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Abstract:  

In this paper, we propose a new spectral density estimator based on Dirichlet -Kernel 

homogeneity in the cycle diagram. Our methodology is nonparametric and can be applied to 

processes that do not necessarily follow a normal distribution. Dirichlet kernel is an 

asymmetric density function of a shape that varies according to the frequency at which the 

spectrum is estimated. Dirichlet kernel smoothing was introduced because Dirichlet kernel 

diverges at zero when its bandwidth shrinks; it becomes smoother and more attractive than 

the cycle diagram when the process is a long memory. It automatically adjusts to a time series 

range. If the process is a short memory, the resulting estimation of the spectral density is 

automatically constrained, while the estimator diverges at the origin when applied to the 

certified long-term data. Kernel smoothing or kernel density estimation is a well-known 

methodology for non-parametric characterization of the probability density function of a 

random variable or random vector. It can be considered as a proxy of packages for 

histograms, and is particularly useful in multivariate cases; density estimation for non-

parametric alternatives for regression and classification can be used to represent how the 

conditional probabilities of a categorical variable depend on quantitative variables . Our main 

goal in this paper is to find a non-parametric estimation for a long memory time series, to 

reconsider the Dirichlet Kernel estimator and to study its asymptotic properties in detail. Our 

main contribution to this paper is to find asymptotic expressions for point bias, point 

variance, mean squared error (MSE) and mean integrated square error (MISE). These results 

generalize to those of the beta kernel. Choosing the optimal bandwidth for parameter b 

(bandwidth parameters b). 

Key Words: Dirichlet distribution, Kernel function, Bandwidth, time series. 

 

1. Introduction 

Estimating spectral density often requires knowing whether fixed time series are short or long 

memory. The short memory time series is known as the auto-covariance function which 

rapidly decreases with increasing time lag. In the case of long memory time series, there is a 

much stronger dependence between values at different times, and the decay of the 

spontaneous covariance function is slow. Long-term memory or long-term dependence has an 

infinite spectral density at frequency zero, therefore, the choice of the optimal non-parametric 

estimator will be different if the spectral density is limited or not. Our goal is to go beyond 

this limit and propose an estimator applicable to any long-term fixed time series data. 
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Brown and Chen were the first to theoretically study the beta kernel (d=1) in the context of 

smoothing regression curves with equally spaced fixed design points. Approaches to point 

bias, integral variance and MISE were found for the regression function estimator. These 

results were extended to beta-kernel estimates in some parts of the results. 

 

2. Dirichlet distribution 

The Dirichlet distribution is a continuous distribution and is considered a multivariate 

generalization of the beta distribution. Dirichlet distribution has many applications in 

different areas. Important in probability and statistics, the Dirichlet distribution is the most 

normal distribution of synthetic data and proportional modeling measures in Bayesian 

statistics, the Dirichlet distribution is a pre-common coupling of the polynomial distribution. 

The Dirichlet Distribution is used to derive the distribution function for system statistics in 

biology, that the Dirichlet distribution can be used to calculate forensic matching 

probabilities of several distinct populations. The Dirichlet distribution can be used to model a 

player's abilities in a league, and the Dirichlet distribution can be used to model consumer 

buying behavior. 

The pooled Dirichlet distribution and the nested Dirichlet distribution can be used for 

statistical analysis of incomplete categorical data. Also, there are some distributions related to 

this distribution, such as the generalized Dirichlet distribution, the hyper-distribution, the 

Dirichlet-Multinomial distribution, the gradient Dirichlet distribution and the mixed 

distribution. The Dirichlet distribution can also be derived from the gamma distribution.[1] 

Let 𝑦 = (𝑦1  … . 𝑦𝑘)𝑇 is a positive random vector K×1 such that (𝑦1 + ⋯ + 𝑦𝑘) = 1   and 𝑦𝑖 ∈
(0,1)for each 𝑖 ∈ (1, … . , 𝑘). The random vector y follows a Dirichlet distribution with 

positive parameters 𝛼 = (𝛼1, … … , 𝛼𝑘)𝑇 . It means y~Dir(α), if the probability density 

function is :[2] 

𝑓(𝑦|𝛼) =
1

𝛽(𝛼)
∏ 𝑦𝑖𝛼𝑖−1𝑘

𝑖=1    ……. (1) 

So, the polynomial beta function that acts as a normalizing constant is: 

𝛽(𝛼) = ∏ 𝛤(𝛼𝑖) 𝛤(∑ 𝛼𝑖
𝑘
𝑖=1 )⁄  𝑘

𝑖=1        ……..(2) 

Γ is Euler's gamma function, Dirichlet distribution, which is a multivariate generalization of 

the beta distribution where (𝑦1 + ⋯ + 𝑦𝑘) = 1  . 

