https://publishoa.com
ISSN: 1309-3452

On Odd Prime Labelings of Snake Related Graphs

1G. Gajalakshmi, 2S. Meena

${ }^{1}$ Research Scholar, Department of Mathematics, Government Arts College, Chidambaram, TamilNadu, India.
${ }^{2}$ Associate Professor, Department of Mathematics, Government Arts College, Chidambaram, TamilNadu, India.

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10.

Abstract

For a graph G mapping f is called an odd prime labeling, if f is a bijection from V to $\{1,3,5, \ldots, 2 \mid V$ $\mid-1\}$ satisfying the condition that for each line uv in G the greatest common divisor of the labels of end points $f(u), f(v)$ is one. Investigated in this paper the odd prime labeling of some new graphs and we prove that some snake related graphs such as quadrilateral snake $D\left(Q_{n}\right)$, Triangular snake $S\left(T_{n}\right)$, Double Triangular snake $D\left(T_{n}\right)$, Alternate Triangular snake $\left(A T_{n}\right)$, Triangular ladder $T L_{n}$, Open Triangular ladder $O\left(T L_{n}\right)$ are odd prime graphs.

1. Introduction

In this paper by a graph $G=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ for graph theoretical notations we refer Bondy.J.A\&Murthy.U.S.R [1]. For entire survey of graph labeling we refer [4]. The concept of prime labeling was Roger Etringer introduced prime labelings and then it was investigated by Tout et al [2, 8] Deretsky and Meena.S and Kavitha.P [5]. The concept of odd prime labeling was introduced by Prajapati.U.M\&Shah.K.P [7] and then studied by many researchers. Meena.S and Kavitha.P and Gajalakshmi.G [6].

In this paper we prove some snake related graphs are odd prime graphs.

Definition 1.1. Let $G=\langle V(G), E(G)\rangle$ be a graph. A bijection $f: V(G) \rightarrow O_{|V|}$ is called an odd prime labeling if for each line $u v \in E$, greatest common divisor $\langle f(u), f(v)\rangle$ is one. A graph is called an odd prime graph if which admits odd prime labeling.
Here $O_{\mid V} \mid=\{1,3,5, \ldots .2|V|-n\}$
Definition 1.2. A subdivision graph $S(G)$ is
got from G by splitting every line of G exactly once.
Definition 1.3. A graph got from a path r_{1}, r_{2}, \ldots, r_{n} by joining r_{k} and r_{k+1} to two points v_{k} and $w_{k}, l \leq k \leq n-1$ respectively and then joining v_{k} and w_{k} is know as quadrilateral snake Q_{n}.
Definition 1.4. A graph got from a path by replacing each line by a triangle is called Triangular snake T_{n}.
Definition 1.5. A graph got from the path r_{1}, r_{2}, \ldots, r_{n} by joining r_{k} and r_{k+1} with two new points v_{k} and $w_{k}, l \leq k \leq n-1$.
Definition 1.6. An Alternate Triangular snake $A\left(T_{n}\right)$, is got from a path P_{n} by replacing each alternate line of P_{n} by a cycle C_{3}.
Definition 1.7. The Ladder $L_{n}=P_{2} \times P_{n}$.
Definition 1.8. A triangular ladder $T L_{n}, n \geq 2$ is a graph got from L_{n} by adding the lines $u_{k} v_{k+1}, l \leq k \leq n-1$. The vertices of L_{n} are u_{k} and $v_{k} . u_{k}$ and v_{k} are the two paths in the graph L_{n}.
Definition 1.9. An open triangular ladder

Volume 13, No. 1, 2022, p. 630-634
https://publishoa.com
ISSN: 1309-3452
$O\left(T L_{n}\right), n \geq 2$ is a graph got from an open ladder $O\left(L_{n}\right)$ by adding the edges $u_{k} v_{k+1}, l \leq k$ $\leq n-1$.

