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Abstract 

We analyze the system performance in Erlang queueing model and all the parameters are 

considered Fuzzy numbers [4] has analyzed the system performance in fuzzy environment. In 

this paper we extended the work [4] and analyzed the purity level of system performance 

with the help of MLE method. In this case first constructed the model and derived the non-

parametric equation. Finally, Using Alpha cut method in order to obtain uncertain data’s and 

also analyzed the error performance (estimation matrix) through proposed algorithm.  
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1. Introduction  

Any decision making problem without the contribution of statistical methods does not 

possibly analyze the system performance level because it is easy to find the inaccuracy node.  

Queueing theory has developed largely an expressive theory and it is concerned with the 

structure of probabilistic model and the behavior of the system in steady state and transient 

state level. The relation of Queueing system has been done on regulatory theory dealing with 

MLE, control of queueing system and etc.,. Recently, many researchers has proposed many 

result and also evaluated the system models. For particularly, [1, 3] analyzed the MLE of 

queueing parameter in single server queueing model. [2, 9] obtained the queue length in 

steady state service time. If the queuing parameter values exist, it can easily be found at the 

system performance level. Due to uncertain situation the parameters may not be estimated as 

precisely.  In this case, with the help of Fuzzy set theory, it will solve all uncertain problems. 

The basic principle of [11] extension is to help to convert the Fuzzy model into crisp model. 
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[8, 10] proposed the Fuzzy model of multichannel queueing system and estimated the 

parameter values in statistical manner, [7] has investigated to simulate the two variables in 

general queuing systems. [6] The investigated the queue waiting time in uncertain stage but 

they did not conclude the system performance. [4] It has investigated performance in general 

queueing with statistical approach. So,  this paper investigate to analyze the system 

performance in Erlang queueing system and all the parameters that are considered Fuzzy 

numbers and it has extended that work and analyzed the purity level of system performance 

with the help of MLE method.  

 

2. Erlang single service k-phase arrival model: 
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Fig. 1 The arrival form of the system 
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3. Fuzzy Queue: 

 Consider the arrival and service parameter value is triangular fuzzy number and it 

defined as   Xxxx = /))(,(
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3.1 Method to construct the performance measure of two variables using Zadeh’s 

Extension Principle: 

Step1: Suppose that x and y are two fuzzy real variables (fuzzy subset of real numbers) 

represented by the fuzzy sets (fuzzy triangular numbers)       and    
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Step2: Find the -cuts of  and : ( ) ( ) 
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If any one of  ( ) ( ) Pp uandl  is not invertible, then we find an invertible function by selecting 

a unique pre-image z in the proper real domain for a given. 

Step 7: Giving 11 values of  in [0, 1] in ( ) ( ) Pp uandl , we tabulate the values. From the 

table values applying statistical analysis, we obtain the optimum solution of the performance 

measure. 

Step 8:  Using ranking function technique, we find the crisp values corresponding to 

the degree of uncertainty of the parameters. Comparing the crisp optimum and the fuzzy 

optimum, we see that fuzzy optimum is better than crisp optimum. 

   

4. Statistical Methods 

The system performance can be analyzed with the help of statistical method and its follows: 

Consider the two cases, the time axis it may be decaying the sequence it means that system is 
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(vii) If 0)1(,0)()0( −−=+= Tfrnf  , then unique solution is obtained. 
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4. Numerical Example: 

By considering the arrival pattern is kept at different phase and each phases having some 

service channels and size of the 3-phases Erlang distribution. The arrival and service pattern 

are consists of the Poisson and Erlang distribution as follows  7,5,1=  and  11,10,9=  per 

minute. Find the Purity level and analyze the system performance of the Erlang queueing 

system. 

The above problem satisfied the steady state 1=



 .Using Alpha cut membership function 

obtained  U

q

L

qq LLL


,= = [2.089 +0.045, 8.338-6.204 ] &  U

q

L

qq WWW


,=  = 

[0.4866 +0.0474, 1.668-1.134 ], 
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Using MLE method obtained the purity level of the system level and also obtained the range 

of intervals table as follows: 

 

Table: 1 Range of Uncertainty Value of collected data table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table: 2 Statistical value of collected data table 

 

 

 

 

 

Table: 5 Estimation Matrix 

Confusion matrix for the estimation sample: 

  \   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Total 

% 

correct 

0.1 1 0 0 0 0 0 0 0 0 0 1 100.00% 

0.2 0 1 0 0 0 0 0 0 0 0 1 100.00% 

0.3 0 0 1 0 0 0 0 0 0 0 1 100.00% 

0.4 0 0 1 0 0 0 0 0 0 0 1 0.00% 

0.5 0 0 1 0 0 0 0 0 0 0 1 0.00% 

0.6 0 0 0 0 0 1 0 0 0 0 1 100.00% 

0.7 0 0 0 0 0 1 0 0 0 0 1 0.00% 

0.8 0 0 0 0 0 1 0 0 0 0 1 0.00% 

0.9 0 0 0 0 0 1 0 0 0 0 1 0.00% 

1 0 0 0 0 0 1 0 0 0 0 1 0.00% 

Total 1 1 3 0 0 5 0 0 0 0 10 40.00% 

 

 

 

Range 

of α 
qL
 qW  

0 4.1915 0.0474 

0.1 3.9857 0.0961 

0.2 3.7800 0.1447 

0.3 3.5742 0.1934 

0.4 3.3685 0.2420 

0.5 3.1627 0.2907 

0.6 2.957 0.3394 

0.7 2.7512 0.3880 

0.8 2.5455 0.4367 

0.9 2.3397 0.4853 

1 2.13 0.534 

Variable Minimum Maximum Mean S.D 

1  0.0474 0.5340 0.2907 0.1614 

1  2.1300 4.1915 3.1624 0.6830 
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5. Conclusion: 

 The entire system can be considered for the queue parameter rates (assumption) as 

imprecise. Using proposed model first derived the non parametric linear equation and the 

possibility data’s are derived with the help of Alpha cut method in obtained equation, 

analyzed the system performance of the above data with the help of MLE method to obtain 

the Purity level and estimation matrix. Because the tree chart and estimation matrix is easily 

gives the error value. Using proposed algorithm, we can conclude that the node 0.1 to 0.3 and 

0.6 only reached the 100 % purity level remaining node does not reached the perfect level. 

Finally, concluded the overall system performance can reached only 40% level. So it must 

simulate the system because it is expected to reach the good performance level. 
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