Moreover = (𝛼1 + ⋯ … + 𝛼𝑘)  can be interpreted as the inverse scale modulus or 

concentration coefficient, and the expectation of each element is 𝐸(𝑦𝑖𝑡) = 𝛼𝑖𝑡 𝜏𝑡⁄   , 

The variance is 𝑣𝑎𝑟(𝑦𝑖𝑡) = {𝛼𝑖𝑡(𝜏𝑡 − 𝛼𝑖𝑡)} {𝜏𝑡
2(𝜏𝑡 + 1)}⁄    

And the covariance i≠j is 𝑐𝑜𝑣(𝑦𝑖, 𝑦𝑗) = (−𝛼𝑖𝛼𝑗) {𝜏2(𝜏 + 1)}⁄  

We assume that the vector 𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, … . . , 𝑦1follows a Dirichlet distribution with positive 

parameters: 

𝛼𝑡 = (𝛼1𝑡, 𝛼2𝑡, … … , 𝛼𝑘𝑡): 𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, … . . , 𝑦1    ~ 𝐷𝑖𝑟(𝛼𝑡)     …….(3) 

In order to associate 𝛼𝑡with 𝑦𝑡−1, 𝑦𝑡−2, . . , 𝑦1 we assume that 𝑙𝑛(𝛼𝑗𝑡 𝛼𝑘𝑡⁄ ) = ƞ𝑗𝑡   when ƞ𝑗𝑡is 

defined: 

ƞ𝑗𝑡 = 𝛼𝑗0 + ∑ 𝛼𝑗𝑝 .  ln (
𝑦𝑗𝑡−𝑝

𝑦𝑘𝑡−𝑝

𝑃
𝑝=1 ) + ∑ 𝑏𝑗𝑝

𝑃
𝑝=1  . 𝑙𝑛

(∏ 𝑦𝑠𝑡−𝑝)𝐾−1
𝑠=1 𝑠≠𝑗

1 𝐾−2⁄

𝑦𝐾𝑡−𝑝
   ,    𝑗 = 1,2, … . , 𝐾 − 1 

…… (4) 

By adding the log-ratio ratio and through the Taylor transformation of the first order, we can 

determine the following: 

𝐸 (ln (
𝑦𝑗𝑡

𝑦𝑘𝑡
)) = 𝐸 (𝑎𝑙𝑟(𝑦𝑗𝑡)) ≈ 𝑎𝑙𝑟 (𝐸(𝑦𝑗𝑡)) = 𝑎𝑙𝑟 (

𝛼𝑗𝑡

𝜏
) = ln (

𝛼𝑗𝑡

𝛼𝐾𝑡
)  ……(5) 

Using the expression 𝑙𝑛(𝛼𝑗𝑡 𝛼𝑘𝑡⁄ ) = ƞ𝑗𝑡, 𝛼𝑗𝑡 and 𝛼𝑘𝑡 can be determined by: 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 5047-5059 

https://publishoa.com 

ISSN: 1309-3452 

5049 
 

From this one can calculate the expectation 𝐸(𝑦𝑖𝑡) and calculate the variance 𝑣𝑎𝑟(𝑦𝑖𝑡)  . 

 

Deriving the Dirichlet Distribution 

Let 𝑋𝑖 be a random variable that follows a gamma distribution; G(α_i ,1) i=1,2,…..,k and 

assuming that 𝑋1, … . . , 𝑋𝑘 is independent, then the pdf probability density function for 

)𝑋1, … . . , 𝑋𝑘( is: 

𝑓(𝑥1, … … 𝑥𝑘) = {
∏

1

𝛤(𝛼𝑖)

𝑘
𝑖=1 𝑥𝑖

𝛼𝑖−1

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑒−𝑥𝑖           𝑖𝑓 0 < 𝑥𝑖 < ∞  ……..(6) 

Let: 