2. Main Results

Theorem 2.1. The subdivision graph of a quadrilateral snake $S\left(Q S_{n}\right)(n \geq 3)$ is an odd prime graph.
Proof. Let $\mathrm{G}=\mathrm{S}\left(\mathrm{QS}_{\mathrm{n}}\right)$ be the Subdivision graph of a quadrilateral snake
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}, \mathrm{s}_{\mathrm{k}} / 1 \leq k \leq n\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}} \mathrm{w}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}} \mathrm{z}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}} \mathrm{s}_{\mathrm{k}} / 1 \leq k\right.$ $\leq n\}$

$$
\mathrm{U}\left\{\mathrm{~s}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}, \mathrm{v}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1} / 1 \leq k \leq-1\right\}
$$

Here $|\mathrm{V}(\mathrm{G})|=7 \mathrm{n}-6$ and $|\mathrm{E}(\mathrm{G})|=7 \mathrm{n}-2$
Define a mapping f from V (G) to $\mathrm{O}_{7 \mathrm{n}}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=14 \mathrm{k}-13$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=14 \mathrm{k}-1 \quad$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k} \not \equiv$ $2(\bmod 3)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=14 \mathrm{k}-5 \quad$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k} \equiv$ $2(\bmod 3)$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=14 \mathrm{k}-11$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)=14 \mathrm{k}-9$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{k}}\right)=14 \mathrm{k}-7$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{k}}\right)=14 \mathrm{k}-5$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k} \not \equiv$ $2(\bmod 3)$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{k}}\right)=14 \mathrm{k}-3$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k} \equiv$ $2(\bmod 3)$
$\mathrm{f}\left(\mathrm{s}_{\mathrm{k}}\right)=14 \mathrm{k}-3$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k}$ $\not \equiv 2(\bmod 3)$
$\mathrm{f}\left(\mathrm{s}_{\mathrm{k}}\right)=14 \mathrm{k}-1 \quad$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1 \quad \mathrm{k} \equiv$ $2(\bmod 3)$
Clearly the point labels are distinct with this labeling for each line $\mathrm{e} \in \mathrm{E}$.
greatest common divisor $(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$.
(i)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(14 k-13,14 k-1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{k} \neq 2(\bmod 3)$;
(ii)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(14 k-13,14 k-5)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \equiv 2(\bmod 3)$
(iii)
$e=u_{k} w_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(w_{k}\right)\right)=\operatorname{gcd}(14 k-13,14 k-11)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iv)
$e=w_{k} x_{k}, \operatorname{gcd}\left(f\left(w_{k}\right), f\left(x_{k}\right)\right)=\operatorname{gcd}(14 k-11,14 k-9)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(v)
$e=x_{k} y_{k}, \operatorname{gcd}\left(f\left(x_{k}\right), f\left(y_{k}\right)\right)=\operatorname{gcd}(14 k-9,14 k-7)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(vi)
$e=y_{k} z_{k}, \operatorname{gcd}\left(f\left(y_{k}\right), f\left(z_{k}\right)\right)=\operatorname{gcd}(14 k-7,14 k-5)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \not \equiv 2(\bmod 3)$;
(vii)
$e=y_{k} z_{k}, \operatorname{gcd}\left(f\left(y_{k}\right), f\left(z_{k}\right)\right)=\operatorname{gcd}(14 k-7,14 k-3)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \equiv 2(\bmod 3)$
(viii)
$e=z_{k} s_{k}, \operatorname{gcd}\left(f\left(z_{k}\right), f\left(s_{k}\right)\right)=\operatorname{gcd}(14 k-5,14 k-3)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \not \equiv 2(\bmod 3)$;
(ix)
$e=z_{k} s_{k}, \operatorname{gcd}\left(f\left(z_{k}\right), f\left(s_{k}\right)\right)=\operatorname{gcd}(14 k-3,14 k-1)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \equiv 2(\bmod 3)$;
(x)
$e=u_{k+1} s_{k}, \operatorname{gcd}\left(f\left(u_{k+1}\right), f\left(s_{k}\right)\right)=\operatorname{gcd}(14 k+1,14 k-3)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \neq 2(\bmod 3)$;
(xi)
$e=v_{k} u_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(14 k-1,14 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \equiv 2(\bmod 3)$;
(xii)
$e=u_{k+1} s_{k}, \operatorname{gcd}\left(f\left(u_{k+1}\right), f\left(s_{k}\right)\right)=\operatorname{gcd}(14 k+1,14 k-1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \neq 2(\bmod 3)$
(xiii)
$e=v_{k} u_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(14 k-5,14 k-1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1, \mathrm{k} \equiv 2(\bmod 3)$;
Thus $S\left(Q S_{n}\right)$ is an odd prime graph.

