JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 5255-5264
https://publishoa.com

ISSN: 1309-3452

An Application of Generalized Poisson Distribution Series
Involving with Certain Subclasses of Analytic Multivalent

Functions

Pratiti Tiwari ‘and Manita Bhagtani?

"Maharani Gayatri Devi Girls’ School,Jaipur, Rajasthan, India..

?Assistant Professor, Department of Mathematics,S.S. Jain Subodh P.G. College,Jaipur, Rajasthan,
India.

tiwaripratiti20@gmail.com, 2manitabhagtani@gmail.com

Received: 2022 March 15; Revised: 2022 April 20; Accepted: 2022 May 10

Abstract:The aim of the present paper is to introduce some new subclasses of analytic multivalent
functions S*(p, u,6) and C*(p, u,8).In the present paper, we determine the necessary and sufficient
conditions for the Generalized Poisson Distribution Series to be in the subclasses S*(p, u,6) and
C*(p, u,0).Some interesting results using the Generalized Poisson distribution series on these

subclasses are also derived.
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1.Introduction:

Let U = {z: zeC and |z| < 1} denote the unit disk in the complex plane C and let

A, denote the class of the function f(z) of the form
f(z) =2z° + X241 azl(pe N={123,...} (1.1)

which are analytic and normalized by the condition f(0) = f'(0) — 1 = 0. Also let S, be the subclass
of Ajconsisting of functions of the form (1.1) which are also multivalent in Uand let T be the

subclass of S,consisting of functions of the form

f(z) = 29 — i, la]2 (1.2)

Here * denotes the convolution of two analytic multivalent functions f and g of the form
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f(z) = 2% + XZpia)|2 (1.3)
g(z) = 2" + X, 1 |bj]7 (14)
and is defined by

(f*9) (@) = 2° + X211 [a] by |2 (1.5)
The class S; (o) of starlike functions of ordera (0 < a< p) is defined as

N _ . z f'(2)
Si(a) ={ fe Ap-Re{ﬁ}>a,zE U} (1.6)

The class C; (o) of convex functions of ordlera(0 < a<p) is defined as

z f'(z)

Co(w)= {f€ A, :Re {1+ e

}>a z€U (1.7)
= {fe Ay:zf" € Sy(a)}

For p=1, the classes S* (a)and the class C* (a)of convex functions of ordera(0 < o< 1) were

introduced by Robertson in [27]. We also write S* (0) = S* where S* denotes the class of functions

f € A such that f(U) is starlike with respect to the origin. Further, C (0) = C is the well-known

standard class of convex functions.
In 2000 Altintas et al.[1] unified the classes S* (a)and C* ()

We introduce the following new subclasses of analytic multivalent functions S (p,p,8) and

C (p, n,0).Let S (p, 1,8) be the subclass of A, consisting of functionsif it satisfies the condition

z f(2)+ uzzf" (z)
Re {P(l—u)f(z)tuzf'(z)} >0 (1.8)

for somep (0 <p< p), 5(0 < 8< p) and for all zeU.

Also, let C(p, p,8) be the subclass of A, consisting of functions if it satisfies the condition

wz3 £ @)+ (A+2022f (2)+2 f'(z>}
: —2155 1.9
e{ (PA-W+wz f @D+uz?f (@) (1.9)

for some p(0 <p< p), 5(0 < 8< p) and for all zeU.
Also denote S*(p, u,0) =S (p, 1,8) N Tyand C* (p, u,6) = C (p, u,6) N T, .
Note that f €C* (p, u,0) if and only if z f '€ S*(p, 1,9).
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Remark 1.For univalent function (p=1), the classes P; (o) and D; (o) were introduced by Porwal
and Kumar [24].1t is of interest to note that for p=1 andu = 0 the above classes reduced to ordinary
classes of univalent starlike and convex functions [29]. Recently the Generalized Poisson
distribution series [ 25, 26] in terms of a power series whose coefficients are probabilities of
Poisson distribution is defined as

NPe—r .

K(zp) =2 + 5y (1.10)

Here by ratio test, the radius of convergence of the above series is infinity. Now, we introduce the

series

NPe—hr .

