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Abstract 

        The purpose of this paper is to guarantee the existence of solutions which are nonoscillatory by novel 

conditions for third order multiple delay differential equation (TOMDDE).  These conditions succeed to 

show that the solution is exist with bounded property by using convergent sequences and series. We 

explained the powerful of novel conditions by illustrative example. The oscillation behavior has been got 

to the (TOMDDE) by sufficient conditions.  

 

Keywords: Third Order Multiple Delay Differential Equation, Banach Space, Existence of Nonocillatory 

Bounded Solutions, Oscillatory Behavior.  

 

1. Introduction 

   The importance of differential equations(DEs) appears by applications in different fields of applied 

science, engineering, physics and biological models [1-3]. Therefore, it has become important to consider 

existence of solutions [4,5] and getting approximate or numerical solutions [6,7]. Some authors focused 

on study qualitative properties such as stability, asymptotic and oscillatory properties for solution [8-10]. 

Last few years, the delay differential equations emerged in novel models in mathematics and scientific 

problems, therefore the studying for various types of solutions and their properties has huge interested 

studies and increasing speedily. 

In the present research we have been condensed on thinking about new sufficient conditions to secure the 

existence of nonoscillatory and bounded solutions with oscillatory property. 

In [11] Z. Liu, L. Chen, S. M. Kang, and S. Y. Cho have considered the solvability of a third-order 

nonlinear neutral delay differential equation of the form:  
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𝒹

𝒹𝔥
(𝒮(𝔥)

𝒹

𝒹𝔥
(𝒜(𝔥)

𝒹

𝒹𝔥
(𝒵(𝔥) +  ℬ(𝔥) 𝒵(𝔥 − 𝜏 )))) + 𝒯 (𝔥, 𝒵(𝜎1(𝔥), 𝒵(𝜎2(𝔥)),… , 𝒵(𝜎𝑛(𝔥)))  =  0 

 

The Z. Gui in [12] has studied the existence of periodic solutions to the following third-order neutral delay 

functional differential equation with deviating arguments: 

𝚍3

𝚍𝔥3
𝒵(𝔥) + 𝑎

𝚍2

𝚍𝔥2
𝒵(𝔥) + 𝒯 (

𝒹

𝒹𝔥
𝒵(𝔥 − 𝜏(𝔥))) + 𝒮 (𝒵(𝔥 − 𝜏(𝔥))) = 𝒜(𝔥) 

O. Moaaz , E. E. Mahmoud and W. R. Alharbi in [13] have obtained a new criterion for the nonexistence 

of neutral delay differential equations NDDE of third order:: 

𝒹

𝒹𝔥
(𝒜(𝔥) (

𝚍2

𝚍𝔥2
𝒯(𝔥))

𝛼

) + ℬ(𝔥)𝒵𝛼(𝜎(𝔥)) = 0, where 𝒯(𝔥) = 𝒵(𝔥) + 𝒮(𝔥)𝒵(𝜏(𝔥)) 

M.Wei1, C. Jiang and T. Li in [14] have studied the oscillation of the third-order nonlinear neutral 

differential equations with damping and distributed delay: 

 
𝒹

𝒹𝔥
(𝒮(𝔥)

𝒹

𝒹𝔥
(𝒜(𝔥) (𝒵(𝔥) + ∫ 𝒜(𝔥, 𝜇)

𝑑

𝑐
𝒵 (𝜏((𝔥, 𝜇))))𝒹𝜇 )) + ℬ(𝔥)

𝒹

𝒹𝔥
(𝒮(𝔥)

𝒹

𝒹𝔥
(𝒵(𝔥) +

∫ 𝒜(𝔥, 𝜇)
𝑑

𝑐
𝒵 (𝜏((𝔥, 𝜇)))𝒹𝜇)) + ∫ 𝒯 (𝔥, 𝑡, 𝒵 (𝑀((𝔥, 𝑡))))𝒹𝑡 = 0

𝑏

𝑎
 

We consider non-linear NDEs with Multiple delays: 

𝚍3

𝚍𝔥3
𝒵(𝔥) = −∑  

𝛤

=1

𝒜 (𝔥)𝒯 (𝒵 (𝜏 (𝔥)))

+
𝚍3

𝚍𝔥3
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥)))                                                             (1.1) 

During this work we will impose the following hypotheses 

(i) 𝐶(𝐻1, 𝐻2) denotes to the set for all functions that are continuous; 𝑓: 𝐻1 → 𝐻2 with 

the supremum norm ‖. ‖. 