Figure 1.

Volume 13, No. 1, 2022, p. 630-634
https://publishoa.com
ISSN: 1309-3452
Theorem 2.2.The Subdivision graph of a triang ($n \geq 1$)is an odd prime graph.
Proof. Let ST_{n} be the subdivision graph of a triangular snake T_{n}.
$\mathrm{V}\left(\mathrm{ST}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{W}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}-1\right\} \mathrm{U}$ \{ u_{n} \}
$\mathrm{E}\left(\mathrm{ST}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}} \mathrm{W}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}\right\}$
$\mathrm{U}\left\{\mathrm{v}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}, \mathrm{w}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1} / 1 \leq \mathrm{k} \leq \mathrm{n}-1\right\}$
Here $\left|\mathrm{V}\left(\mathrm{ST}_{\mathrm{n}}\right)\right|=5 \mathrm{n}-4$ and $\left|\mathrm{E}\left(\mathrm{ST}_{\mathrm{n}}\right)\right|=6 \mathrm{n}-6$
Define a mapping f from $\mathrm{V}(\mathrm{G})$ to $\mathrm{O}_{5 \mathrm{n}}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=10 \mathrm{k}-9$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=10 \mathrm{k}-1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)=10 \mathrm{k}-7$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{k}}\right)=10 \mathrm{k}-5$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=10 \mathrm{k}-3$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
Clearly the point labels are distinct with this labeling for each line $\mathrm{e} \in \mathrm{E}$.
greatest common divisor $(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$.
(i)
$e=u_{k} x_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(x_{k}\right)\right)=\operatorname{gcd}(10 k-9,10 k-7)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(ii)
$e=x_{k} y_{k}, \operatorname{gcd}\left(f\left(x_{k}\right), f\left(y_{k}\right)\right)=\operatorname{gcd}(10 k-7,10 k-5)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iii)
$e=y_{k} w_{k}, \operatorname{gcd}\left(f\left(y_{k}\right), f\left(w_{k}\right)\right)=\operatorname{gcd}(10 k-5,10 k-3)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iv)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(10 k-9,10 k-1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
(v)
$e=v_{k} v_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(v_{k+1}\right)\right)=\operatorname{gcd}(10 k-1,10 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(vi)
$e=w_{k} u_{k+1}, \operatorname{gcd}\left(f\left(w_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(10 k-3,10 k+1)=1$ for $1 \leq k \leq n-1$
Thus $\mathrm{S}\left(\mathrm{T}_{\mathrm{n}}\right)$ is an odd prime graph.

