ∪ {𝑣𝑖 : 𝑖 = 1,2, … ,𝑚} ∪ {𝑣𝑖𝑗 : 𝑖 =

1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛 − 1}. We claim the modular chromatic number of  𝐽𝑛,𝑚 in the following cases. 

Case 1: 𝒏 ≡ 𝟎(𝒎𝒐𝒅 𝟒) 

When 𝑛 is even and ≡ 0(𝑚𝑜𝑑 4), 𝜒(𝐽𝑛,𝑚) = 2. 

By theorem 2.1, 𝑚𝑐(𝐽𝑛,𝑚) ≥ 2.  

Define an injective mapping 𝑓(𝑣𝑖) ∶  𝑉(𝐽𝑛,𝑚) → 𝕫2 as follows: (𝑣𝑖) =

{
0  {𝑣𝑖: 𝑖 = 0,1,2, … ,𝑚} 𝑎𝑛𝑑 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 𝑗 = 2,3, … , 𝑛 − 1}

1 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 𝑗 = 1}
 .                             

Clearly it yields the modular coloring of  𝐽𝑛,𝑚. 

Let   𝒮(𝑣𝑖) =  {
0  {𝑣𝑖 : 𝑖 = 0} 𝑎𝑛𝑑  {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; ; 𝑗 𝑖𝑠 𝑜𝑑𝑑}

1 {𝑣𝑖: 𝑖 = 1,2, … ,𝑚} 𝑎𝑛𝑑 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛}
,                                               which is a 

modular 2-coloring, since 𝒮(𝑣𝑖) ≠  𝒮(𝑣𝑗) for all pairs of 𝑣𝑖 , 𝑣𝑗 of all adjacent vertices of  𝐽𝑛,𝑚. Therefore 𝑚𝑐(𝐽𝑛,𝑚) ≤ 2. 

Hence 𝑚𝑐(𝐽𝑛,𝑚) = 2. 

Case 2: 𝒏 ≡ 𝟐(𝒎𝒐𝒅 𝟒) 

When 𝑛 is even and  𝑛 ≡ 2(𝑚𝑜𝑑 4), 𝜒(𝐽𝑛,𝑚) = 2. 

By theorem 2.1, 𝑚𝑐(𝐽𝑛,𝑚) ≥ 2.  

Define an injective mapping 𝑓(𝑣𝑖) ∶  𝑉(𝐽𝑛,𝑚) → 𝕫2 as follows:   

𝑓(𝑣𝑖) = {
0  

{𝑣𝑖 : 𝑖 = 1,2, … ,𝑚} 𝑎𝑛𝑑

{𝑣𝑖𝑗 − 𝑣𝑖,3+4𝑘: 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2,3, … , 𝑛 − 1; 𝑘 = 0,1, … ,
𝑛−6

4
}
 

1 {𝑣𝑖 : 𝑖 = 0} 𝑎𝑛𝑑 {𝑣𝑖,3+4𝑘: 𝑖 = 1,2, … ,𝑚; 𝑘 = 0,1, … ,
𝑛−6

4
}

 . 

Clearly it yields the modular coloring of  𝐽𝑛,𝑚. 

Let  𝒮(𝑣𝑖) =  {
0  {𝑣𝑖: 𝑖 = 0} 𝑎𝑛𝑑  {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; ; 𝑗 𝑖𝑠 𝑜𝑑𝑑}

1 {𝑣𝑖: 𝑖 = 1,2, … ,𝑚} 𝑎𝑛𝑑 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛}
,     
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which is a modular 2-coloring, since 𝒮(𝑣𝑖) ≠  𝒮(𝑣𝑗) for all pairs of 𝑣𝑖 , 𝑣𝑗  of all adjacent vertices of 𝐽𝑛,𝑚. Therefore 

𝑚𝑐(𝐽𝑛,𝑚) ≤ 2. Hence 𝑚𝑐(𝐽𝑛,𝑚) = 2. 

Case 3: When 𝒏 𝐢𝐬 𝐨𝐝𝐝 

When 𝑛 is odd, 𝜒(𝐽𝑛,𝑚) = 3.  

By theorem 2.1, 𝑚𝑐(𝐽𝑛,𝑚) ≥ 3. 

Since the injective mapping 𝑓(𝑣𝑖): 𝑉(𝐽𝑛,𝑚) → 𝕫3 is defined by 

𝑓(𝑣𝑖) = {
0  {𝑣𝑖: 𝑖 = 1,2, … ,𝑚} 𝑎𝑛𝑑 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛}

1 {𝑣𝑖 : 𝑖 = 0} 𝑎𝑛𝑑 {𝑣𝑖𝑗: 𝑖 = 1,2, … ,𝑚; 𝑗 𝑖𝑠 𝑜𝑑𝑑}
.                                                

Clearly it yields the modular coloring of  𝐽𝑛,𝑚. 

