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Abstract  

We present a single-phase super lens with a low density that can accomplish focusing of sound beyond 

the difraction limit. The super lens features a star-shaped lattice structure built of steel those offers 

numerous resonances to generate anomalous dispersive efects as assessed by negative parameter 

indices. Our research of the metamaterial band structure reveals that these star-shaped metamaterials 

exhibit double-negative index features that can mediate these efects for sound in water. Simulations 

verify the efective focusing of sound by a single-phase solid lens with a spatial resolution of roughly 

0.39 λ. This superlens has a basic structure, low density and solid nature, which makes it more viable 

for application in water-based situations. It should be mentioned that the suggested approach may 

produce a more simple stiffness and mass matrices of the proposed structures, compared with the 

classic finite element (FE) method. Thereafter, the impacts of the geometrical parameters on the 

effective constants and band gaps are explored and addressed. Numerical results reveal that the 

negative Poisson’s ratio produces an improved effective Young’s modulus of the investigated 

honeycombs. Furthermore, the band gap occurs at a much lower frequency zone with an unaltered 

summing band gap width when the Poisson’s ratio is in negative values. In general, the work can serve 

as a guide for the best design of cellular structures. 
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Introduction  

Achieving high-resolution super focusing of 

sound has been a longstanding challenge. Te 

critical The key to resolving the problem of 

super-resolution photography is figuring out 

how to detect evanescent waves; fortunately, 

this challenge has been significantly lessened in 

difficulty because to the recent invention of 

acoustic metamaterials. In most cases, the 

development of sonic metamaterials involves 

the use of subwavelength-scale resonant units, 

which are built in a complicated manner in 

order to achieve unusual physical features such 

as negative moduli and a negative mass density. 

Because of these features, it is possible to 

concentrate sound to the point where it is able 

to circumvent the difraction limit that is 

imposed by the negative refraction and surface 

states. On the basis of the super-resolution 

imaging approach that metamaterials offer, a 

variety of sonic metamaterials with double-

negative, single-negative, or near-zero mass 

properties have been utilised in the 

development of a number of super lenses. 

These super lenses were made possible by the 

use of a series of super lenses. On the other 

hand, because of the necessity of constructing 

resonant components, their structures are 

typically too intricate and cumbersome. 

Because of this, the design of superlenses might 

significantly profit from the development of an 

innovative, uncomplicated, and lightweight 

resonant structure. The conventional resonant 

structure of acoustic metamaterials that is 

utilised in the construction of a super lens may 

be classified into the following four types: 

Helmholtz resonators, three-component 

resonators, holey-structured metamaterials, and 

lumped mass structures are all examples of this 

type of structure. Helmholtz resonators, which 

often generate a negative modulus, were 

initially utilised in the excogitation of a super 

lens and were built as a planar network to 

concentrate ultrasound in water. This was the 

first use of Helmholtz resonators. 

After that, a concept for a superlens with a 

negative effective mass was offered, and it was 

going to be based on a three-component 

metamaterial that was going to be composed of 

rubber-coated gold spheres that were going to 

be embedded in epoxy15. In a similar manner, a 

solid lens with hybrid resonators that focused 

waves by the application of negative refractive 

indices was developed. Because of its Fabry-

Pérot (FP) resonance, metamaterials with a 

holey structure that are built from metal plates 

with drilled holes have been proposed as a 

means to obtain super-resolution imaging. On 

the other hand, in order to meet the FP resonant 

requirement, they will typically demand that the 

lens thickness be equal to the integer number of 

the half-wavelength. Because of the negative 

properties they possess, lumped mass 

structures, such as perforated slab pillar 

structures or membrane-based structures31, 

which are typically made up of large pieces of 

solid material connected by small or soft 

connectors, can also be designed to perform the 

function of a super lens if the proper care is 

taken during the design process. However, all 

of the aforementioned structures are far too 

difficult to employ, and they frequently call for 

the application of a combination of several 

phases of material. Lattice structures that 

consist of an interconnected network of elastic 

beams, such as the Kagome lattice32, the re-
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entrant grid33, and the zigzag lattices34,35 

structures, are widely used in standalone 

configurations due to the ease with which they 

can be constructed and the low density of the 

configurations they produce. They feature an 

abundance of bending resonators, which allows 

them to more readily produce a low-frequency 

band gap, and they display exceptional 

qualities. This is when seen from the 

perspective of their wave characteristics. 

However, the majority of recent research have 

concentrated on the band gap of lattice 

structures, making them the perfect structures 

for the construction of new lightweight super-

lenses. In this regard, they are the ideal 

structures. 