T zp= 2z° - K(zp)= zP—-3" z) (1.11)

j=p+17(j—p)
Eminent authors have obtained several importantresults on connections between various subclasses
ofanalytic univalent and multivalent functions by using various distribution series. They used
efficiently many distribution series such as Hypergeometric distribution series [6, 7, 10, 12, 14,16,
28, 30], Generalized Bessel functions [ 2, 3, 4, 11, 13, 17, 22, 23, 31], Poisson distribution series
[8,9,15,18,21,24, 25, 26] and Generalized distribution series [5,20], Binomial distribution [19],
Beta-Binomial distribution, Zeta distribution, Geometric distribution and Bernoulli
distribution,Yule-Simon distribution, Logarithmic distribution in their work. Motivated by several
earlier results, by using Poisson distribution series and by recent investigations of Purohit et.al [25,
26] in the present paper we determine the necessary and sufficient condition for functions T (A, z, p)

in S*(p, w,0) andC* (p, w,08).Finally, wegive conditions for the integral operator
G(z,p)=p foz Mdt belonging to the above classes.

To characterize our main results, we will require the following Coefficients inequalities:

2. The Necessary and Sufficient Conditions

Theorem 2.1. A function f (z) of the form (1.2) is in the classS*(p, w,d) if and only if
Y1 i{G— D+ (1= pd)} — pd(1 — wllay| < p [(p — Du+ (1 - 8)] (2.1)

Proof. Suppose that f(z) €S*(p, 1,6). Then we have from (1.8) that

R{ zf'(z) + pz?f" (z) }>6
(T — @ + uzf @)
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[p+up (p—DI-E2, 11 [i+0j(—1] |aj|zj_p}
{ [PA-W+up I=EZ, 1 p(A-w—njlfaj|zi P >0 (2.2)
If we choose z real and let z— 17, we get
Re {[p+ wp (-DI-EZ, 1 [i+1jG-1)] |aj|}28 23)
[P1=X7% 41 P (L =)+ uj 1fay]

which is equivalent to desired result (2.1).

Conversely, suppose that (2.1) holds true. Then, adding

plp-Du+(1-9l-D- ) pl-w+ ujlla

j=p+1
in both sides of (2.1), we obtain
p(p—D[(p—Dp+ A -8)]+ X l{0—Du+ (1 —pd)} —pd(l —p) —p{(p — D+
1-8} {pl—ptpjiaj< p p-lpt(1-8)[{)}—j=p+leo {pl—p+ nj}]aj (2.4)
On the other hand, we see that
2f(2) + pz?f" (2)
‘ Pl - Wf@) + .z f(2)

=1+ (P-D@u—pu—1+38)]

p+pp(p—1) — T2pa{j + riG — D}y
0] — 22 pualp@ — 1) + pjlla

< PODIP-Dpt -9 +5iZp4 (G- Dt A-p8)}—pd L) —p{(p~ Dt 1-8)} (P U+ .}l
- (Pl =ZjZ g1 [P(A—0)+ pjllaj]

-1+ (E-D@u-pu—-1+35)]

(2.5)

it follows from (2.4) that last expression in (2,5) is bounded above by p [(p — Du + (1 — 9)]

Theorem 2.2 A function f (z) of the form (1.2) is in the classC*(p, u,d) if and only if
YiZpsdli{G — Dp+ Q= pd)} = p3(1 — wlay <p?[(p — D+ (1 - 3)] (2.6)
Proof. Notethat f(z) eC*(p, 1,8)if and only ifzf (z )eS*(p, 1,8)

Hence replacing a; by %ajin Theorem 2.1, we have the inequality (2.6).

Corollary 2.1 Taking p =1, the Theorem 2.1 and Theorem 2.2 get reduced to the results due to
Altintas et al.[1].
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Corollary 2.2 By specializing the parameter p=1,u = 0Oand u = 1 the Theorem 2.1 and Theorem

2.2 get reduced to the results due to Silverman [24].
3. Main Results

Theorem 3.1If 2> 0, then T (A, z, p) is in S™(p, w,8) if and only if

e* [N+ (2up + 1 — p8)A] < p2u + p(l—p) — pd (3.1)

Proof. Since
o % Po=h .
T(\,z,p) = Y o ?
According to the Theorem 2.1, it is sufficient to show that
WP o

zn{o—lmm ) - PO~ )

j=p+1

slp+w @ —-1) -9

—A

(j— p)'

Let 47 (A 1.8) = X7, pa[in+ (1 — p — p8) — pd(1 — ]

writing j? = G — p)G —p — 1) + (2p + 1) — p) + p? and
j = (j-p) + p and by simple computation we get

My (h, 1.8) =

z [WG-PG-p-D+@p+1[—p)+p+{G—p)+pHI—p—pd)}-ps
i=p+1
;\‘J pe—k

(J—p)!