Let 𝒮(𝑣𝑖) =  {

0 {𝑣𝑖 : 𝑖 = 0} 𝑎𝑛𝑑  {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; ; 𝑗 𝑖𝑠 𝑜𝑑𝑑}

1 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; ; 𝑗 = 𝑛 − 1

2 {𝑣𝑖: 𝑖 = 1,2, … ,𝑚} 𝑎𝑛𝑑 {𝑣𝑖𝑗 : 𝑖 = 1,2, … ,𝑚; 1 ≤ 𝑗 ≤ 𝑛 − 2,𝑤ℎ𝑒𝑟𝑒 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛}

,        

which is a modular 3-coloring, since 𝒮(𝑣𝑖) ≠  𝒮(𝑣𝑗) for all pairs of 𝑣𝑖 , 𝑣𝑗  of all adjacent vertices of  𝐽𝑛,𝑚. Therefore  

𝑚𝑐(𝐽𝑛,𝑚) ≤ 3. Hence 𝑚𝑐(𝐽𝑛,𝑚) = 3. Refer figure 3.1. 

 

Figure 3.1 [𝐽5,4] 

 

3.2 Generalized Petersen Graph 

Here we prove the following theorem for the Petersen graph 𝑃(𝑛,𝑚) where 𝑚 = 1. 

Theorem 3.2 

For each integer 𝑛 > 3, 𝑚𝑐(𝑃(𝑛, 1)) = {
2       𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑣13 (1) [0] 

𝑣2 (0) [2] 

𝑣3 (0) [2] 

𝑣14 (0) [1] 

𝑣12 (0) [2] 

𝑣11 (1) [0] 

𝑣0 (1) [0] 

𝑣1 (0) [2] 

𝑣21 (1) [0] 

𝑣22 (0) [2] 

𝑣23 (1) [0] 

𝑣34 (0) [1] 

𝑣24 (0) [1] 

𝑣44 (0) [1] 

𝑣31 (1) [0] 

𝑣41 (1) [0] 

𝑣33 (1) [0] 

𝑣43 (1) [0] 

𝑣32 (0) [2] 

𝑣42 (0) [2] 

𝑣4 (0) [2] 
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Proof: 

Let 𝑃(𝑛, 1) be Petersen graph. Let  𝑉 = {𝑣𝑖 : 𝑖 = 1,2, … , 𝑛} ∪ {𝑢𝑖: 𝑖 = 1,2, … , 𝑛} be the vertices of 𝑃(𝑛, 1). 

We consider two cases, 

Case 1: 𝒏 is even 

When 𝑛 is even, 𝜒(𝑃(𝑛, 1)) = 2. 

By theorem 2.1, 𝑚𝑐(𝑃(𝑛, 1)) ≥ 2. 

Let 𝑓(𝑣𝑖): 𝑉(𝑃(𝑛, 1)) → 𝕫2 be an injective mapping such that 

𝑓(𝑃(𝑛, 1)) = {
0 {𝑣𝑖: 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛} 𝑎𝑛𝑑 {𝑢𝑖: 𝑖 𝑖𝑠 𝑜𝑑𝑑}

1 {𝑣𝑖: 𝑖 𝑖𝑠 𝑜𝑑𝑑} 𝑎𝑛𝑑 {𝑢𝑖: 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛}
.                                                                           

Clearly it gives modular coloring of 𝑃(𝑛, 1). 

            Let  𝒮(𝑃(𝑛, 1)) = {
0 {𝑣𝑖 : 𝑖 𝑖𝑠 𝑜𝑑𝑑} 𝑎𝑛𝑑 {𝑢𝑖: 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛}

1 {𝑣𝑖 : 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛} 𝑎𝑛𝑑 {𝑢𝑖: 𝑖 𝑖𝑠 𝑜𝑑𝑑}
 ,             

which is a modular 2-coloring, since 𝒮(𝑣𝑖) ≠  𝒮(𝑣𝑗) for all pairs of 𝑣𝑖 , 𝑣𝑗  of all adjacent vertices of 𝑃(𝑛, 1). Therefore  

𝑚𝑐(𝑃(𝑛, 1)) ≤ 2  and so 𝑚𝑐(𝑃(𝑛, 1)) = 2. Refer figure 3.2.    

  

Figure 3.2 [𝑃(6,1)] 

Case 2: 𝒏 is odd 

 When 𝑛 is odd, 𝜒(𝑃(𝑛, 1)) = 3. 

 By theorem 2.1, 𝑚𝑐(𝑃(𝑛, 1)) ≥ 3.  