(ii) We suppose that  𝒜 , ℬ ∈  C(ℜ+, ℜ+), (휁 =  1, 2, … , 휂), and the functions  𝜏 ∶ ℜ+ → ℜ+ are 

differentiable with 𝜏 (𝔥) ⟶ ∞ as 𝔥 ⟶ ∞. 

(iii) The functions 𝒯 (𝒵) and 𝒮 (𝔥, 𝒵) are continuous and satisfy Lipschitz condition in 𝒵. That is, there 

are positive constants 

 𝑀  (휁 =  1, 2, … , 𝛤), such that  

|𝒮 (𝔥, 𝒵) − 𝒮 (𝔥,𝑊) | ≼ 𝑀 |𝒵 −𝑊|     휁 =  1, 2, … , 𝛤, 

 

The solution 𝒵(𝔥) satisfy Eq.(1.1) for 𝔥 ≽ 𝔥1.  We say that  solution 𝒵(𝔥)  is a nonoscillatory solution if 

it is eventually negative or eventually positive, so there exists 𝔥∗ ≽ 𝔥0,  such that  𝒵(𝔥) ≻ 0 or 𝒵(𝔥) ≺ 0 

for all 𝔥 ≽ 𝔥∗, otherwise the  solution is said to be oscillatory [7]. 

We need the following lemma and theorem in the main results to second section. 

Lemma 1.1: [15] (Theorem to Krasnoselskii of Fixed Point). 
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   In the space of Banach say  X with Ʊ is closed convex bounded set in X, if S1, S2: Ʊ ⟶ X, ∋ 𝑆1𝓍 +

𝑆2𝛾 ∈  Ʊ, ∀𝓍, 𝛾 ∈  Ʊ. If S1 mapping with contractive feature and S2 is a completely continuous mapping, 

then  𝑆1𝓍 + 𝑆2𝛾 = 𝓍  is a solution on Ʊ. 

 

 

Theorem 1.2 [16] (The Dominated of Convergence to the Lebesgue) 

 

 

If {𝓅𝓃} be sequence to measurable functions on ᴇ. Let 𝓆 be integrable function on ᴇ with dominates {𝓅𝓃} 

on ᴇ such that |𝓅𝓃(𝜒)| ≼ 𝓆(𝓍)  on ᴇ, ∀n.If {𝓅𝓃} → {𝓅}  pointwise  a.e. on E, then 𝓅 is integrable on ᴇ 

with: 

𝑙𝑖𝑚
𝑛→∞

∫ 𝓅𝓃ᴇ
= ∫ 𝓅

ᴇ
, ᴇ is a measurable finite set. 

2. Existence of Oscillatory Bounded Solutions: 

      In this section we  introduce  new sufficient conditions to ensure the solution is exist and bounded by 

two positive functions 𝔏  and 𝔛  on [𝔥1, ∞) of Eq.(1.1), 𝔥1 ≽ 𝔥0 . The existence to positive bounded 

solution has studied while existence of eventually negative solution can be found similarly.  

Suppose the following conditions hold in the included results in this section:  

A1. 𝔭1 ≼ 𝒜 (𝔥), ℬ (𝔥) ≼ 𝔭2, 𝔭1, 𝔭2 ≠ 0, are constants, 휁 = 1, 2, 3, … , 𝛤. 

A2. 𝔮1𝒵(𝔥) ≼ 𝒯 (𝒵(𝜏 (𝔥))) ≼ 𝔮2𝒵(𝔥), 𝔮1, 𝔮2 ≠ 0, are constants, 휁 = 1, 2, 3, … , 𝛤. 

A3.𝜇1𝒵(𝔥) ≼ 𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) ≼ 𝜇2𝒵(𝔥), 𝜇1, 𝜇2 ≠ 0, are constants, 휁 = 1, 2, 3, … , 𝛤. 