Figure 2.
Theorem 2.3. The subdivision graph $S(D(T n))$ is an odd prime graph.
Proof. Let DT_{n} be the subdivision graph of a double triangular snake DT_{n}.
$\mathrm{V}\left(\mathrm{DT}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}, \mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq\right.$ n\}
$\mathrm{E}\left(\mathrm{DT}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}} \mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{k}} \mathrm{W}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}} \mathrm{r}_{\mathrm{k}}\right.$, $\left.\mathrm{r}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}\right\} \cup\left\{\mathrm{t}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}, \mathrm{p}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1} / 1 \leq \mathrm{k} \leq \mathrm{n}-1\right\}$
Here $\left|\mathrm{V}\left(\mathrm{DT}_{\mathrm{n}}\right)\right|=7 \mathrm{n}-6$ and $\left|\mathrm{E}\left(\mathrm{DT}_{\mathrm{n}}\right)\right|=7 \mathrm{n}-2$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{O}_{8 \mathrm{n}}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=16 \mathrm{k}-15$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=16 \mathrm{k}-1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=16 \mathrm{k}-11$ for $1 \leq \mathrm{k} \leq \mathrm{n} \quad \mathrm{k} \not \equiv \mathrm{H}(\bmod 10)$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{k}}\right)=16 \mathrm{k}-9$ for $1 \leq \mathrm{k} \leq \mathrm{n} \quad \mathrm{k} \equiv 4(\bmod 10)$
$\mathrm{f}\left(\mathrm{s}_{\mathrm{k}}\right)=16 \mathrm{k}-13$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right)=16 \mathrm{k}-9 \quad$ for $1 \leq \mathrm{k} \leq \mathrm{n} \quad \mathrm{k} \not \equiv 4(\bmod 10)$
$f\left(t_{k}\right)=16 k-11$ for $1 \leq k \leq n \quad k \equiv 4(\bmod 10)$
$\mathrm{f}\left(\mathrm{p}_{\mathrm{k}}\right)=16 \mathrm{k}-11$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{q}_{\mathrm{k}}\right)=16 \mathrm{k}-9$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{r}_{\mathrm{k}}\right)=16 \mathrm{k}-13$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
Clearly the point labels are distinct with this labeling for each line $\mathrm{e} \in \mathrm{E}$.
greatest common divisor $(f(u), f(v))=1$.
(i)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(16 k-15,16 k-1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
(ii)
$e=u_{k} q_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(q_{k}\right)\right)=\operatorname{gcd}(16 k-15,16 k-7)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}$
(iii)
$e=u_{k} s_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(s_{k}\right)\right)=\operatorname{gcd}(16 k-15,16 k-13)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
(iv)
$e=s_{k} w_{k}, \operatorname{gcd}\left(f\left(s_{k}\right), f\left(w_{k}\right)\right)=\operatorname{gcd}(16 k-13,16 k-9)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{k} \neq 4(\bmod 10)$
(v)

Volume 13, No. 1, 2022, p. 630-634
https://publishoa.com
ISSN: 1309-3452
$e=s_{k} w_{k}, \operatorname{gcd}\left(f\left(s_{k}\right), f\left(w_{k}\right)\right)=\operatorname{gcd}(16 k-13,16 k-11)=1$
(i)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(6 k-5,6 k-1)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}$
(ii)
$e=u_{k} x_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(x_{k}\right)\right)=\operatorname{gcd}(6 k-5,6 k-3)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}$
(iii)
$e=x_{k} v_{k}, \operatorname{gcd}\left(f\left(x_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(6 k-3,6 k-1)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}$
(iv)
$e=v_{k} u_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(6 k-1,6 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
Thus $A\left(T_{n}\right)$ is an odd prime graph.

Figure 4.
Theorem 2.5. The odd prime labeling number of a triangular ladder $T L_{n}, n \geq 2$.
Proof. Let $\mathrm{G}=\mathrm{TL}_{\mathrm{n}}$ be any triangular graph with
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{V}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}, \mathrm{v}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}\right.$, $\left.\mathrm{V}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}+1} / 1 \leq \mathrm{k} \leq \mathrm{n}-1\right\}$
Define $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{O}_{2 \mathrm{n}}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=4 \mathrm{k}-3$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=4 \mathrm{k}-1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
Clearly point labels are distinct for each line e $\in \mathrm{E}, \operatorname{gcd}(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$.
(i)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(4 k-3,4 k-1)=1$
for $1 \leq \mathrm{k} \leq \mathrm{n}$
(ii)
$e=u_{k} u_{k+1}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(4 k-3,4 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iii)
$e=v_{k} v_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(v_{k+1}\right)\right)=\operatorname{gcd}(4 k-1,4 k+3)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iv)
$e=v_{k} u_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(4 k-1,4 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$

Volume 13, No. 1, 2022, p. 630-634
https://publishoa.com
ISSN: 1309-3452
ThusTL ${ }_{n}$ is an odd prime graph.