𝑌𝑖 =
𝑋𝑖

𝑋1+𝑋2+⋯….+𝑋𝑘
      ; 𝑖 = 1,2, … . . , 𝑘 − 1  ;  𝑎𝑛𝑑   𝑍𝑘 = 𝑋1 + 𝑋2 + ⋯ … . +𝑋𝑘     ….(7) 

And by transforming using the technique of changing variables (transformation maps): 

𝑀 = {(𝑥1, … . . , 𝑥𝑘): 0 < 𝑥𝑖 < ∞ , 𝑖 = 1,2, … . . , 𝑘  } onto  
N = {(𝑦1, … . , 𝑦𝑘−1, 𝑍𝑘:      𝑦𝑖 > 0 , 𝑖 = 1, … . . 𝑘 − 1 , 0 < 𝑍𝑘 < ∞ , 𝑦1 + ⋯ … + 𝑦𝑘−1 < 1}  

The Jacobin matrix is: 

𝐽 = |
|

𝑧𝑘 0 ⋯ 0 𝑦1

0 𝑧𝑘 ⋯ 0 𝑦2

⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 𝑧𝑘 𝑦𝑘−1

−𝑧𝑘 −𝑧𝑘 ⋯ −𝑧𝑘 1 − 𝑦1 − ⋯ − 𝑦𝑘−1

|
| = 𝑧𝑘

𝑘−1  …..(8) 

The joint probability density function joint pdf for )𝑌1, … . , 𝑌𝑘−1, 𝑍𝑘 )  is: 

𝑓(𝑦1, … . , 𝑦𝑘−1, 𝑍𝑘) =
𝑦1

𝛼1−1⋯𝑦
𝑘−1

𝛼𝑘−1−1
(1−𝑦1−⋯−𝑦𝑘−1)𝛼𝑘−1

𝛤(𝛼1)⋯𝛤(𝛼𝑘)
𝑒−𝑧𝑘 𝑧𝑘

𝛼1+⋯+𝛼𝑘−1  ….. (9) 

By integrating 𝑧𝑘, the joint PDF of )𝑌1, … . , 𝑌𝑘−1, 𝑍𝑘  ( is: 

𝑓(𝑦1, … . , 𝑦𝑘−1, 𝑍𝑘) =
𝛼1+⋯+𝛼𝑘

𝛤(𝛼1)⋯𝛤(𝛼𝑘)
𝑦1

𝛼1−1 ⋯ 𝑦𝑘−1
𝛼𝑘−1−1

((1 − 𝑦1 − ⋯ − 𝑦𝑘−1)𝛼𝑘−1  … (10) 

Where: 

𝑦𝑖 > 0 , 𝑦1 + ⋯ + 𝑦𝑘−1 < 1 , 𝑖 = 1, … , 𝑘 − 1  

𝑍𝑘~𝐺(∑ 𝛼𝑖
𝑘
𝑖=1  , 1)  

In a special case if 𝑘 = 2     ، 𝑓(𝑦1, 𝑦2)denotes a beta distribution with the parameters 

𝛼1, 𝛼2.[3] 

mean  

𝐸(𝑌𝑖) =
𝛼𝑖

𝛼0
 , 𝑖 = 1,2, … , 𝑘  

𝐸(𝑌1) = ∫ ⋯ ∫ 𝑦1
𝛤(𝛼0)

∏ 𝛤(𝛼𝑖)𝑘
𝑖=1

 ∏ 𝑦𝑖
𝛼𝑖−1

𝑑𝑦1𝑘
𝑖=1 ⋯ 𝑑𝑦𝑘  

         = ∫ ⋯ ∫  
𝛤(𝛼0)

∏ 𝛤(𝛼𝑖)𝑘
𝑖=1

𝑦1 𝑦1
𝛼1−1 ∏ 𝑦𝑖

𝛼𝑖−1
(1 − ∑ 𝑦𝑖)𝛼𝑘−1𝑘−1

𝑖=1 𝑑𝑦1𝑘
𝑖=1 ⋯ 𝑑𝑦𝑘 − 1      

         =
𝛤(𝛼0)

𝛤(𝛼1) ∏ 𝛤(𝛼𝑖)𝑘
𝑖=2

 
𝛤(𝛼1+1) ∏ 𝛤(𝛼𝑖)𝑘

𝑖=2

𝛤(𝛼0+1)
  

        =
𝛤(𝛼0)

𝛤(𝛼0+1)
 