 

Figure 1: Structural layout (a) and unit cell (b) of the four-point star-shaped structure.4608 

Because of its one-phase composition and 

lightweight construction, a lattice structure was 

utilised by us in this article to create a solid 

super-lens that is suitable for usage in water. 

The two design requirements were the primary 

focus of our design approach. The first thing 

that needed to be determined was how to meet 

the prerequisites for a single-phase lattice 

structure that called for negative values. It is 

not possible to construct a negative density 

(negative modulus) or a fexural resonance 

system without the use of a dipole resonance 

system (lumped mass) (this calls for beams 

with a sufciently large slenderness ratio). The 

second requirement for the solid lens 

concentrated on determining how to focus 

longitudinal sound (in an environment 

consisting of water) (coexisting with 

longitudinal and transverse modes). The 

structure must be capable of undergoing 

volumetric deformation and strong coupling 

with sound in water in order for it to function 

properly. On the basis of the aforementioned 

principles, it was suggested that the solid super 

lens should have a lattice structure in the shape 

of a star. A metamaterial in the shape of a star 

features a unique re-entrant structure and a 

square-symmetrical configuration, both of 

which facilitate volumetric deformation in an 

easier manner. When the ratio of the beam's 
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slenderness to its width is sufficiently high, it 

has the potential to generate a large number of 

resonances. These resonances may include 

dipole resonances as well as bending 

resonances, which can result in abnormal 

dispersive effects that are associated with the 

beam's negative parameters. The analysis that is 

presented below suggests that due to the 

abundant vibration modes that they possess, 

single-phase metamaterials with star-shaped 

structures result in double-negative properties 

with certain frequency bands and are the ideal 

structures to construct solid super lenses. These 

findings are supported by the fact that these 

structures are presented below. 

MICROSTRUCTURAL DESIGN OF THE 

SINGLE-PHASE HYPERBOLIC EMM 

WITH ANISOTROPIC MASS DENSITY 

As a first physical manifestation of a single-

phase EMM plate, the one we provide here is 

capable of manipulating LR movements in the 

two primary in-plane directions separately (as 

seen in Fig. 2), and this is what we present here. 

The value t represents the thickness of the 

EMM plate along the z-axis. The single-phase 

EMM unit cell is suggested to include two 

decoupled resonators, one in the x-direction and 

the other in the y-direction. These resonators 

are in-plane horizontal and in-plane vertical, 

respectively. Because of this, it is reasonable to 

anticipate that the EMM will exhibit negative 

effective mass densities in the two primary 

directions within certain frequency ranges. The 

width of the slots is denoted by the letter s, 

while the in-plane lattice constant of the square 

unit cell is denoted by the letter a. For the 

vertical resonator of the unit cell, there are two 

horizontal ribs with length rh and width bh, and 

for the horizontal resonator, there is one vertical 

rib with length rv and width bv. The radius of 

the vertical resonator is denoted by R1, while 

the radius of the horizontal resonator is denoted 

by R2. It is possible to tailor the LR frequencies 

independently, which leads to anisotropy in the 

effective mass density because of the design's 

standout feature, which is that the LR motions 

of the EMM along the two principal in-plane 

directions are fully decoupled from one 

another. This is what makes the design so 

exceptional. 19,20 The in-plane bending 

stiffness of the rib beams and their connected 

masses are what define the LR frequencies of 

the metamaterial along the two primary 

directions in the current configuration. Because 

of the design of the single-phase 

microstructure, it is very possible to apply the 

suggested hyperbolic EMM design to thin plate 

structures using precision manufacturing 

techniques such as laser cutting or CNC 

machining. This was made possible by the fact 

that the single-phase microstructure design was 

used. The effective material characteristics of 

the metamaterial shown in Figure 1(a) with two 

in-plane resonators will be investigated in order 

to reflect the internal physical wave phenomena 

as a means of providing a clear illustration of 

this concept. Calculating the effective material 

characteristics of the proposed EMM will need 

the use of the numerical-based effective 

medium approach due to the complicated 

microstructure present in the unit cell. The 

applied local displacement on the border of the 

EMM unit cell may be represented as ua 14 u0 

aEabeixt in the finite element model (FE 

model), where u0 an is a stiff translation and 
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Eab is the global strain. After that, the effective 

medium parameters may be derived using 

numerical analysis by taking into account the 

boundary responses of the unit cell to the 

stimulation that is being applied by the elastic 

waves. Under the assumption of a long 

wavelength, it is possible to numerically 

determine the global stress, strain, resultant 

force, and acceleration of the unit cell by 

averaging the local values on the exterior 

border of the unit cell as 

 

Where Rab, Fa, and U€a are the global stress, 

resultant force and acceleration, respectively. 

rab, xa, ua, and u€a are the local 

 

FIG. 2. (Color online) Unit cell design of the 

proposed single-phase EMM. 