Figure 5.
Theorem 2.6. Open triangular ladder $O\left(T L_{n}\right)$ is an odd prime graph $n \geq 2$.
Proof. Let $\mathrm{G}=\mathrm{O}\left(\mathrm{TL}_{\mathrm{n}}\right)$ be any triangular ladder graph on 2 n vertices with
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}} / 1 \leq \mathrm{k} \leq \mathrm{n}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}+1}, \mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}+1}\right.$, $\left.\mathrm{v}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}+1} / 1 \leq \mathrm{k} \leq \mathrm{n}-1\right\}$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{O}_{2 \mathrm{n}}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=4 \mathrm{k}-1$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=4 \mathrm{k}-3$ for $1 \leq \mathrm{k} \leq \mathrm{n}$
Clearly the point labels are distinct with this labeling for each line $\mathrm{e} \in \mathrm{E}$.
greatest common divisor $(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))=1$.
(i)
$e=u_{k} v_{k}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(v_{k}\right)\right)=\operatorname{gcd}(4 k-1,4 k-3)=1$ for $2 \leq \mathrm{k} \leq \mathrm{n}-1$
(ii)
$e=u_{k} u_{k+1}, \operatorname{gcd}\left(f\left(u_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(4 k-1,4 k+3)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
(iii)
$e=v_{k} v_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(v_{k+1}\right)\right)=\operatorname{gcd}(4 k-3,4 k+1)=1$ for $1 \leq k \leq n-1$
(iv)
$e=v_{k} u_{k+1}, \operatorname{gcd}\left(f\left(v_{k}\right), f\left(u_{k+1}\right)\right)=\operatorname{gcd}(4 k-1,4 k+1)=1$ for $1 \leq \mathrm{k} \leq \mathrm{n}-1$
Thus $\mathrm{O}\left(\mathrm{TL}_{\mathrm{n}}\right)$ is an odd prime graph.

Figure 6.

Conclusion

Odd Prime labelings of various classes of graphs such as quadrilateral snake $\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)$,

Triangular snake $\mathrm{S}\left(\mathrm{T}_{\mathrm{n}}\right)$, Double Triangular snake $D\left(T_{n}\right)$, Alternate Triangular snake $\mathrm{A}\left(\mathrm{T}_{\mathrm{n}}\right)$, Triangular ladder TL_{n}, Open Triangular ladder $\mathrm{O}\left(\mathrm{TL}_{\mathrm{n}}\right)$ graphs are investigated. To investigate similar theorems for other graph families is an open area of research.

References

[1] J.A. Bondy. and U.S.R. Murthy, Graph Theory and Applications (North Holland), Newyork (1976).
[2] T. Deretsky, S.M. Lee and J. Mitchem, On vertex prime labelings of graphs, in graph combinatorics and Applications, Alavi.J, Chartrand.G, Oellerman.O and Schwenk.A, eds., proceedings 6th international Conference Theory and Applications of Graphs (wiley, New york), (1991), 359-369.
[3] H.C. Fu and K.C. Huang, On Prime labeling Discrete Math, 127 (1994), 181-

$$
186 .
$$

[4] J.A. Gallian, A Dynamic Survey of graph labeling, The Electronic Journal of Combinations, 16, DS6, (2009).
[5] S. Meena and P. Kavitha, Strongly prime labeling for some graphs, International Journal of Mathematics And its Applications, (3) (2015), 1-11. ISSN: 2347-1557.
[6]S. Meena, P. Kavitha and G. Gajalakshmi, Odd Prime labeling for some new classes of graph. (Communicated)[SEAJM] (2021).
[7]U.M. Prajapati, K.P. Shah, On odd prime labeling, International journal of Research and Analytical Reviews, 5(4) (2018), 284-294.
[8] A. Tout, A.N. Dabboucy and K. Howalla, Prime labeling of graphs, National Academy Science letters, 11 (1982), 365-368.
[9] S.K. Vaidya and K.K. Kanani, Prime labeling for some cycle related graphs, Journal of Mathematics Research, 2(2) (2010), 98-104.