𝛤(𝛼0+1)

 𝛤(𝛼1)
  

       =
(𝛼0)

(𝛼1)
      …..(11) 

Variance 

𝒗𝒂𝒓(𝒀𝒊) =
𝜶𝒊(𝜶𝟎−𝜶𝒊)

𝜶𝟎
𝟐(𝜶𝟎+𝟏)

 , 𝒊 = 𝟏, 𝟐, … . , 𝒌  …..(12) 

We showed previously 𝐸(𝑌𝑖) and now we calculate 𝐸(𝑌𝑖
2) as follows:[4] 

𝐸(𝑌𝑖
2) =

𝛤(𝛼0)

𝛤(𝛼0+2)
 
𝛤(𝛼𝑖+2)

 𝛤(𝛼𝑖)
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          =
(𝛼𝑖+1)𝛼𝑖

(𝛼0+1)𝛼0
      …..(13) 

𝒗𝒂𝒓(𝒀𝒊) = 𝐸(𝑌𝑖
2) − 𝐸(𝑌𝑖)2  

             =
(𝛼𝑖+1)𝛼𝑖

(𝛼0+1)𝛼0
− (

𝛼𝑖

𝛼0
)2  

             =
𝛼𝑖(𝛼0−𝛼𝑖)

𝛼0
2(𝛼0+1)

        …..(14)  

Covariance    

𝐶𝑜𝑣(𝑌𝑖 , 𝑌𝑗) =
−𝛼𝑖𝛼𝑗

𝛼0
2(𝛼0+1)

  , 𝑖 = 1,2, … . , 𝑘 ; 𝑗 = 1,2, … . , 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗  

   𝐸(𝑌𝑖 , 𝑌𝑗) =
𝛤(𝛼0)

𝛤(𝛼0+2)
 
𝛤(𝛼𝑖+1)

 𝛤(𝛼𝑖)
 
𝛤(𝛼𝑗+1)

 𝛤(𝛼𝑗)
  

               =
𝛼𝑖𝛼𝑗

𝛼0
 (𝛼0+1)

  , 𝑖 ≠ 𝑗     …..(15) 

 𝐶𝑜𝑣(𝑌𝑖 , 𝑌𝑗) = 𝐸(𝑌𝑖 , 𝑌𝑗) − 𝐸(𝑌𝑖)𝐸(𝑌𝑗)  

                =
𝛼𝑖𝛼𝑗

𝛼0
 (𝛼0+1)

−
𝛼𝑖

𝛼0
 

𝛼𝑗

𝛼0
  

                 =
−𝛼𝑖𝛼𝑗

𝛼0
2 (𝛼0+1)

  , 𝑖 ≠ 𝑗          …..(16) 

       The marginal distribution 𝑌𝑖 

𝐵𝑒𝑡𝑎(𝛼𝑖, ∑ 𝛼𝑖
𝑘
𝑗=1 − 𝛼𝑖), 𝑖 = 1,2, … . , 𝑘  

𝑍𝑘 − 𝑋𝑖~𝐺(∑ 𝛼𝑖
𝑘
𝑗=1 − 𝛼𝑖 , 1)  

 𝑌𝑖  يتبع توزيع بيتا 

𝑌𝑖 =
𝑋𝑖

𝑍𝑘
  

    =
𝑋𝑖

𝑋𝑖+(𝑍𝐾−𝑋𝑖)
                 …..(17) 

marginal distribution of 𝑌𝑖~𝐵𝑒𝑡𝑎(𝛼𝑖 , ∑ 𝛼𝑖
𝑘
𝑗=1 − 𝛼𝑖)  

The logarithm of the spectral density of the three FARIMA generation models used in the 

simulation. Estimates were calculated based on 1000 Monte Carlo model simulations, for 

sample sizes N = (400, 600, 1000). Since the semi-parameter estimator is a local estimator 

around the pole, we did not compare it with the beta-core estimator at all frequencies but only 

in the vicinity of frequency zero. [5] 

The logarithm of the three FARIMA spectral intensities used in the simulations calculates the 

estimation error at frequencies[6] 