Method  

Their similar mechanical qualities, but also 

because of the peculiarities of the pass and stop 

bands, they have encouraged a variety of 

investigations of wave propagation. It is 

particularly fascinating to consider the 

possibility that periodic honeycombs may 

prevent the propagation of elastic waves at 

certain frequency intervals. These frequency 

intervals are typically referred to as elastic 

"stop bands," "band gaps," or otherwise "pass 

bands." This 

 

Figure 3. (a) Geometry of a star-shaped honeycomb and (b) the selected primitive unit cell with 

the basis vectors of the direct lattice ei. 
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This kind of event has the potential to be 

utilised fruitfully in a number of essential 

applications, such as a vibration filter and 

isolation systems. As a result, there have been a 

lot of attempts made to modify honeycombs 

such that they have more acceptable band gap 

properties. For the purpose of designing 

periodic cellular structures with optimal band 

gap properties [25, 26], methodical research 

that is based on topology optimization 

processes have been carried out. The method of 

building a two-dimensional lattice system with 

predetermined low-frequency stop bands can be 

accomplished by spreading the mass throughout 

the connections of the lattice structure, as 

described in. This is a more broad strategy, and 

it is not limited to only two dimensions like 

some other methodologies are. The simulation 

of the in-plane elastic wave propagation in four 

typical planar topologies (i.e. hexagonal, 

Kagome, triangular, and square lattice 

structures) has been carried out in order to 

investigate wave band gaps and spatial filtering 

processes. Additionally, the occurrence of band 

gaps in various honeycombs as well as their 

locations have been investigated, with a 

specific focus on evaluating the functionality of 

cells exhibiting re-entrant configurations and 

NPR behaviour.  

Recent research has also focused on the study 

of auxetic chiral lattice structures. The link 

between Poisson's ratio and stress waves or 

vibrations has been the subject of research 

throughout the course of the past several years. 

It is possible to draw the conclusion that the 

materials and constructions that have NPR have 

the potential to give some intriguing and 

important benefits for the applications of wave 

propagation and vibration transmissibility 

reduction. In spite of the fact that the static and 

wave propagation properties of a wide variety 

of honeycombs, such as the traditional 

topologies and the NPR honeycombs, have 

been subjected to a great deal of research, to the 

best of our knowledge, there have been 

relatively few studies focusing specifically on 

star-shaped honeycombs. To first attempt to 

simulate the periodic fiber-reinforced 

composite with star-shaped encapsulated 

inclusions, a star-shaped, two-dimensional 

beamlike cell with re-entrant corners was 

proposed. According to the findings, the 

primary factor that determines the apparent 

Poisson's ratio of a non-convex microstructure 

is the geometry of the re-entrant corner of the 

microstructure. Other research focused on the 

static auxetic behaviour of this form of 

structure and investigated the possible auxetic 

behaviour of a 'arrowshaped' unit in star-shaped 

honeycombs.  

According to the findings of these 

investigations, the comparable mechanical 

characteristics are mostly determined by the 

internal angles of the re-entrant corners and the 

slenderness ratios of the cell wall. Nevertheless, 

in this previous research, only a small handful 

of varied geometrical factors were taken into 

consideration. The static and dynamic 

behaviours of the star-shaped honeycombs with 

Poisson's ratios shifting from negative to 

positive values are deserving of additional 

investigation in light of this statement. The 

primary purpose of this article is to broaden the 

scope of this study. To begin, we carried out an 

equilibrium analysis so that we could determine 

the forces that were ultimately exerted on each 
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cell wall of the unit cell. Following that, we 

determined the displacements of the unit cell in 

both the loading direction and the lateral 

direction by applying the second theorem of 

Castigliano. Following this, closed form 

formulas may be derived for determining the 

effective Young's modulus and Poisson's ratio 

of star-shaped honeycombs, as described in 

sections 1 and 2 respectively. Then, Bloch's 

theorem was presented as the key instrument 

for analysing wave propagation in honeycombs 

structured like stars when it was developed. 

