
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4790

Software Defect Prediction System Using Rayleigh Distribution

Madhumitha R, RagaviIswariya M, Padmavathi S

Sri Krishna College of Technology

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10

Abstract

Software development organizations are devoting ideas, time, and money to Improve Software

Process since it helps to improve product quality while also lowering process time and cost.

Existing methodologies and techniques consumes time and are expensive, and their primary

objective is on big software companies. As a result, we've introduced Software Process

Improvement for resolving these issues.

Keywords: Software process improvement, Defects, Software development, Defect prediction,

Rayleigh distribution

1. Introduction

Software system is a target process in

software development that comprises of partly

organized phases that are followed to achieve

an aim or goal. Programming, evaluating,

scheduling, and packaging are all required in

the development of a software process. These

processes may be improved for higher quality,

reduced time, price, and product delivery, and

the activity that improves these processes is

called Software Process Improvement. The

number of defects is necessary for predicting

the software quality but the accurate

estimation of defect can be a difficult. Few

techniques generally assume that the faults

found are a sample of the all existing faults,

which results in inaccurate estimates. Other

techniques provide little information in

addition to the number of faults already

found. Hence we describe a simple procedure

for estimating the total number of actual

defects.

2. Literature Survey

B. F. Manly reveals that the purpose of the

eBook is to introduce multivariate statistical

strategies to no mathematicians. It is assumed

that readers have a working information of

standard statistics, inclusive of checks of

significance the usage of normal, t, Chi-

squared and F distributions, evaluation of

variance and linear regression. The authors

made an brilliant effort by means of providing

multivariate records of different kinds, which

include body measurements, made on or more

types of people within each group and raising

questions which include how exceptional the

measurements are within groups and how

distinctive they are between distinctive kinds

of individuals. With one measurement,

differences between groups is examined by

means of evaluating individual mean values

and variances within companies. With p

measurements, p mean values are needed, and

p (p − 1) variances and covariance for

comparison. Appropriate multivariate

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4791

techniques for this motive have been

demonstrated. In addition, there is the

problem of grouping given populations by

using similarity of measurements which needs

a measure of distance among populations

primarily based on observed facts. The

authors give a very good account of various

techniques to be had for these purposes. Some

of the measures of similarity such as Penrose

and Mahalanobis distances are noted for

possible use. Penrose distance does no longer

take into account correlations between

measurements and might not be suitable in all

practical applications. Mahalanobis distance

will be suitable for correlated variables while

the measurements are nearly typically

distributed.

According to C. Tantithamthavorn, the

prejudice and variability of version validation

procedures in the domain of fault prediction

are investigated in this research. According to

an analysis of a hundredth and only one

public defect datasets, 77% of them are

extremely prone to delivering dangerous

results– deciding on the right versions

verification approach.

According to S. Jiang, researchers in the field

of software defect prediction have been

particularly interested in class imbalance. The

class imbalance can affect the performance of

fault prediction models in practise. The

investigation will be conducted to assess the

functional stability of six widely used

software defect prediction models.

Contrast pattern-based classifiers, according

to O. Loyola-Gonzalez, are an essential

family of both intelligible and accurate

classifiers. Nonetheless, those classifiers do

not perform well in situations where there is a

class imbalance. We present a new

contrasting template classifiers for

imbalanced class issues in this paper. Our

solution to the problem of class imbalance

combines pattern support with the imbalanced

class levels at the classification phase of the

classifier. There is a large disparity between

both the probability of different classes in

many supervised training applications, i.e.,

the probability with where an instance

matches to the various classes of the

classification. In required to practice the

classifier and then classify unknown data,

classification model requires previously

categorised reference samples (the GT).

Supervised approaches inside the area of

hyper spectra image classification are

classified as according their training

methodology. The SVM classifier attempts to

distinguish two classes using a hyper plane in

which the lowest distance (referred to it as the

margins) between both the training images of

the two classifications is as large as possible.

Support vectors are the closest spectra that are

utilised to determine the hyper plane.

According to W. Lee, "we suggest a new

weight correction factor that is used to a

weighed SVM classifier (SVM) as a base

learners of the Proposed technique to solve

class imbalance in data. Different relative

scores are computed and allocated to related

examples by categorising involved in new on

the SVM margin. While learning a weighted

SVM, the adjustment factor is multiplied by

the example value in the AdaBoost algorithm.