𝜔𝑗 𝜖(𝜔𝑗0, 𝜔𝑗1) 𝑤ℎ𝑒𝑟𝑒 𝑗0 = [√𝑇
5

] 𝑎𝑛𝑑 𝑗1 = [√𝑇]  …..(18) 

with [α] the integer part of α . The computed experimental error is the mean of the relative 

absolute deviation 

𝑅𝑀𝐴𝐷[𝑗0,𝑗1] =
1

𝑗1−𝑗0+1
∑

|𝑓̂𝑠(
𝑗

𝑇
)−𝑓(

𝑗

𝑇
)|

𝑓(
𝑗

𝑇
)

𝑗1
𝑗=𝑗0       …..(19) 

As 𝑓𝑠   is either a kernel beta estimator or a Robinson sem-parametric estimator. The mean 

absolute relative deviation was taken instead of the mean absolute deviation driven by the 

cutoff f at frequency zero. Since j0 and j1 depend on T, the range of frequencies at which the 

error is calculated varies with different sample sizes. Therefore, the RMAD values presented 

in the pilot study below are only comparable for a given sample size. The FARIMA time 

series were generated via the "fracdiff" library in R. To avoid dependent our conclusions on 

bandwidth selection, we computed the RMAD for a set of bandwidths which is [0.01, 0.05], 

the m range in the semi-parametric estimate is [𝑇1 2⁄  , 𝑇4 5⁄ ] .[7] 
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3. Dirichlet kernels 

Dirichlet distribution density (α, β) is:[8] 

𝐾𝛼,𝛽(𝑠) =
𝛤(‖𝛼‖1+𝛽)

𝛤(𝛽) ∏ 𝛤(𝛼𝑖)𝑑
𝑖=1

 . (1 − ‖𝑠‖1)𝛽−1 ∏ 𝑠𝑖
𝛼𝑖−1𝑑

𝑖=1      ,   𝑠 ∈ 𝑆𝑑      ……(20) 

To add the bandwidth of parameter b>0 to the sample observations X_1,……..,X_n for the F 

distribution with density f supported on S_d, the Dirichlet kernel estimator is defined 

by:[9][10] 

𝑓𝑛,𝑏(𝑠) =
1

𝑛
∑ 𝐾𝑠 𝑏 + 1 , (1 − ‖𝑠‖1) 𝑏 + 1⁄ (𝑋𝑖) , 𝑠 ∈ 𝑆𝑑⁄𝑛

𝑖=1       ……..(21) 

The shape of the nucleus changes with the s position slightly; Unlike traditional estimators 

where the kernel is the same for each point. This variable smoothing allows Dirichlet kernel 

estimators (and more generally, asymmetric kernel estimators) to avoid the boundary bias 

problem of traditional kernel estimators. 

 

4. Simulation study: 

Estimating spectral density often requires knowing whether fixed time series are short or long 

memory. Short memory time series is known as the autocorrelation function which decreases 

rapidly with increasing time lag. In the case of long memory time series, the decay of the 

autocorrelation function is slow. , because it has a strong dependence between values at 

different times. 

Long memory has an unlimited spectral density at frequency zero, so choosing an optimal 

non-parametric estimator will be different if the spectral density is limited or not. 

Our goal is to go beyond this limit and propose an estimator applicable to any stable time 

series with long memory. 

We present a proposal for a new nonparametric estimator for spectral density obtained by the 

cycle plot and smoothing the graph using kernel density (kernel). Our methodology is non-

parametric and can be applied to data that are not subject to a normal distribution. 

The Dirichlet Kernel estimator of the spectral density. 

We will compare the results using the RMAD criterion with the Beta kernel estimator of the 

spectral density. 

Long-term time series were generated using the R programming language based on the 

“fracdiff” software package. The RMAD standard was calculated to compare the capabilities 

and its formula is: 

𝑅𝑀𝐴𝐷[𝑗0,𝑗1] =
1

𝑗1−𝑗0+1
∑

|𝑓̂𝑠(
𝑗

𝑇
)−𝑓(

𝑗

𝑇
) |

𝑓(
𝑗

𝑇
)

𝑗1
𝑗=𝑗0     …. (22) 

 .الترجمة طويلة جدًا ولا يمكن حفظها 

Several values were used for the Hurst coefficient (H), which determines the value of the 

fractional difference (d_0), and these values are (H=0.1, H=0.4, H=0.6, H=0.9), which results 

in d values through the relationship that links Hearst's coefficient H with the degree of 

fractional integration d: d=H-0.5 We also adopted a set of sample sizes (N=500, N=750, 