 Let 𝑓(𝑣𝑖): 𝑉(𝑃(𝑛, 1)) → 𝕫2 be an injective mapping such that 

𝑣2 (0) [1] 

𝑣1 (1) [0] 

𝑣3 (1) [0] 

𝑢3 (0) [1] 

𝑢1 (0) [1] 

𝑢5 (0) [1] 

𝑣5 (1) [0] 

𝑢2 (1) [0] 

𝑣4 (0) [1] 

𝑣6 (0) [1] 

𝑢4 (1) [0] 

𝑢6 (1) [0] 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 4459-4466 

https://publishoa.com 

ISSN: 1309-3452 

 

4463 

𝑓(𝑃(𝑛, 1)) = {

0 {𝑣𝑖 : 𝑖 = 𝑛, 𝑛 − 2, 1 ≤ 𝑖 ≤ 𝑛,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛} 𝑎𝑛𝑑 {𝑢𝑖 − 𝑢𝑛−2: 1 ≤ 𝑖 ≤ 𝑛}

1 {𝑢𝑖: 𝑖 = 𝑛 − 2}

2  {𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛 − 4,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑜𝑑𝑑}
.   

 Clearly it gives modular coloring of 𝑃(𝑛, 1). 

𝒮(𝑃(𝑛, 1)) =

{
 

 0
{𝑣𝑖 : 𝑖 = 𝑛 − 1,1 ≤ 𝑖 ≤ 𝑛 − 4,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑜𝑑𝑑} 𝑎𝑛𝑑
{𝑢𝑖: 𝑖 = 𝑛, 𝑛 − 2, 1 ≤ 𝑖 ≤ 𝑛 − 5,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠  𝑒𝑣𝑒𝑛}

 

1 {𝑣𝑖: 𝑖 = 𝑛 − 2,1 ≤ 𝑖 ≤ 𝑛 − 5,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛} 𝑎𝑛𝑑 {𝑢𝑖: 𝑖 = 𝑛 − 1, 𝑛 − 3}

2 {𝑣𝑖: 𝑖 = 𝑛, 𝑛 − 3} 𝑎𝑛𝑑 {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛 − 4,𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑜𝑑𝑑}

  

which is a modular 3-coloring, since 𝒮(𝑣𝑖) ≠  𝒮(𝑣𝑗) for all pairs of 𝑣𝑖 , 𝑣𝑗  of all adjacent vertices of 𝐽𝑛,𝑚. Therefore  

𝑚𝑐(𝑃(𝑛, 1)) ≤ 3. Hence  𝑚𝑐(𝑃(𝑛, 1)) = 3.          

  

3.3 Generalized Uniform Theta Graph   

Theorem 3.3 

Let 𝜃(𝑛,𝑚) is Generalized Uniform Theta Graph for 𝑛,𝑚 ≥ 3, then 𝑚𝑐(𝜃(𝑛,𝑚)) =

{
2       𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,𝑚 𝑖𝑠 𝑜𝑑𝑑 
3                                    𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

Proof : 

Let 𝐺 ≅  𝜃(𝑛,𝑚) for any integer 𝑛,𝑚 ≥ 3. Let 𝑣𝑚 = 𝑁 𝑎𝑛𝑑 𝑣0 = 𝑆  is North Pole and South Pole of 𝐺 respectively. 

𝜃(𝑛,𝑚) is a graph containing m disjoint paths of 𝑛 vertices joining the poles 𝑁 and 𝑆. 

We prove the theorem using the following two cases. 

Case 1: 𝒏 is odd 

When 𝑛 is odd, 𝜒(𝜃(𝑛,𝑚)) = 2. 

By theorem 2.1, 𝑚𝑐(𝜃(𝑛,𝑚)) ≥ 2. 

We define the injective mapping as 𝐶(𝑣𝑖𝑗): 𝑉(𝜃(𝑛,𝑚)) →  𝕫2 Such that, for 𝑛 ≡ 1(𝑚𝑜𝑑4) 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗: 𝑖 = 4𝑘, 𝑘 = 0,1, … ,

(𝑛−1)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣0} ∪ {𝑣𝑖𝑗: 𝑖 = 2 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛−1)

4
, 𝑗 = 1,2, … ,𝑚}

  

and for 𝑛 ≡ 3(𝑚𝑜𝑑4), 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 4𝑘, 𝑘 = 0,1, … ,

(𝑛−3)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑖𝑗 : 𝑖 = 2 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛−3)

4
, 1 ≤ 𝑗 ≤ 𝑚}

.    

Let the modular coloring be 

𝓢(𝑣𝑖𝑗) = {
0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛, 1 ≤ 𝑗 ≤ 𝑚}

1     {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑚}
 . 

It achieves the modular 2- coloring. Therefore 𝑚𝑐(𝜃(𝑛,𝑚)) ≤ 2. Hence  𝑚𝑐(𝜃(𝑛,𝑚)) = 2.  
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Refer figure 3.3   

 

figure3.3 [𝜃(3,4)] 

Case 2: 𝒏 is even 

Subcase 1: 𝒎 is odd 

When 𝑛 is even and 𝑚 is odd, 𝜒(𝜃(𝑛,𝑚)) = 2. 