 

Theorem 2.1 

 Assume that A1- A3 hold, and the bounded functions 𝔏, 𝔛 ∈ 𝐶1(ℕ, [0,∞)), and 𝔥1 ≽ 𝔥0 + 𝜌, such that 

                                                 𝔏(𝔥) ≼ 𝔏(𝔥1),  𝔥0 ≼ 𝔥 ≼ 𝔥1                                                               (2.1) 

∫∑𝔛(𝜏 (𝑡))

𝛤

=1

∞

𝔥=1

𝑑𝑡 ≼
1

𝔭2𝜇2
(𝔭1𝔮1∫ ∫ ∫∑𝔏(𝜏 (𝑡))

𝛤

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+ 𝔛(𝔱)) ≼ ℳ                             

1

𝔭1𝜇1
(𝔭2𝔮2∫ ∫ ∫∑𝔛(𝜏 (𝑡))

𝛤

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+ 𝔏(𝔱)) ≼ ∫∑𝔏(𝜏 (𝑡))

𝛤

=1

∞

𝔥=1

𝑑𝑡, 𝔥 ≽ 𝔥1,            (2.2) 

                                     

∫ ∫ ∫∑𝔛(𝜏 (𝑡))

𝛤

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

≺ ∞                                                    ( 2.3) 

Then the Eq.(1.1) has a bounded solution by positive functions 𝑢 and 𝑣. 

 

Proof 



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 13, No. 3, 2022, p. 5499-5513 
https://publishoa.com 

ISSN: 1309-3452 

5502 

 

 

Let 𝐼(𝔱) = ∫ ∫ ∫ ∑ 𝔛(𝜏 (𝑡))𝛤
=1 𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥
 and then the condition (2.3) implies that                                                  

    lim
𝑡→∞

𝐼(𝔱) = lim
𝑡→∞

∫ ∫ ∫ ∑ 𝔛(𝜏 (𝑡))𝛤
=1 𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥
=

0.                                                                                                                                 ( 2.4) 

Let (𝐶([ 𝔥0, ∞), ℜ), ‖. ‖) such that ‖𝒵‖ = 𝑠𝑢р
 𝔥≥ 𝔥0

|𝒵( 𝔥)| ⟹  𝐶([𝔥0, ∞), ℜ) is the space of Banach. Let  

𝔇 ⊂ 𝐶([ 𝔥0, ∞) , ℜ) define as:   

 

𝔇 = {𝒵(𝔥):𝒵( 𝔥) ∈ C([𝔥0, ∞), ℜ) with 𝔏(𝔥) ≼ 𝒵( 𝔥) ≼ 𝔛(𝔥), 𝔥 ≽ 𝔥0}          (2.5) 

Such that 𝔇 is closed and convex.  

 The mappings Ψ1 and Ψ2: 𝔇 →  𝐶 ([ 𝔥0, ∞), ℜ) are defined as: 

                 

                                                    (Ψ1𝒵)(𝔥) =

{
∫ ∑  𝛤

=1 ℬ (𝑡)𝒮 (𝑡, 𝒵 (𝜏 (𝑡)))
∞

𝔥
dt                   ,               𝔥 ≽ 𝔥1

(φ1𝒵)( 𝔥1),                                                                                         𝔥0 ≼ 𝔥 ≼ 𝔥1,
 

                                                                                                                                                  

   (Ψ2𝒵)(𝔥)

=

{
 

 
−∫ ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠      , 𝔥 ≽ 𝔥1,

(φ2𝒵)(𝔥1) − 𝔏(𝔥1) + 𝔛(𝔥)                 , 𝔥0 ≼ 𝔥 ≼ 𝔥1,

                                                              (2.6) 

Where Ψ1 and Ψ2  satisfies eq (1.1) 

For all 𝒵,𝑊 ∈ 𝔇 and  𝔥 ≽ 𝔥1, then: 

(Ψ1𝑍)(𝔥) + (Ψ2𝑊)(𝔥)

= ∫∑  

𝛤

=1

ℬ (𝜉)𝒮 (𝑡, 𝒵 (𝜏 (𝑡)))