Calculating the dispersion relations of 

honeycombs required using the dynamic 

stiffness matrix in conjunction with the W-W 

method. This was done on the basis of a 

theorem that was presented before. In 

comparison to the classic FE approach the 

primary benefit of the method that was 

suggested which can be used to construct the 

stiffness and mass matrices of complicated 

structures with relative ease is that it can be 

used to form the matrices. The present 

investigation is broken up into five pieces, 

including the Introduction that was described 

earlier in this paragraph. The arrangement of 

honeycombs in the shape of stars is discussed in 

Section 3 along with the derivations of the 

effective elastic constants for the in-plane 

direction. In the third portion of this paper, both 

the finite element model of the basic unit cell 

and the suggested methodology for analysing 

wave propagation are discussed. In part 4, the 

numerical results are detailed, and then in 

section 5, a conclusion is drawn from all that 

has been discussed. 

In-plane equivalent mechanical properties of 

starshaped honeycombs 

The profile and dimensions of a unit cell 

Figure 3 illustrates both the structural 

architecture of the star-shaped honeycombs as 

well as the coordinate system that was used (a). 

After choosing an appropriate primitive unit 

cell, as illustrated in figure 1(b), one may 

acquire the full direct lattice by tessellating the 

unit cell along the basis vectors e. This will 

result in the formation of the lattice I I = Figure 

1 demonstrates that honeycombs in the shape of 

stars are made up of square re-entrant corners 

with lengths and thicknesses that are equal to 

one another. These corners are connected by 

straight ligaments or ribs that have lengths and 

thicknesses that are also equal to one another. 

The angle that forms between the neighbouring 

cell walls with a counterclockwise rotation is 

represented by the symbol. The dimension of 

the cell walls in the z direction is designated by 

the letter b, which is not depicted in figure 3. 

This is done for the sake of simplicity. It should 

be noticed that there is a geometrical restriction 

between these five factors, and that the 

constraint is a cosine angle greater than a. 

Accordingly, the lattice basis vectors can be 

expressed as 

 

Young’s modulus 

It is believed that honeycomb structures in the 

shape of stars are built of isotropic elastic 

materials that have Young's modulus E and 
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Poisson's ratio v. As a result, the shear modulus 

may be calculated using the formula G = + E 

[2(1) . For the purpose of an analytical method, 

the cell walls of the unit cell are modelled as 

uniformly thin beams that are subjected to 

linearly elastic deformations. Honeycomb 

appears to be isotropic because it has a high 

degree of symmetry in its geometry and 

morphology. This means that if one applies a 

uniaxial compressive stress in either the x or y 

direction to the honeycomb shown in figure 1, 

the obtained effective Young's modulus and 

Poisson's ratio both satisfy E1 2 = E and 12 21 

=. This is because the honeycomb has a high 

degree of symmetry in its geometry and 

morphology. As a result, the only information 

required to calculate the independent in-plane 

effective elastic constants is the value of E1. 

and ν12. Meanwhile, the in-plane isotropy 

requires we will now focus 

on the deformation of the primitive unit cell, as 

seen in figure 1, in order to calculate the in-

plane effective elastic constant E1 of star-

shaped honeycombs. This will allow us to 

determine how much the primitive unit cell 

deforms (b). When a global in-plane 

compressive stress of xx is applied to the 

honeycomb in figure 1(a) in the x direction, it is 

obvious that the deformation of the selected 

primitive unit cell can be obtained by only one 

quarter of the unit cell, which includes beams 

AB, BC, CD, and DE, as shown in figure 2. 

This is because of the geometrical and loading 

symmetries (a). The expression for the 

horizontal force P that is acting at point A of 

the cell wall AB is as follows: 

 

It is abundantly clear that the internal forces 

exerted by beams AB, BC, CD, and DE are 

functions of the corresponding positions x1, x2, 

x3, and x4 that are represented in figure 2. In 

order to determine the forces that were exerted 

by the statically indeterminate structure as a 

result, we carried out an equilibrium analysis. 

The following is a comprehensive breakdown 

of how the internal forces of the statically 

indeterminate structure, which can be seen in 

figure 2(a), were derived: In this particular 

investigation, the force technique of a statically 

indeterminate structure is utilised. The initial 

structure seen in figure 3(a) becomes equal to a 

statically determinate structure known as the 

released structure when redundant constraints 

are removed. The released structure is subject 

to loads and redundant forces X1, as depicted in 

figure 3. After determining the value of the 

fundamental parameter X1, it is generally 

knowledge that a problem that was previously 

statically indeterminate can be transformed into 

a problem that was previously statically 

definite. In accordance with the conformability 

of deformation, the redundant force X1 may be 

reached by resolving equilibrium equations, 

which is a method that is sometimes referred to 

as the typical equation of force: 

 

Where 11 represent the displacement along the 

direction of the redundant force when X1 is 

equal to 1 and 1P represents the displacement 

along the direction of the redundant force when 

P is a horizontal force. In the field of structural 
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mechanics, the displacements 11 and 1P may be 

calculated using a method called diagram 

multiplication. This approach is founded on the 

bending moments of M1 and MP, which are 

depicted in figure 4. Therefore, 11 and 1P may 

be represented by the following: 

 

 

Substituting equation (4) into equation (3), the 

redundant force X1 can be obtained thus, 

 

The bending moments of the released structure, 

depicted in figure 3, may be simply calculated 

along the locations x1, x2, x3, and.x4 when 

subjected to the horizontal load P and the 

resultant of the redundant force X1. 