N=1000) for the purpose of knowing the behavior of the estimators used in this thesis. In 

addition, the spectrum function estimator was calculated according to the previously 

mentioned methods with the proposed methods, and their estimations were drawn as in 

Figure (1,2). The simulation experiment was repeated 1000 times for the purpose of arriving 

at stable and reliable estimates in the comparison process, and the results were as in the 

following tables: 
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Table (1) shows RMAD and S.D values when H=0.1 

N =500 

  

N =750 

  

N =1000 

Beta Kernel Beta Kernel Beta Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.71235 0.04547 0.005 0.72915 0.04496 0.005 0.74818 0.04183 

0.01 0.78601 0.04428 0.01 0.80833 0.04297 0.01 0.82842 0.03828 

0.05 0.94421 0.01799 0.05 0.95659 0.01486 0.05 0.965 0.01035 

0.08 0.96538 0.01152 0.08 0.97392 0.00917 0.08 0.97948 0.00622 

Dirichlet Kernel Dirichlet Kernel Dirichlet Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.68017 0.19115 0.005 0.66345 0.11325 0.005 0.65896 0.08828 

0.01 0.66009 0.12377 0.01 0.6508 0.09737 0.01 0.64919 0.08034 

0.05 0.64334 0.1023 0.05 0.63924 0.08283 0.05 0.64005 0.07642 

0.08 0.64126 0.10024 0.08 0.63816 0.08179 0.08 0.63944 0.0773 

 

Table (1) Monte Carlo simulation results for FARIMA(1,H=0.1,0) with α_1=0.6 with RMAD 

Relative Mean Absolute Deviation. It is clear from the above table that the Dirichlet Kernel 

estimator had the lowest values in the RMAD criterion, regardless of the sample size 

difference, as we notice at b = 0.08 and N = 500, which gave the best results. 

 

Table (2) shows RMAD and S.D values when H=0.4 

N =500 

  

N =750 

  

N =1000 

Beta Kernel Beta Kernel Beta Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.71562 0.04695 0.005 0.73536 0.04151 0.005 0.74822 0.04042 

0.01 0.78758 0.04836 0.01 0.81302 0.03927 0.01 0.82991 0.03796 

0.05 0.9371 0.02222 0.05 0.95428 0.01297 0.05 0.96179 0.01226 

0.08 0.95884 0.01478 0.08 0.97114 0.00832 0.08 0.97633 0.00774 

Dirichlet Kernel Dirichlet Kernel Dirichlet Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.67626 0.18158 0.005 0.65572 0.09628 0.005 0.64873 0.08629 

0.01 0.65696 0.13207 0.01 0.64577 0.08505 0.01 0.64198 0.07842 

0.05 0.63792 0.09389 0.05 0.63505 0.07699 0.05 0.6335 0.07108 

0.08 0.6351 0.0901 0.08 0.63342 0.07635 0.08 0.63233 0.07086 

Table (2) The same process except that H = 0.4, that is, the time series is still dependent on a 

long range, Monte Carlo simulation results for FARIMA model(1,H=0.4,0) with α_1=0.6 

with mean absolute relative deviation (RMAD) Relative Mean Absolute Deviation. It is clear 

from the above table that the Dirichlet Kernel estimator had the lowest values in the RMAD 

criterion regardless of the difference in the sample size, as we notice at b = 0.08 and N = 750, 

which gave the best. 

 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 5047-5059 

https://publishoa.com 

ISSN: 1309-3452 

5053 
 

Table (3) shows RMAD and S.D values when H=0.9 

N =500 

  

N =750 

  

N =1000 

Beta Kernel Beta Kernel Beta Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.68067 0.04504 0.005 0.69501 0.04208 0.005 0.70992 0.03805 

0.01 0.72764 0.04379 0.01 0.74817 0.04295 0.01 0.76614 0.03738 

0.05 0.84907 0.04032 0.05 0.87796 0.03277 0.05 0.89367 0.02707 

0.08 0.8771 0.0376 0.08 0.90445 0.02823 0.08 0.9178 0.02302 

Dirichlet Kernel Dirichlet Kernel Dirichlet Kernel 

b RMAD s.d b RMAD s.d b RMAD s.d 

0.005 0.69838 0.10851 0.005 0.68329 0.08687 0.005 0.6735 0.07887 

0.01 0.69386 0.10537 0.01 0.6788 0.08608 0.01 0.6709 0.07841 

0.05 0.68475 0.10052 0.05 0.67006 0.08393 0.05 0.66489 0.07656 

0.08 0.68138 0.09939 0.08 0.66679 0.08317 0.08 0.66196 0.07552 

 .الترجمة طويلة جدًا ولا يمكن حفظها 

Table (3) Results of Monte Carlo simulation of FARIMA(1,H=0.9,0) model with α_1=0.6 

with Relative Mean Absolute Deviation (RMAD). It is clear from the above table that the 

