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Abstract 

In order to investigate the effects of the toxicant on the Lotka-Volterra prey-predator system, a mathematical 

model has been created. Our working hypothesis was that the populations are composed of three distinct parts: 

prey, healthy predators, and sick predators. We have obtained all of the equilibriums that are even remotely 

possible with this model, and we have also established the prerequisites for the presence of an inner equilibria 

point. We investigated the presence of all equilibrium points as well as their local stability. The findings are 

weighed against the scenario in which the environmental toxicant was not present. In the final step, analytical 

results are put through their numerical paces for verification. 
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1. Introduction- 

Mathematical modelling is a powerful tool for describing and analysing the dynamic behaviour of a phenomena. 

The single-species concept was originally developed by British economist Malthus (1978) and then refined by 

Verhulst, both around the year 1800. Several attempts at statistically predicting the existence and evolution of 

species were made at the turn of the twentieth century. Well-known classical figures Lotka and Volterra actually 

made the first serious effort in this regard. In 1927, they put out the concept of prey and predator. What's more, 

delay differential equations are frequently employed for modelling the dynamics of living organisms. 

The study of predator-prey interactions has been an important part of ecology research for the past three decades. 

Research into the dynamics of populations and the relationship between prey and predator is an active and 

important subject of study in the field of applied mathematics. 

Mathematical ecology has come a long way since its infancy, when it was pioneered by Lotka (1925) and Volterra 

(1928). Mathematical analysis was used by Kermack and McKendrick (2027) to study the spread of disease. A 

new subject, eco-epidemiology, emerged in the late 1990s to examine the intersection of epidemiology and 

ecological issues. It was Anderson and May (1986) who were the first to merge the two disciplines and create a 

predator-prey model with population sickness. Separate but related subfields of biology and applied mathematics 

include mathematical ecology and mathematical epidemiology. To study the intersection of ecology and 

epidemiology is known as eco-epidemiology. Liu et al.(2003) investigated a single-species model in a 

contaminated, confined habitat where toxicants are introduced at a constant rate (2003). 
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In their research, Zhang and Sun (2005) discovered a predator-prey system with a sick predator and a functional 

response. The predator-prey system was examined by Kant and Kumar (2007), who looked at it from the 

perspective of migrating prey and predators who were susceptible to virus. In a predator-prey system, Bairagi et 

al. (2009) looked at how the act of gathering affects the spread of illnesses among a subset of prey. The existence 

and uniqueness of limit cycles, as well as the global stability of equilibria, were studied by Chen et al. (2010) in 

a type-II prey-predator model. 

In 2012, Naji and Mustafa discussed the dynamics of a nonlinear incidence rate eco-epidemiological model. While 

assuming that the sensitive prey has the same exchange rate as the sick prey, Johri et al. (2012) studied a Lotka-

Volterra type predator-prey model without harvesting or disease in the prey. Hethcote et al. (2014) showed that 

the presence of infections could modify the biological dynamics of the prey-predator state. Using an eco-

epidemiology model, Sharma and Samanta (2015) studied a situation in which a single prey species contracts a 

disease. 

A host-vector epidemic model with a stage structure for the vector was presented and investigated by Zhou and 

Yao (2015). The dynamical behaviour of a tritrophic food chain model with a predator-prey system was studied 

by Bera et al. (2016). Eco-epidemiological models have been examined by a plethora of writers, all of whom have 

focused on infection in the prey population. Subsequent writers, including Kant and Kumar (2017), developed 

and investigated a predator-prey model that included moving prey and disease infection in both species. There 

was an infectious disease in the prey population, and Thota (2020) presented a mathematical model for this system. 

Baishya et al. (2021) constructed a fractional-order model to describe the possible transmission of an infection 

from prey to predator, and they reviewed the dynamics of this model with respect to its boundedness, uniqueness, 

and existence of solutions.  

2. Mathematical Model- 

Two populations are involved in our model: prey, whose population density is represented by x(t) and predators, 

whose population densities are represented by y1(t) and y2(t) where y1 designates the healthy predator and y2 

represents the infected predator, and t is the time variable. Let the population concentration of the toxin, u(t) and 

the ambient concentration, c(t), be two variables. 