 

 

 

 

Figure 4. The corresponding representative walls of the linked structure when (a) the horizontal 

force P is operating at point A, (b) a horizontal unit force is acting at point A, and (c) a vertical 

unit force is acting at point E. 
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Dispersive analysis of star-shaped 

honeycombs 

Unit cell analysis 

The behaviour of a unit cell may be simply 

explained by applying basic FE processes and 

the cell's interaction with its neighbours. 

Additionally, the cell's behaviour can be 

influenced by the surrounding cells (see figure 

5). In order to determine the precise location of 

the unit cell, the integer pair (n n 1 2,) is first 

presented. Using the primitive unit cell (0, 0) as 

a point of reference, the integer pair (n n 1 2,) 

may identify any other cell that is created by 

performing n1 translations along the e1 

direction and n2 translations along the e2 

direction. The chosen unit cell (n n 1 2,) is 

modelled here as an assembly of rigidly 

coupled basic beams. This assembly is then 

discretized into beam components using the 

appropriate mesh size in the subsequent 

analysis to guarantee that the estimated results 

are accurate, as illustrated in figure 7. (a). Each 

beam element may be thought of as a two-node 

element with three degrees of freedom per 

node, as illustrated in figure 7; these degrees of 

freedom include axial displacement, transverse 

displacement, and rotation in the local 

coordinate system (b). The Timoshenko 

assumptions are used in the modelling of 

bending. In the local coordinate system, the 

expression for the displacement vector of the 

beam element with nodes I and j, which is seen 

in figure 7(b), may be written as 

 

The elemental mass and stiffness matrices in 

the local coordinate system may be easily 

constructed by using the Timoshenko beam 

model as the basis. These corresponding 

elemental mass and stiffness matrices should be 

transformed reciprocally to the forms in the 

global coordinate system (xyz,,) by the 

application of standard FE procedures. This is 

accomplished by first utilising the 

transformation matrix, which is denoted as Mg 

e and Kg e (the suffix g denotes the global 

coordinate system (xyz,,)). Following this step, 

the mass matrix Mg e and the stiffness matrix 

Kg e are put together to produce the primitive 

unit cell's mass matrix K(,) n n1 2 and its 

associated stiffness matrix M, (,) n n1 2. 

Bloch's theorem is then introduced to relate the 

external/boundary displacements ue (,) n n1 2 

in the global coordinate system for the wave 

propagation analysis that is described in the 

following subsection. The suffix e denotes the 

external nodes of the cell. Once the stiffness 

and mass matrices have been obtainedthe 

exterior components of the input and output of 

the displacement vector ue (,) n n1 2 are 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 4606-4622 

https://publishoa.com 

ISSN: 1309-3452 

 

4616 
 
 

designated by the subscripts a and b, 

respectively. These components are as follows: 

 As seen in 

figure 7(a), the input displacement ua (, ) n n1 2 

and output displacement u , b (, ) n n1 2 contain 

two nodal displacements, i.e. 

 

Where u j (j 1, 2, 3, 4) (,) n n1 2 = is termed as 

the displacement vector of the lattice points in 

the global coordinate system. 

 

Figure 5. Illustration of (a) the unit cell (, ) n n 1 2 of a star-shaped honeycomb with its degrees of 

freedom and (b) a beam element with nodes i and j for FE modeling. 

Results and discussion 

The numerical application for this section 

includes the elastic modulus of aluminium, 

which is Young's modulus E = 72 GPa, 

Poisson's ratio = 0.3, and mass density 2700 kg 

m. 3 ρ = ⋅ − The length of the basic cell is 

always the same: 0.05 metres. The effective 

elastic constants and band gap characteristics of 

star-shaped honeycombs will be discussed in 

depth in the following study. The results that 

are presented here are derived from the 

Timoshenko beam model rather of the Euler 

model beam because the Timoshenko beam 

model is more accurate than the Euler model 

beam. 