∞

𝔥

𝑑𝑡 − ∫ ∫ ∫∑ 

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝑊 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝜇2∫ ∑  

𝛤

 =1

𝒵 (𝜏 (𝔱))

∞

𝔥

dt − 𝔭1𝔮1∫ ∫ ∫∑  

𝛤

=1

𝑊(𝜏 (𝑡))

∞

𝑟

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝜇2∫∑  

𝛤

=1

𝔛(𝜏 (𝔱))

∞

𝔥

dt − 𝔭1𝔮1∫ ∫ ∫∑ 

𝛤

=1

𝔏 (𝜏 (𝑡))

∞

𝑟

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝜇2∫∑  

𝛤

=1

𝔛(𝜏 (𝔱))

∞

𝔥

dt − 𝔭2𝜇2∫∑  

𝛤

=1

𝔛(𝜏 (𝔱))

∞

𝔥

+ 𝔛(𝜉) = 𝔛(𝜉) 

∀𝔥 ∈ [𝔥0, 𝔥1], we have 

(Ψ1𝒵)(𝔥) + (Ψ2𝑊)(𝔥) = (Ψ1𝒵)(𝔥1) + (Ψ2𝑊)(𝔥1) − 𝔏(𝔥1) + 𝔛(𝔥) 

≼ 𝔛(𝔥1) − 𝔏(𝔥1) + 𝔛(𝔥) ≼ 𝔏(𝔥1) − 𝔏(𝔥1) + 𝔛(𝔥) ≼ 𝔛(𝔥). 

So, ∀ 𝔥 ≽ 𝔥1, yield : 
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(Ψ1𝒵)(𝔥) + (Ψ2𝑊)(𝔥)

= ∫∑  

𝛤

=1

ℬ (𝔥)𝒮 (𝑡, 𝒵 (𝜏 (𝑡)))

∞

𝔥

𝑑𝑡 − ∫ ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝑊 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

   ≽ 𝔭1𝜇1∫∑  

𝛤

=1

𝒵 (𝜏 (𝔱))

∞

𝔥

dt − 𝔭2𝔮2∫ ∫ ∫∑ 

𝛤

=1

𝑊(𝜏 (𝑡))

∞

𝑟

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

                        

≽ 𝔭1𝜇1∫∑ 

𝛤

=1

𝔏(𝜏 (𝔱))

∞

𝔥

dt − 𝔭2𝔮2∫ ∫ ∫∑ 

𝛤

=1

𝔛 (𝜏 (𝑡))

∞

𝑟

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≽ 𝔭1𝜇1∫∑  

𝛤

=1

𝔏 (𝜏 (𝔱))

∞

𝔥

dt − 𝔭1𝜇1∫∑  

𝛤

=1

𝔏 (𝜏 (𝔱))

∞

𝔥

dt + 𝔏(𝔥) = 𝔏(𝔥)  

 

∀ 𝔥 ∈ [𝔥0, 𝔥1], from Eq. (2.2), we secure: 

(Ψ1𝒵)(𝔥) + (Ψ2𝑊)(𝔥) = (Ψ1𝒵)(𝔥1) + (Ψ2𝑊)(𝔥1) − 𝔛(𝔥1) + 𝔏(𝔥) 

                                                      ≽ 𝔏(𝔥1) − 𝔏(𝔥1) + 𝔛(𝔥) = 𝔛(𝔥) ≽

𝔏(𝔥)                                                                                       (2.7) 

So, Ψ1𝒵 +Ψ2𝑊 ∈ 𝔇,∀ 𝒵,𝑊 ∈ 𝔇,𝒵 > 𝑊. Now, we have to prove that Ψ1 is contraction mapping on 𝔇. 