While developing our model, we assume the following assumptions: 

dx

dt
= r (1 −

x

k1
) x − bxy1 − μ1x          (1) 

dy1

dt
= s(1 −

y1+y2

k2
) y1 − βy1y2 + αy2 − μ2y1          (2) 

dy2

dt
= βy1y2 − αy2 − μ3y2 − dy2 − iuy2        (3) 

dc

dt
= Q − γc − δcy2           (4) 

du

dt
= δcy2 − μ4u           (5) 

(A1):  Populations of prey expand at a rate consistent with the logistic rule when illness and predators are absent: 

r > 0  and  k1 > 0. 

(A2): The assumption here is that the disease is only contagious among predators, and that the spread of it from 

healthy to afflicted predators follows the standard rule of mass action and environment: βy1y2, where 𝛽 is the 

infectious force. 

(A3):  Infected predators are also less active than their healthy counterparts, making it harder for them to catch 

their prey. Therefore, we think a healthy predator has a higher searching coefficient than a sick one when looking 

for food. 
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(A4):  It is believed that the predator's functional response to the prey is of the Lotka-Volterra type. 

(A5):  It has been presumed that an infected predator will recover at a pace equal to α. 

3. Balance points do exist - 

It is not difficult to demonstrate that the system (1-5) contains equilibrium points that are viable from a biological 

perspective. The following is a discussion of the existence conditions of each of them as well as their respective 

studies of their local stability: 

 (3.1) There is never a time when the vanishing equilibrium ϵ0 = (0,0,0,0,0) does not exist. 

 (3.2)  The first axial equilibrium ϵ1 = (x, 0,0,0,0), x =
k1(r−μ1)

r
  exists provided   

k1(r−μ1)

r
> 0 ⇒ r − μ1 > 0 ⇒ r > μ1  

(3.3) The second axial equilibrium point with no infection occurred ϵ2 = (0, y1, 0,0,0) 

y1 =
k2(s−μ2)

s
  exists provided  

k2(s−μ2)

s
  > 0 ⇒ s − μ2 > 0 ⇒ s > μ2  

(3.4) The initial point of planar equilibrium has the equation ϵ3 = (x, y1, 0,0,0), where y1 =
k2(s−μ2)

s
 and x 

represents a positive root of the following quadratic equation: 

x2 (
r

k1
) − x [r − μ1 −

bk2(s−μ2)

s
] = 0   

ϵ3 exists uniquely in interior of 𝑋𝑌 −plane  if r > μ1 +
bk2(s−μ2)

s
   and s > μ2 

(3.5) The point of prey-free equilibrium with the toxicant concentration in the population and environment and 

the occurrence of infection in the predators, denoted by the equation ϵ4 = (0, y1, y2, c, u)), was reached. 

y1 =
α+μ3+d

β
+

iδQy2

μ4β(γ+δy2)
, c =

Q

γ+δy2
, u =

δQy2

μ4(γ+δy2)
 

A1y2
3 + A2y2

2
+ A3y2 + A4 = 0  

Where 

A1 = αk2l
2δ2 − kl2sδ2 − lsδm − kk2l

2δ2β − k2lδβm  

A2 = kk2l
2sδ2 − k2l2sδ2 + k2lsδm − 2klsδm − sm2 − lsγm − kk2l

2δβγ − βmk2lγ − kk2l
2δβγ +

2αk2l
2δγ − kk2l

2δ2μ2 − k2lδm  

A3 = 2kk2sl
2δγ − 2k2sl2δγ − 2klsγm − ksl2γ2 + k2slγm + αk2l

2γ2 − kk2l
2μ2 − k2lm − kk2l

2μ2δγ 

A4 = kk2sl
2γ2 − k2sl2γ2 − kk2l

2γ2μ2  

And k =
α+μ3+d

β
, l = μ4β,m = iδQ 

When A4 > 0 and either A3 > 0 or A2 < 0, a singular instance of ϵ4 can only be found within the interior of the 

four-dimensional space denoted by the coordinates y1y2cu   

4. Local stability analysis: 

The linearization method is going to be used in this part so that we may establish the local stability of the 

equilibrium points of the system (1-5) here. It is simple to demonstrate that the variational matrix of system (1-5) 

can be represented by the following formula at the general point (x, y1, y2, c, u), 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 5470-5479 

https://publishoa.com 

ISSN: 1309-3452 

5473 

J =

[
 
 
 