— W]

0 : . NPe—2 o i WUPe—2 9
= WSt~ PG~ P~ DY 2ot 1 148) Bl — Yo+ (B (L )~

pS=C1+1oA 1= =Aj—p!

M e M o A

DY R T 2),+(2,UM+1—M5)2 =p 1 o T
M ﬁe—k

(i—p)!
= A[ A2 L _ A 2 _ A
=e e+ (pp+l—p)re +{pu+pll-w— pd}r{e" -1}

=W+ Qo+ 1— )+ P+ pl—p) — p3}{l-e™
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But this last expression is bounded above by p?u + p (1 —p) — pd if and only if (3.1) is satisfied.

Theorem 3.2If > 0, then T (A, z, p) is in C*(p, u,8)if and only if

e [P+ Bup +2u+1— pdN + {322+ 2)u+ (2p + 1)(L — pd) — pdjA]

<p°u+ p?(1—pn—pd) —p? (3.2)
Since

}\J Pa—A .
T(}\‘a Z, p) = ZJ =p+1 (j Z), z

According to the Theorem 2.2, it is sufficient to show that

- =P 5=
> J'[J'{(J'—l)u+(1—u6)}—p5(1—u)](j_—;)!—< 2y +uw (@ —1) -9
i=p+1
Let MG, 1, 8) = S5 pealPh + 20— 1= ) = 1p3(1 — 1] oo
Writing
P=G-MG-p-DGi-p-D+Gp+3)(-PGi-pP-D+@p*+3p+1)(—p) +
+p® and

F=G-mG-p-D+@+1G-p) +p*and
j = (j—p) + p and by simplifying we get

Mok, 1, 8)) =X [{G—P)G—p-D( -p-2D+Bp+)({-p( —p—-1+@Bp*+3p+
Dj—p+ p3 3 1-p—pd {—pj—p-1+2p+lj—p+p2 }—pd {—p+pAj—pe-Ajp!

= WYl G- —18) TG = PG~ p -

Dij-pe— A& jp {38 p2tputpt1)(1-pd)— pd)}j=p+locj—pij—pe— X j—p !+p3ut+
p21—p—ud—p238j=p+loorj—pe—Aj—p!

x/ P
(j—p-3)

S~ pSI=[1+1ooAl1—1[1— A j—p—11+13pt [121-p—pd—p281=[1+1oohl 11— A j—p A

_/”
Y743  Bpp e+ 2n+1— o) S g = {32 +p)u+ @p+ DA
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= e M pr%e™ + (Bpp + 2u+ 1 — ud)A%e* + {(Bp2 + p)pu + (2p + 1)(1 — ud) — pSre* +

{PPu+ p?(1—p—pd) — p?8}{ et — 1]

= W+ Brp+2u+1— A + {322+ p)u+ (2p + 1)L — ud) — pdIr + {#°u +
21—p—pd—p25 {1-11-2)

But this last expression is bounded above by p3u+ p?(1 — p— pd) — p25 if and only if (3.2) is
satisfied.

4. An Integral Operator

Here we introduce, an integral operator G (A, z, p)as follows:
TO t,
G(hz,p)= ply Lt (4.1)

where T(A, z, p) is defined by (1.11) and we get a necessary and sufficient condition for belonging
to the classC*(p, w,8).

Theorem 4.1 Let A> 0, then
G(.z,p)= plyrtt

is in the classC™(p, w,8) if and only if

" [Wp+@up+1—p8)h]<p’u+p(l-p —pd (4.2)
Proof. Since

=z7P _§® M]
G hz,p) = 2% = Lispn Ty 2

By Theorem (3.1), we need only to show that

o0

p)\‘j—pe—k
D GG~ Du+ 2= )} = p3(1 ~ W5 o<l — D+ (L= )
j=p+1 '
i.e.
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J=Pa— 2
S BG-Dn+ G- ) - pO(L~ 1] ;< PP~ D+ (L= )]
e J—p
Now let

M (s ,8) = EjprsliG = D+ (L — )} - poCt — )] =7
Writing j* = G—p)G—p—1) + @p + DG — p) + p?

j = (j—p) + p and by using the similar arguments as in the proof of Theorem 3.1, we have

Mg (0 8) = a2 + zp+ 1 — pdr + {p2u+pl —p) — 28} {1-¢ 7}

But this last expression is bounded above by p?p + p (1 —p) — pd if and only if (4.2) is satisfied.

Corollary 4.1 Taking p=1, Theorems 3.1, 3.2 and 4.1 get reduced to the results due to Porwal and
Kumar [24].
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