By theorem 2.1, 𝑚𝑐(𝜃(𝑛,𝑚)) ≥ 2. 

We define the injective mapping as 𝐶(𝑣𝑖𝑗): 𝑉(𝜃(𝑛,𝑚)) →  𝕫2 Such that, for 𝑛 ≡ 2(𝑚𝑜𝑑4). 

𝐶(𝑣𝑖𝑗) =

{
 
 

 
 0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗: 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑖𝑗 : 𝑖 = 2 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

 

and for 𝑛 ≡ 0(𝑚𝑜𝑑4), 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣0} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛−4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛−4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

 . 

Let the modular coloring be 

𝓢(𝑣𝑖𝑗) = {
0 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗: 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣0} ∪ {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑣, 1 ≤ 𝑗 ≤ 𝑚}
, 

It achieves the modular 2- coloring. Therefore 𝑚𝑐(𝜃(𝑛,𝑚)) ≤ 2. Hence  𝑚𝑐(𝜃(𝑛,𝑚)) = 2.  

Subcase 2: 𝒎 is even 

When 𝑛 is even and 𝑚 is even, 𝜒(𝜃(𝑛,𝑚) = 2. 

By theorem 2.1, 𝑚𝑐(𝜃(𝑛,𝑚)) ≥ 2. 

𝑣21 (1) [0] 𝑣22 (1) [0] 𝑣23 (1) [0] 𝑣24 (1) [0] 𝑣25 (1) [0] 

𝑣31 (0) [1] 𝑣32 (0) [1] 𝑣33 (0) [1] 𝑣34 (0) [1] 
𝑣35 (0) [1] 

𝑣12 (0) [1] 𝑣11 (0) [1] 
𝑣13 (0) [1] 𝑣14 (0) [1] 𝑣15 (0) [1] 

𝑆 = 𝑣0 (0) [0] 

𝑁 = 𝑣4 (0) [0] 
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We define an injective mapping as 𝐶(𝑣𝑖𝑗): 𝑉(𝜃(𝑛,𝑚)) →  𝕫3 Such that, for 𝑛 ≡ 2(𝑚𝑜𝑑4) 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

, 

and for 𝑛 ≡ 0(𝑚𝑜𝑑4), 

𝐶(𝑣𝑖𝑗) =

{
 
 

 
 0 {𝑣0} ∪ {𝑣𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛 − 4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗: 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛 − 4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

, 

Let the modular coloring be 

𝓢(𝑣𝑖𝑗) = {
0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑚}

1    {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛, 1 ≤ 𝑗 ≤ 𝑚}
 . 

It achieves the modular 3- coloring, it follows that  𝑚𝑐(𝜃(𝑛,𝑚)) ≤ 3. We show that 𝑚𝑐(𝜃(𝑛,𝑚)) ≠ 2. Assume, to the 

contrary, that there exist modular 2- colorings 𝐶1(𝑣𝑖𝑗): 𝑉(𝜃(𝑛,𝑚)) →  𝕫2  of  𝜃(𝑛,𝑚). such that, for 𝑛 ≡ 2(𝑚𝑜𝑑4) 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣0, 𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛 − 2)

4
, 1 ≤ 𝑗 ≤ 𝑚}

 

and for 𝑛 ≡ 0(𝑚𝑜𝑑4) 

𝐶(𝑣𝑖𝑗) = {
0 {𝑣0} ∪ {𝑣𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚} − {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,

(𝑛−4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

1 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 𝑖 = 1 + 4𝑘, 𝑘 = 0,1, … ,
(𝑛−4)

4
, 1 ≤ 𝑗 ≤ 𝑚}

 Clearly it gives 

modular coloring of 𝜃(𝑛,𝑚). 

Then we may assume that 

Let 𝒮(𝑣𝑖𝑗) = {
0 {𝑣𝑛+1} ∪ {𝑣𝑖𝑗 : 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑚}

1  {𝑣0} ∪  {𝑣𝑖𝑗: 0 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛, 1 ≤ 𝑗 ≤ 𝑚}
  

It is clear that 𝒮(𝑣0) = 0 and 𝒮(𝑣1𝑗) = 0 which is a contradiction that adjacent vertices must receive different coloring. 

Therefore our assumption 𝑚𝑐(𝜃(𝑛,𝑚)) = 2 is wrong. It follows that 𝑚𝑐(𝜃(𝑛,𝑚)) ≥ 3 and so 𝑚𝑐(𝜃(𝑛,𝑚)) = 3. 

4. Conclusion: 

Based on the significance of the theorems we determine the specific graphs such as generalized Jahangir graph, 

generalized Petersen graph, and generalized uniform theta graph are modular coloring. 
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