 
 
 r (1 −

2x

k1
) − μ1 bx 0 0 0

0 s (1 −
2y1+y2

k2
) − βy2 − μ2 −

sy1

k2
− βy1 + α 0 0

0 βy2 −α − μ3 − d − iu 0 0
0 0 −δc −γ − δy2 0
0 0 δc δy2 −μ4]

 
 
 
 
 
 

  (6) 

(4.1) Under the initial conditions of ϵ0 = (0,0,0,0,0),  the variational matrix of the system (1-5) is 

J(ϵ0) =

[
 
 
 
 
r − μ1 0 0 0 0

0 s − μ2 α 0 0
0  −α − μ3 − d 0 0
0 0 0 −γ 0
0 0 0 0 −μ4]

 
 
 
 

       (7) 

The Eigen values of J(ϵ0) are  

λ1 = r − μ1, λ2 = s − μ2, λ3 = −α − μ3 − d, λ4 = −γ, λ5 = −μ4  

Therefore, if r < μ1, s < μ2, then the equilibrium ϵ0 = (0,0,0,0,0) is locally asymptotically stable. 

 (4.2) Assuming ϵ1 = (x, 0,0,0,0), we have as its variational matrix the solution to the system (1-5): 

J(ϵ1) =

[
 
 
 
 
 r (1 −

2x

k1
) − μ1 bx 0 0 0

0 s − μ2 α 0 0
0 0 −α − μ3 − d 0 0
0 0 0 −γ 0
0 0 0 0 −μ4]

 
 
 
 
 

  

λ1 = r (1 −
2x

k1
) − μ1, λ2 = s − μ2, λ3 = −α − μ3 − d, λ4 = −γ, λ5 = −μ4  

Consequently, r < μ1 +
2xr

k1
, s < μ2is a locally asymptotically stable equilibrium if it is satisfied by ϵ1 =

(x, 0,0,0,0) 

(4.3) At ϵ2 = (0, y1, 0,0,0), the variational matrix for the system (1-5) is 

J(ϵ2) =

[
 
 
 
 
 
r − μ1 0 0 0 0

0 s (1 −
2y1

k2
) − μ2 −

sy1

k2
− βy1 + α 0 0

0 0 −α − μ3 − d 0 0
0 0 0 −γ 0
0 0 0 0 −μ4]

 
 
 
 
 

  

λ1 = r − μ1, λ2 = s(1 −
2y1

k2
) − μ2, λ3 = −α − μ3 − d, λ4 = −γ, λ5 = −μ4  

So, ϵ2 = (0, y1, 0,0,0)is a locally asymptotically stable equilibrium if r < μ1, s < μ2 +
2y1s

k2
 

 (4.4) At the point when ϵ3 = (x, y1, 0,0,0), the variational matrix for the system (1-5) may be written as 

J(ϵ3) =

[
 
 
 
 
 
 r (1 −

2x

k1
) − μ1 bx 0 0 0

0 s (1 −
2y1

k2
) − μ2 −

sy1

k2
− βy1 + α 0 0

0 0 −α − μ3 − d 0 0
0 0 0 −γ 0
0 0 0 0 −μ4]
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λ1 = r (1 −
2x

k1
) − μ1, λ2 = s (1 −

2y1

k2
) − μ2, λ3 = −α − μ3 − d, λ4 = −γ, λ5 = −μ4  

Therefore, ϵ2 = (0, y1, 0,0,0)  represents a locally asymptotically stable equilibrium if the following conditions 

are met: r < μ1 +
2xr

k1
, s < μ2 +

2y1s

k2
 

 (4.5) At the point when  ϵ4 = (0, y1, y2c, u), the variational matrix for the system (1-5) may be written as 

J( ϵ5) =

[
 
 
 
 
 
 r (1 −

2x

k1
) − μ1 bx 0 0 0

0 s (1 −
2y1+y2

k2
) − βy2 − μ2 −

sy1

k2
− βy1 + α 0 0

0 βy2 −α − μ3 − d 0 0
0 0 −δc −γ − δy2 0
0 0 δc δy2 −μ4]