Dirichlet Kernel had the lowest values in the RMAD criterion, regardless of the difference in 

the sample size, as we notice at b = 0.05 and N = 500, which gave the best results. 

 

 
  Figure (1) Generated time series according to ARFIMA model(1,H=0.6,0)حفظ الترجمة 

 

The autocorrelation functions ACF and partial autocorrelation PACF were also found and 

plotted, as in the figure below, which shows the behavior of the generated model according to 

ARFIMA(1,H=0.6,0) 
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 Figure (2) ACF empirical autocorrelation function 

 

The ACF diagram of the data generated for the ARFIMA(1,H,0) model shows that the time 

series is characterized by the long memory feature, and this is evident by the very slow 

decreasing of the ACF function over the long time gaps. 

 

 
Figure (3) Absolute empirical autocorrelation function 

 

In addition, the values of the spectrum logarithm of the time series estimated according to the 

beta kernel estimator were found using a set of bandwidths in order to know its behavior, as 

shown in the following figure : 

 
Figure (4) Logarithm values of the spectrum logarithm of the logarithm series of data 

estimated using a beta kernel estimator with different bandwidth values 

 

From the above figure it is clear that the frequency of the spectrum varies with the different 

values of the bandwidth, as the spectrum function increased with the increase in the 

frequencies values λ and for all the values of the bandwidth, it is also clear that at the 

bandwidth b = 0.08 the spectral function estimators were higher than the rest of the 

estimators and these values increased with the height of the frequency λ . And the least values 

of the spectrum function were at the bandwidth b = 0.005. In general, we note that the 
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spectrum function estimator for the beta kernel was somewhat similar between the different 

bandwidth values. 

 

 
Figure (5) Logarithm values of the logarithm spectrum of the logarithm series of 

absolute data estimated using a beta kernel estimator with different bandwidth values. 

 

As for the Figure (5 ) it shows the values of the spectrum estimators for the absolute values of 

the logarithm of the time series, and it turns out that the bandwidth b = 0.05 was higher than 

the rest of the values. In addition, the spectrum function discovered high frequencies at λ = 

(0.1, 0.15), which indicates the existence of a hidden behavior in data at this frequency. It 

should be noted that the estimated spectrum function values decrease with the increase in λ 

values . 

 
Figure (6) The logarithm values of the spectrum for logarithm series of data estimated 

using a semiparametric estimator and vary according to estimation methods   ( i) 

Symmetric Daniell kernel; (ii) Rectangular kernel (iii) Asymmetric triangular kernel . 

 

From the figure (6) it is clear that the spectrum frequency varies according to the different 

methods of estimation, as the spectrum function decreased when the frequencies λ decreased 

and for all estimation methods. The lowest values of the spectrum function were at the 

asymmetric triangular kernel estimation . 

 

 
Figure (7) The logarithm values of the spectrum logarithm of the logarithm series of 

absolute data estimated using the Semiparametric estimator and vary according to 

estimation methods (i) Symmetric Daniell kernel; (ii) Rectangular kernel (iii) 

Asymmetric triangular kernel . 
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As for the figure (7) it shows the values of the spectrum estimators for the absolute values of 

the logarithm of the time series, and it turns out that the Symmetric Daniell kernel estimation 

method was higher than the rest of the values. In addition, the spectrum function discovered 

high frequencies at λ = (0.1, 0.15), which indicates a hidden behavior in data at this 

frequency. It should be noted that the estimated spectrum function values decrease with the 

increase in λ values. 

 

 
Figure (8) ) Log spectrum logarithm values of the logarithm series of data estimated 

using a Dirichlet Kernel estimator with different bandwidth values 

 

Figure (8) shows that the spectrum frequency varies with the different values of the 

bandwidth, as the spectrum function rose at bandwidth b = 0.005, then went back down at 

frequency λ = 0.1, then went back up at λ = 0.15, then continued to decline for high 

frequencies, as well as at bandwidth 0.01, but At a lower drop level, the rest of the band 

values started decreasing one pace at higher frequencies . 