Because higher body mass slides down the

boat deep in the water in on-water rowing,

this does not give the complete story. The erg

doesn't really penalise the stronger rower in

this manner, so when it comes to time to be in

the boat, a bigger row may appear to have

more potential than they actually do.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4792

3. Existing System

Previous research has presented models

enabling fault prediction at the code level,

both inside and across projects, depending on

the software development. Despite the reality

that these results achieved notable accuracy,

stability, fault analysis, and improved binary

fault identification performance, the literature

survey lacks an approach for estimating the

number of software defects, and no previous

studies have taken the predictors used in this

study into account. They employed an

integrating stability model, a programme

model for the prediction, a Rayleigh model,

and software safety estimation to improve

prediction findings. By using metrics based

on antipatterns, we were able to improve the

efficiency of defect prediction.

They employed refactoring to fix bad designs

and anti-patterns to find design flaws that

could lead to more issues in the future. If anti-

pattern data could be used to discover

problems, the team of developers can use

refactoring to reduce the software's defect

risk. By superimposing a naïve Bayes model

on a prediction model, we created a predictive

model with good accuracy and predictive

ability.

The data utilised for categorization has

unequal proportions across different classes,

fault prediction studies appear to have low

predictive accuracy, whereas balanced data

results in improved predictive performance.

To improve accuracy of defect prediction, one

approach that can be utilised to address such

an imbalance problem is package-based

clustering.

4. Proposed System

The concept explains how we use a

systematic approach to forecast the quantity

of software problems. The data pre-

processing stage is the first step. It ensures

that detailed information regarding the data's

source is gathered throughout this phase. Data

analysis follows, in which we extract many

measures from the datasets. In addition, for

each dataset, we determine the design

complexity. The effects of design complexity

were compared to the effect of the chosen

predictive factors in this study. The

implementation of the modelling technique to

generate the results is the next step in the

suggested framework. The Rayleigh curve is

used to model the data.

Imbalanced classes are a well-known issue in

machine learning research that can influence

the outcome of a prediction study. If the

datasets utilised in a predicting study are

properly cleaned and pre-processed, the

results will be accurate, early defect

prediction in the Tri Model technique can be

facilitated, letting the development team to

focus on attaining better outcomes. As a

result, such methods can help to improve the

quality of software. Recent defect prediction

research have called into question the quality

of dataset utilised in defect prediction, as well

as the necessity of adequately pre-processing

such datasets. The detailed development of

the suggested modelling technique. Our

modelling technique is based on the Rayleigh

curve, which indicates the quantity of faults

throughout the project. This graph shows how

software problems change over time during

the development process. If errors are not

discovered and eliminated as software

development progresses, the amount of errors

increases. We began by looking through the

datasets to determine what values the selected

variables had in past projects. After that, we

used these to construct and develop our

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4793

predictive model. The defect density is

calculated by dividing the number of flaws by

the project's size. There is no unit of

measurement for defect density. The flaws is

0 at the beginning of a project. As the project

progresses from a phase to the next, the

likelihood of introducing defects grows. The

defect rate rises as the number of phase

transitions in software development grows.

Figure1. Flow diagram of proposed work

5. Modules of Work

• Data pre-processing

• Proposed modeling technique

• Chart of the defect prediction process

• Defect prediction procedure

• Model comparison and report

A. DATA PRE-PROCESSING

The data pre processing step of our proposed

architecture, that states class Imbalance and

data cleanness, is the initial phase. If the data

utilised in a predictive research are cleaned

properly and preprocessed, early defect

prediction in the Tri Model technique can be

facilitated, enabling the development team to

focus on attaining better outcomes. As a

result, such methods can help to improve the

quality of software. Recent defect prediction

research have called into question the quality

of dataset utilised in defect prediction, as well

as the necessity of adequately preprocessing

such datasets. In the experimental part, we go

over our dataset preprocessing stage in more

detail.

B. PROPOSED MODELING

TECHNIQUE

This section explains the evolution of the

suggested modelling technique. The Rayleigh

curve depicts the number of defects as a

function of time during a project, is the basis

for our modelling technique. This graph

shows how software problems change over

time during the development process. If errors

are not discovered and eliminated as software

development progresses, the amount of errors

increases. Then we modelled these variables

and used them to build our model.

C. CHART OF THE DEFECT

PREDICTION PROCESS

This section shows how to anticipate the

amount of software defects using a basic step-

by-step flow diagram. Our process is depicted

in a flowchart. The diagram starts with data

gathering and finishes with model evaluation

to evaluate the prediction models outcomes.

The data collecting stage is the first stage in

the diagram, and it involves determining the

data's source and format. Then there's data

analysis, which includes data cleansing and

any methods used to solve class imbalance,

which is still a problem in machine learning

and data mining research. The mean defect

density for every dataset is then calculated.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4794

We double-check that all variables from data,

including module, are properly evaluated

before we use our modelling technique. In

this work, we evaluated the datasets after they

were gathered to specify the amount of

defective module and then estimated the mean

defect density of every dataset, following the

first step of our suggested methodology.