 
 
 
 
 
 

    

It's not hard to see how this could work. This corresponds to the equilibrium point  (ϵ1), for which the 

characteristic equation of J1 is: 

λ5 + k1λ
4 + k2λ

3 + k3λ
2 + k4λ + k5 = 0  

Where  

 k1 = μ4 + γ + δy2 +
s(2y1+y2)

k2
+ βy2 + μ2 +

2xr

k1
+ μ1 + α + μ3 + d − (r + s) 

k2 = μρ + μτ + μψ + μω + ρτ + ρψ + ρω + τψ + τω + ψω − θσ  

k3 = μσθ + θρσ + θσψ − μρτ − μρψ − μρω − μτψ − μτω − μψω − ρτψ − ρτω − ρψω − τψω  

k4 = μρτψ + μρτω + μρψω + μτψω + ρτψω − θμρσ − θμσψ − θρσψ  

k5 = θμρσψ − μρτψωWhere  

ψ = r (1 −
2x

k1
) − μ1 ; ε = bx ; τ = s (1 −

2y1+y2

k2
) − βy2 − μ2 ; σ =

sy1

k2
− βy1 + α ; θ = βy2 ; ω = −α − μ3 − d 

; ρ = −γ − δy2 ; ϕ = δy2 ; μ = −μ4  

λ1 = ψ, λ2 = μ, λ3 = ρ, λ4 =
1

2
(τ + ω − √4θσ + τ2 − 2τω + ω2)  

λ5 =
1

2
(τ + ω − √4θσ + τ2 − 2τω + ω2)  

All the coefficients in the characteristic equation are unambiguously positive. If the following hold true, then  ϵ1 

is locally asymptotically stable according to the Routh Hurwitz criteria: 

k1 > 0, k1k2 − k3 > 0 , k1k2k3 + k1(k5 − k1k4) − k3
2 > 0  

5. Results and Discussion- 
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We provide a mathematical model in order to examine the impact of a toxicant on a prey-predator system when 

the population of predators is already afflicted with an illness. The analysis of the mathematical model shows that 

when a predator is sick with a disease, the level of equilibrium between the prey and the predator decreases due 

to the toxicant's negative effect on the system. This is shown by a lowering of the level of equilibrium between 

the prey and the predator. It has been mathematically demonstrated that the vulnerable prey population cannot 

expand without simultaneously growing the infected predator population. As a result, if the susceptible prey 

population grows, the infected predator population must shrink, and vice versa. 

To better understand the effects of varying the parameters on the overall dynamics of the proposed model and to 

depict the aforementioned analytical findings, we turn to numerical simulation in this part. Specifically, the goals 

of this study are to verify the analytical results we have acquired and to determine the range of control parameters 

that influence the system's dynamics. Therefore, the model is solved numerically for different values of the 

parameters and initial conditions. A positive asymptotically stable equilibrium point is observed to be reached by 

the model for the set of hypothetical parameters given below. 

r Rate of growth that is inherent to the prey 1.1 

k1 The carrying capacity of the prey habitat 

 

0.7 

k2 Capacity of the ecosystem to support predators 0.4 

b Coefficient of predation on healthy populations of prey 0.6 

i The rate at which infectious diseases are killing out predators 

because of toxicants 

0.01 

β The infectious agents and their forces 0.9 

α The ratio of infected to healthy predators' conversion 

coefficient 

0.5 

μ1 The proportion of prey that is lost due to natural causes 0.2 

μ2 The rate of natural mortality experienced by healthy predator 

populations 

0.3 

μ3 The percentage of afflicted predators that die out naturally 0.5 
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6. Concluding Remarks- 

The Lotka-Volterra Predator-Prey Model is an oversimplified representation of the real world's intricate ecological 

web. This theory argues that each predator has just one potential prey and vice versa, and that there are no 

environmental factors such as disease, climate change, pollution, etc. However, the model can be refined by 

include additional variables; doing so will allow us to obtain a more accurate representation of the ecosystem. 

However, as the number of variables increases, the model becomes more complicated and additional time and 

effort are needed to solve it. It also reveals the unique connection between biology and mathematics. Incorporating 

a toxicant into the Lotka-Volterra predator-prey model improves the realism of our simulations. 
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