Effective elastic constants 

In this part, the development of the equivalent 

mechanical characteristics E* and v12 is 

obtained using four different independent 

parameters,, a l and. The results of this 

subsection are depicted in figure 9. The 

influence of the cell wall aspect ratio,, on the 

effective elastic constants is depicted in Figure 

9(a), where 0.1, 0.1 a l = = and ° 70 are used as 

the parameter values. When the geometrical 

restriction a cos l is taken into mind, namely 1 

cos 70, the aspect ratio varies successively from 

0.5 to 2.9. Figure 9a shows that the normalised 

Young's modulus E* declines as the aspect ratio 

increases, but the effective Poisson's ratio 12 
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exhibits the opposite trend. This can be seen by 

comparing the normalised Young's modulus E* 

to the effective Poisson's ratio 12. Additionally, 

when is less than 1.5, we discover that there 

exist quasi linear relations between the effective 

constants and the aspect ratio. The development 

of the effective elastic constants versus the 

slenderness ratio an is depicted in Figure 9(b), 

where 1, 0.1 l = = and ° 70 are used as 

independent variables. The normalised Young's 

modulus E* grows greater when the slenderness 

ratio gets larger, especially for larger values of. 

a This is especially true for larger values of. a 

On the other hand, the effective Poisson's ratio 

12 will drop if there is a rise in the slenderness 

ratio a. The influence of the slenderness ratio l 

on the effective elastic constants is depicted in 

Figure 9(c), which uses 1, 0.1 a = = and = ° 70 

as the parameters. At first, it would appear that 

the normalised Young's modulus E* rises 

quickly within a relatively short range of the 

slenderness ratio [0.002, 0.03] l =, but after 

that, the growth pace slows down until it 

reaches E* 0.63 10 3 = , and this continues until 

E* 0.63 10 3 = . On the other hand, the 

effective Poisson's ratio 12 decreases 

dramatically in the range of the slenderness 

ratio [0.002, 0.03] l = initially, and then the 

slope decreases until 12 0.76 10 1 = . Lastly, 

the effective Poisson's ratio 12 decreases 

dramatically in the range of the slenderness 

ratio [0.002, 0.03] l =. The internal angle varies 

in the range of arccos () 180 l to a ° when the 

geometrical constraint a cos l is in place. This 

allows for greater flexibility in the design of 

phononic crystal devices and offers the 

possibility of selecting an internal angle that is 

better suited to meet a variety of requirements. 

For the purpose of illustrating our findings from 

the numerical investigation of the influence of 

the internal angles on the effective elastic 

constants, which is depicted in figure 9(d), we 

use the values 1, 0.1 a = =, and 0.1 l =. The 

process of evolution. 

 

 

Figure 6. The first Brillouin zone of the 

honeycomb in the shape of a star, defined by 

the dashed lines, as well as the irreducible 

Brillouin zone, which is denoted by the 

darkened region designated by the letter M 

In addition to this, the basis vectors of the 

reciprocal lattice e (1, 2 I I = have been 

shown below. 

The values of the effective elastic constants are 

no longer a monotone function of the internal 

angle, whereas the extreme values of the 

effective elastic constants may be attained by 

setting equal to 135 degrees. When the internal 
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angle changes within a narrow range, 

specifically 45 to 90 degrees, the normalised 

Young's modulus E* (the Poisson's ratio v12) 

undergoes a dramatic decrease (increase), going 

from 0.95 10 3 (0.97) to 0.39 10 3. This is 

because the normalised Young's modulus E* is 

proportional to the Poisson's ratio v12 (0.59). 

When the internal angle is increased from 90 to 

180 degrees, the development of the normalised 

Young's modulus, also known as Poisson's 

ratio, approaches symmetry at an angle of 

around 135 degrees. For the sake of practical 

applications, the internal angles can thus be 

configured to fall anywhere between 45 and 

135 degrees. In conclusion, as the values of the 

four independent factors,, a l, and are raised, the 

normalised Young's modulus E* and the 

Poisson's ratio 12 display opposing trends. To 

be more specific, when the Poisson's ratio 12 is 

reduced, the Young's modulus will increase, 

indicating that the NPR offers an improved 

effective Young's modulus of star-shaped 

honeycombs. According to the findings of the 

research on the orders of magnitude of the 

effective elastic constants, the effect of the 

internal angle is more important than the other 

three factors for determining the effective 

Poisson's ratio, whereas the length ratio and the 

slenderness ratio an are more important for 

determining the effective Young's modulus. 