D. DEFECT PREDICTION

PROCEDURE

The procedures for building the model used to

predict the amount of faults, as well as the

steps for pre-processing the datasets, are

presented in this section. The suggested

technique can help overcome the constraints

of datasets pre-processing, which is

significant since prediction of software

models are heavily reliant on the quality of

data they are based on. First, as indicated in

Equations, the predictor variables generated

by our modelling technique are the input

variables. The average defect density g,

average defect velocity v, average defect

entry time t are some of the predictor factors,

are used to build our prediction models

because we believe they are connected to the

number of errors as a function of time.

E. MODEL COMPARISON AND

REPORT

We used a cross-validation sampling method

throughout our tests. Importantly, any

prediction system's performance is

determined by the data sampling used. Model

performance estimates are used to predict how

well a model performs on unknown data. For

their performance evaluation, the authors used

acrossvalidation sampling technique.

Crossvalidation uses multiple train and test

data to avoid one depending on another, and

the method is known to be essentially

unbiased. On the other hand, it may have

more volatility. As a result, the authors of

contend that when working with tiny samples,

either bootstrapping or cross validation are

reliable. Unstable crossvalidation outcomes,

on the other hand, can be balanced through

repeating the validation procedure.

6. Experimental Results

Software defect prediction gives software

teams actionable results while also helping to

industrial success. We've included four pieces

of software in this package. We used user

feedback as a source of information(dataset).

Rayleigh distribution is used for predicting

defects and performance. The fault and

performance of one of the software are

depicted in the diagram below. Similarly, the

same can be done for the remaining software.

Figure2.Output

7. Conclusion

Several issues that occur in the prediction of

software defects are to be resolved. As a

result, we've provided a Tri Model strategy

for using predictor variables to anticipate the

errors. Only academic research is allowed to

use translations and content mining. Personal

usage is allowed, but republication

necessitates defect acceleration, and we

discovered a relationship between every

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 4790-4795

https://publishoa.com

ISSN: 1309-3452

4795

variable and the number of faults. The mean

defect introduction time has a negative

correlation. Managers and development teams

will benefit from the proposed method's

results.

As a result, project managers can concentrate

on the pace at which a program progresses

through one phase to another through time in

order to minimise errors. The outputs of our

method must be confirmed in order to verify

the usefulness of our technology for defect

prediction. Future study can validate this

technique for forecasting the number of flaws

in a new software release utilising the most

up-todate datasets from any software

company, as well as other predictor variables.

References

[1]. Z.-W. Zhang, X.-Y.Jing, and T.-J. Wang,

“Label propagation based semisupervised

learning for software defect prediction,”

Automated Software Engineering, vol.

24, no. 1, pp. 47–69, 2017

[2]. B. F. Manly and J. A. N. Alberto,

Multivariate statistical methods: a primer.

CRC Press, 2016.

[3]. C. Tantithamthavorn, S. McIntosh, A. E.

Hassan, and K. Matsumoto, “An

empirical comparison of model validation

techniques for defect prediction models,”

IEEE Transactions on Software

Engineering, vol. 43, no. 1, pp. 1–18,

2017

[4]. Q. Yu, S. Jiang, and Y. Zhang, “The

performance stability of defect prediction

models with class imbalance: An

empirical study,” IEICE

TRANSACTIONS on Information and

Systems, vol. 100, no. 2, pp. 265– 272,

2017.

[5]. O. Loyola-Gonzalez, M. A. Medina-P ´

erez, J. F. Mart ´ ´ınez-Trinidad, J. A.

Carrasco-Ochoa, R. Monroy, and M.

Garc´ıa-Borroto, “Pbc4cip: A new

contrast pattern-based classifier for class

imbalance problems,” Knowledge-Based

Systems, vol. 115, pp. 100–109, 2017.

[6]. W. Lee, C.-H. Jun, and J.-S. Lee,

“Instance categorization by support

vector machines to adjust weights in

adaboost for imbalanced data

classification,” Information Sciences, vol.

381, pp. 92–103, 2017

[7]. N. Ofek, L. Rokach, R. Stern, and A.

Shabtai, “Fast-cbus: A fast clustering-

based undersampling method for

addressing the class imbalance problem,”

Neurocomputing, 2017.

[8]. W. Mao, J. Wang, L. He, and Y. Tian,

“Online sequential prediction of

imbalance data with two-stage hybrid

strategy byextreme learning machine,”

Neurocomputing, 2017.

[9]. J. Petric, “Using different characteristics

of machine learners to identify ´ different

defect families,” in Proceedings of the

20th International Conference on

Evaluation and Assessment in Software

Engineering. ACM, 2016