∀ 𝒵,𝑊 ∈ 𝔇 for  𝔥 ≽ 𝔥1: 

‖Ψ1𝒵 −Ψ1𝑊‖ = 𝑠𝑢𝑝
𝑡 ≥𝑡1

|(Ψ1𝒵)(𝜉) − (Ψ1𝑊)(𝜉)| 

= 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|∫∑  

𝛤

=1

ℬ (𝔱)𝒮 (𝔱, 𝒵 (𝜏 (𝔱)))𝑑𝑡

∞

𝔥

−∫∑  

𝛤

=1

ℬ (𝔱) 𝒮 (𝔱,𝑊 (𝜏 (𝔱)))

∞

𝔥

𝑑𝑡| 

  

‖Ψ1𝒵 −Ψ1𝑊‖ ≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|𝔭2 𝜇2 ∫∑𝒵(𝜏 (𝑡))

𝛤

=1

∞

𝔥=1

𝑑𝑡 −  𝔭2 𝜇2∫∑ 

𝛤

=1

𝑊(𝜏 (𝑡))

∞

𝔥

𝑑𝑡| 

                           

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|𝔭2 𝜇2 ∫∑𝔛(𝜏 (𝑡))

𝜆

=1

∞

𝔥=1

𝑑𝑡 − 𝔭2 𝜇2∫∑ 

𝛤

=1

𝔏(𝜏 (𝑡))

∞

𝔥

𝑑𝑡| 

 

By condition (2.1) we have     

 

               ≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|𝔭2 ℳ𝔮2 +
1

𝜎2
𝔛(𝔥) − 𝔭2 ℳ𝔮2 −

1

𝜎2
𝔏(𝔥)|  

   ≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|
1

𝔭2
𝔛(𝔥) −

1

𝔭2
𝔏(𝔥)|  

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

1

𝔭2
|𝔛(𝔥) − 𝔏(𝔥)| ≼ 𝑠𝑢𝑝

𝔱 ≽𝔱1

1

𝔭2
|𝒵(𝔥) −𝑊(𝔥)|) 
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                                               ≼ 𝑀‖𝒵 −

𝑊‖                                                                                                                                  (2.8) 

Where , 𝑀 =
1

𝔭2
   

Also for 𝔥 ∈ [𝔥0, 𝔥1]. 

‖Ψ1𝒵 −Ψ1𝑊‖ = 𝑠𝑢𝑝
𝔥0≼𝔥 ≼𝔥1

|(Ψ1𝒵)(𝔥) − (Ψ1𝑊)(𝔥)| 

                                              = 𝑠𝑢𝑝
𝔥0≼𝔥 ≼𝔥1

|(Ψ1𝒵)(𝔥1) − (Ψ1𝑊)(𝔥1)|  

 

= 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|∫ ∑  

𝛤

=1

ℬ (𝔱)𝒮 (𝔱, 𝒵 (𝜏 (𝑡))) 𝑑𝑡

∞

𝔥1

−∫∑  

𝛤

=1

ℬ (𝔱) 𝒮 (𝔱,𝑊 (𝜏 (𝔱)))

∞

𝔥

𝑑𝑡| 

  

≼ |𝔭2 𝜇2 ∫ ∑𝒵(𝜏 (𝑡))

𝛤

=1

∞

𝔥1=1

𝑑𝑡 −  𝔭2 𝜇2 ∫∑  

𝛤

=1

𝑊(𝜏 (𝑡))

∞

𝔥1

𝑑𝑡| 

               

≼ |𝔭2 𝜇2 ∫ ∑𝔛(𝜏 (𝑡))

𝛤

=1

∞

𝔥1=1

𝑑𝑡 −  𝔭2 𝜇2 ∫ ∑  

𝛤

=1

𝔏 (𝜏 (𝑡))

∞

𝔥1=1

𝑑𝑡| 

By condition (2.1) we have     

 

               ≼ |𝔭2 ℳ𝔮2 +
1

𝜎2
𝔛(𝔥1) − 𝔭2 ℳ𝔮2 −

1

𝜎2
𝔏(𝔥1)|  

   = |
1

𝔭2
𝔛(𝔥) −

1

𝔭2
𝔏(𝔥)|  

= 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

1

𝔭2
|𝔛(𝔥) − 𝔏(𝔥)| ≼ 𝑠𝑢𝑝

𝔱 ≽𝔱1

1

𝔭2
|𝒵(𝔥) −𝑊(𝔥)|) 

                                               ≼ 𝑀‖𝒵 −

𝑊‖                                                                                                                               (2.9) 

 

Where , 𝑀 =
1

𝔭2
 This implies that 

                             ‖Ψ1𝒵 −Ψ1𝑊‖ ≼ 𝑀‖𝒵 −𝑊‖                                                                                  (2.10) 

Thus, Ψ1 is mapping with contractive property on 𝔇. Now, we have to prove  that Ψ2 has completely 

property to continuous mapping. First of all, we need to show that  Ψ2 is continuous mapping.  