Band gap properties 

In this part of the article, the dispersion 

relations of star-shaped honeycombs are laid 

forth in the form of gap maps and dispersion 

diagrams. Because of the potential for 

numerical mistakes at high frequencies, the 

current study only takes into account the first 

10 wave modes. In the computational 

simulations, the frequency = (,) 1 2 is 

normalised with regard to the initial flexural 

resonance 0 of a simply supported beam (length 

l, breadth b, and uniform thickness t,l), namely 

= 0, where: l = length, b = width, and t = 

thickness uniformly distributed along the beam. 

 

With Al l , I being expressed by equation (10). 

Our strategy is mostly based on the 

comparative analysis of square lattice structures 

that is given in. This study is used to test the 

correctness of the formulations and 

programmes that we have developed. Figure 10 

depicts the band structure of square lattice 

structures by taking the values 0, 0, a = = 4 3 50 

l = and = ° 180 of the star-shaped honeycombs. 

This was done in order to determine the square 

lattice structures' band structures (a). Because 

the values of are proportional to the results 

given in the literature due to different 

normalised definitions of the flexural resonance 

0, it is clear that the proposed numerical 

method is effective and accurate. This is 

demonstrated by the fact that the evolution of 

the dispersion curves agrees well with those 

given in. Furthermore, it can be shown in 

Figure 10(a) that there are no full band gaps 

present in the square cellular honeycombs. 

Figure 10 illustrates the band structure of one 

example with 1, 0.1, 0.1 a l == = and = ° 70. 

This is done in order to demonstrate the 

benefits that star-shaped honeycombs have on 

band characteristics (b). It has been discovered 

that there are three'stop bands' that exist 
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between the no dimensional frequencies of = 

0.23 0.27, = 0.36 0.49, and = 0.55 1.22. In the 

context of applications involving mechanical 

filters and vibration isolation, these low 

frequency band gaps reveal that starshaped 

honeycombs are preferable than typical square 

cellular honeycombs. The following analysis 

provides an overview of a more in-depth 

research that investigates how the dependency 

of the alldirectional band gaps on geometrical 

factors works. As can be seen in figure 11, we 

were able to determine shifts in the normalised 

frequencies of the all-directional band gap 

borders by adjusting the values of four different 

independent parameters:,, a l, and. In the sake 

of keeping things simple, every single set of 

geometrical parameters that are referenced in 

the numerical examples are exactly the same as 

those that are presented. In addition, it is 

important to note that the tiny gaps with widths 

smaller than 0.02 in the whole range of 

parameters that were taken into consideration 

were not taken into account since they were 

ignored. It is common knowledge that one of 

the most appealing characteristics of acoustic 

met materials is the possibility of tailoring the 

desired band gap to stop the propagation of 

waves of certain frequencies. This is 

particularly useful for the construction of low 

frequency band gaps and is one of the most 

attractive features of acoustic metamaterials. 

Among the first 10 frequencies, a comparison 

of the four sub-figures that make up figure 11 

demonstrates rather plainly that the band gaps 

are mostly concentrated in the frequency ranges 

of 4th–5th, 6th–7th, and 8th–9th respectively. 

Each of the band gaps has the potential to be 

dramatically modified by any one of the four 

independent factors, which are denoted by the 

symbols,, a l and. It should be noted that certain 

significant band gaps may be produced by 

modifying the parameters that are being 

studied, such as the 6th–7th and 8th–9th ones, 

as seen in figures 11(a) and 11(b), respectively 

(b). A total of band gap widths, with or without 

normalisation relative to the mean frequency, is 

included [26] in order to further investigate the 

influence of these four geometrical factors on 

the band gap features of star-shaped 

honeycombs. 

 

 

Where the frequencies u I and l I represent, 

respectively, the upper edge limit of the ith 

band gap and the lower edge limit of the ith 

band gap As can be seen in figure 7 u I and l I 

correspond to the fourth and fifth frequencies, 

respectively, for the first band gap that 

corresponds to the value of 1. The concept 

being put forth 
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Figure 7:The effective constants of a honeycomb in the shape of a star versus (a) the cell wall 

aspect ratio with 0.1, 0.1 a l = = and = ° 70, (b) the slenderness ratio a with 1, 0.1 l = =, (c) the 

slenderness ratio l with 1, 0.1 a = =, and (d) the internal angles with 

 

Figure 8. Band structures of (a) square lattice structures by taking 0, 0, 4 3 50 a l === and = ° 180 

of star-shaped honeycombs for a comparative study and (b) star-shaped honeycombs with 1, 0.1, 

0.1 a l == = and = ° 70. a) Band structures of (b) star-shaped honeycombs with 1, 0.1, 0.1 The 

region that is shaded represents the gaps between the bands. 
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Conclusions 

For the purpose of creating an acoustic 

superlens in water, we suggest making use of a 

Metamaterial in the shape of a star. The band 

structure of the metamaterial, as well as the 

effective parameter values, provide the 

impression that it possesses double-negative 

index qualities in the frequency band ranging 

from 8760 to 9574 Hz, which is the frequency 

range in which its refractive indices are 

negative. Simulations of negative refraction and 

eigen frequency contours further confirm that 

the refractive index of the star-shaped structure 

is about one when it operates at 9380 Hz. This 

indicates that the lens is able to concentrate 

sound waves operating at this frequency. 