 

 
Figure (9) Logarithm values of the logarithm of the absolute data series estimated using 

a Dirichlet Kernel estimator with different bandwidth values . 

 

As for the figure (9), which relates to the spectrum frequency of the logarithm series of 

absolute data, it also varies according to the different values of the bandwidth. We note that 

the spectrum function at bandwidth b = 0.005 and b = 0.01 rose at λ = 0, then went back 

down at frequency λ = 0.1, and then went back up. At λ = 0.15, then it continued to decline 

for high frequencies, as well as at 0.01 bandwidth, but with a lower level of decrease. As for 

the rest of the band values, they began to decline one pace at high frequencies until they 

reached the lowest level at bandwidth b = 0.005 and λ = 0.5. 

 

5. The practical side: 

Test hypothesis: Is the studied series have a long memory? 

H0: There is a short memory in the time series, which means that H=0 is accepted at the level 

of significance 

(0.05). 
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H_1: There is a long memory in the time series if the null hypothesis is rejected. 

 

Table (4) long memory test 

p. value Statistics test 

0.5744465 Simple R/S Hurst estimation 

0.5947502 Corrected R over S Hurst exponent 

0.5619452 Empirical Hurst exponent 

0.5324144 Corrected empirical Hurst exponent 

0.5443251 Theoretical Hurst exponent 

 

Theoretical Hurst exponent is  0.5443251  

Statistical tests were adopted to determine the type of time series and it was found that it is a 

stable time series with long memory. It is clear from the previous table that the value of p. 

value is greater than 0.5 . 

 
Figure (10) autocorrelation function 

 

The ACF diagram of the data generated for the ARFIMA(1,H,0) model shows that the time 

series is characterized by the long memory feature, and this is evident by the very slow 

decreasing of the ACF function over the long time gaps.

 
 Figure(11) absolute autocorrelation functionحفظ الترجمة 
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Figure() of the absolute autocorrelation function

 
Figure (12) Logarithm values of the spectrum logarithm of the logarithm series of data 

estimated using a Lumax Kernel estimator with different bandwidth values . 

 

 
 

Figure (13) Logarithm values of the spectrum logarithm of the logarithm series of 

absolute data estimated using a Lumax Kernel estimator with different bandwidth 

values. 

 

We note by drawing the logarithm of the spectrum function for the absolute values of the 

logarithm of the estimated values according to the kernel with different bandwidth values, as 

it was shown that the spectrum function differs with the values of the bandwidth. When b = 

(0.005, 0.05) the values of the spectrum estimators were as low as possible at frequency λ = 

(0, 0.1) and begin to rise in the values of the spectrum function estimated by the rise in 

frequency values λ, with an increase in the value of the spectrum function to reach the highest 
peak at high frequencies λ = 0.5 . 

 

6. Discuss the results: 

It was found from the RMAD values that the best estimator is the Lumax Kernel estimator 

compared to the Beta Kernel estimator. The Draget Kernel estimator is second only to the 

Lumax estimator. Increasing the sample size increases the RMAD values for all estimators 

except for the Reciprocal inverse Gaussian Kernel. The RMAD values decrease with the 

increase in the sample size. In a beta kernel estimator, the value of RMAD increases with 

increasing bandwidth b. As for the rest of the capabilities, the value of RMAD decreases with 

increasing the bandwidth. The estimation of the spectrum function was clearly demonstrated 

by drawing the spectrum function to the presence of the hidden components of the long-

memory time series behavior. It was shown by drawing the autocorrelation functions and 

through the long memory tests that the studied time series is characterized by the 

characteristic of long-term dependence (long memory). The estimation of the fractal 

parameter showed that the time series has a long memory and is characterized by stability. By 

comparing the estimators, it was found that the estimator of Lumax or less, RMAD, and thus 

it is considered the most accurate among the estimators, and that it is an estimator that 
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achieves an optimal convergence rate in the mean squares of errors and approaches the real 

values faster than the rest of the estimations under study. By estimating the spectral density, it 

was possible to clarify the hidden compounds that characterize the time series and know their 

characteristics (duration of 3 months and repeated every 8 months) by knowing the values of 

frequencies λ. 
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