According to the results of numerical 

simulations, the lens has a spatial resolution of 

0.39, which is significantly lower than the 

difraction limit of 0.5. In this study, we present 

investigations into the in-plane effective elastic 

constants and band-gap behaviours of star-

shaped honeycombs. These behaviours have 

been the subject of previous research. When it 

comes to parameter studies, the findings 

indicate that when the four independent 

parameters,, a l and are raised, the normalised 

Young's modulus E* and Poisson's ratio v12 

exhibit opposing tendencies. This is the case 

when the parameters are increased. This 

suggests that the NPR offers an improved 

effective Young's modulus of star-shaped 

honeycomb structures. The findings of 

parameter studies performed on the features of 

wave propagation demonstrate that the four 

factors studied,,, a l, and, can greatly impact 

band-gap characteristics. In addition, an 

intriguing phenomena has been seen, which is 

that the absolute band width f 2 tends to level 

off, although the relative band width f 1 slightly 

increases. This is because the absolute band 

width f 2 is proportional to the relative band 

width f 1. This demonstrates that the value of 

the sum of band gap widths has remained the 

same, as was to be predicted, and that the band 

gap may be configured in low frequencies. 

References 

1. Pendry, J. B. Negative refraction makes a 

perfect lens. Phys. Rev. Lett. 85(18), 3966–

3969 (2000). 

2. Zhang, X. & Liu, Z. Superlenses to 

overcome the difraction limit. Nat. Mat. 

7(6), 435 (2008).  

3. Liu, F. et al. Parallel acoustic near-feld 

microscope: A steel slab with a periodic 

array of slits. Phys. Rev. E 80, 026603 

(2009).  

4. Zigoneanu, L., Popa, B. I. &Cummer, S. A. 

Design and measurements of a broadband 

two-dimensional acoustic lens. Phys. Rev. 

B 84(2), 024305 (2011).  

5. Liu, A., Zhou, X., Huang, G. & Hu, G. 

Super-resolution imaging by resonant 

tunneling in anisotropic acoustic 

metamaterials. J. Acoust. Soc. Am. 132(4), 

2800–2806 (2012).  

6. Fang, N. et al. Ultrasonic metamaterials 

with negative modulus. Nat. Mater. 5(6), 

452–456 (2006). 

7. Lee, S. H., Park, C. M., Yong, M. S., 

Wang, Z. G. & Kim, C. K. Acoustic 

metamaterial with negative modulus. J. 

Phys. Condens. Mat. 21(17), 175704 

(2009). 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 4606-4622 

https://publishoa.com 

ISSN: 1309-3452 

 

4622 
 
 

8. Liu, Z. et al. Locally resonant sonic 

materials. Science 289(5485), 1734–1736 

(2000).  

9. Yang, Z., Mei, J., Yang, M., Chan, N. H. & 

Sheng, P. Membrane-type acoustic 

metamaterial with negative dynamic mass. 

Phys. Rev. Lett. 101(20), 204301 (2008). 

10. Lu T, Zhang Q and Jin F 2012 Recent 

progress in the development of lightweight 

porous materials and structures Mater. 

China 31 13–25  

11. Spadoni A, Ruzzene M, Gonella S and 

Scarpa F 2009 Phononic properties of 

hexagonal chiral lattices Wave Motion 46 

435–50  

12. Prawoto Y 2012 Seeing auxetic materials 

from the mechanics point of view: a 

structural review on the negative Poisson’s 

ratio Comput. Mater. Sci. 58 140–53  

13. Liu Y and Hu H 2010 A review on auxetic 

structures and polymeric materials Sci. 

Res. Essays 5 1052–63  

14. Yang D U, Lee S and Huang F Y 2003 

Geometric effects on micropolar elastic 

honeycomb structure with negative 

Poisson’s ratio using the finite element 

method Finite Elem. Anal. Des. 39 187–

205  

15. Tomlinson G, Panayiotou P and Scarpa F 

2000 Numerical and experimental uniaxial 

loading on in-plane auxetic honeycombs J. 

Strain Anal. Eng. Des. 35 383–8 

 