Let  𝒵𝑘 = 𝒵𝑘(𝔥) ∈ 𝔇. Since 𝔇 is closed,  thus 𝒵𝑘(𝔥) tend to 𝒵(𝔥) as 𝔥 → ∞, 𝒵(𝔥) ∈ 𝔇. For 𝔥 ≽ 𝔥1  , 

yield: 

‖(Ψ2𝒵𝑘)(𝔥) − (Ψ2𝒵)(𝔥)‖ = 𝑠𝑢𝑝
𝔥 ≽ 𝔥1

|(Ψ2𝒵𝑘)(𝔥) − (Ψ2𝒵)(𝔥)|  
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≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1 

|−∫ ∫ ∫∑ 

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵𝑘 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠

+ ∫ ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 |   

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1  

 𝔭2 |−∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵𝑘 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠

+ ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 |                        

≼ 𝑠𝑢𝑝
   𝔥 ≽ 𝔥1  

 𝔭2 |∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵𝑘 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠

− ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 |                                    

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1  

 𝔭2𝔮2 |∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵𝑘 (𝜏 (𝑡))

∞

𝑠

∞

𝔫

𝑑𝑧 𝑑𝑡 𝒹𝑠 − ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵 (𝜏 (𝑡))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 |                        

 

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1 

 𝔭2𝔮2 |∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝔛𝑘 (𝜏 (𝑡))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 − ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝔛(𝜏 (𝑡))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 |                  

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1  

 𝔭2𝔮2 | ∫ ∫ ∫∑  

𝛤

=1

[

∞

𝑟

𝔛𝑘 (𝜏 (𝑡))

∞

𝑠

∞

𝔥 ≽ 𝔥1 

− 𝔛(𝜏 (𝑡))]𝑑𝑧 𝑑𝑡 𝒹𝑠 |                 

≼ 𝑠𝑢𝑝
𝔥 ≽ 𝔥1  

 𝔭2𝔮2(|∫ ∫ ∫[

∞

𝑟

𝔛𝑘(𝜏1(𝑡))

∞

𝑠

∞

𝔥

− 𝔛(𝜏1(𝑡))]𝑑𝑧 𝑑𝑡 𝒹𝑠| + |∫ ∫ ∫[

∞

𝑟

𝔛𝑘(𝜏2(𝑡))

∞

𝑠

∞

𝔥

− 𝔛(𝜏2(𝑡))]𝑑𝑧 𝑑𝑡 𝒹𝑠|

+ ⋯

+ |∫ ∫ ∫[

∞

𝑟

𝔛𝑘(𝜏𝛤(𝑡))

∞

𝑠

∞

𝔥

− 𝔛(𝜏 (𝑡))]𝑑𝑧 𝑑𝑡 𝒹𝑠 | )                                                                                                                                                                                                 (2.11) 

 

According to (2.3), and the bounded property of (𝔛 (𝜏 (𝔥))) we get   
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∫ ∫ ∫∑ 

𝛤

=1

∞

𝑟

𝒵 (𝜏 (𝑡))

∞

𝑠

∞

𝔥

𝑑𝑧 𝑑𝑡 𝒹𝑠 ≺ ∞                                                                                             ,             (2.12) 

Since|𝔛𝑘 (𝜏 (𝔥)) − 𝔛 (𝜏 (𝔥))| → 0, as 𝑘 tend to ∞, 휁 = 1, 2, 3, … , 𝛤. By dominative convergence 

theorem to Lebesgue, yield: 

lim
𝑘 → ∞

‖(Ψ2𝒵𝑘)(𝔥) − (Ψ2𝒵)(𝔥)‖ = 0                                                                                   (2.13) 

It reduces that Ψ2 will be continuous mapping. 

To prove that Ψ2𝔇 is a relatively compact, we must accentual that {Ψ2𝒵 ∶ 𝒵 ∈ 𝔇} is uniformly bounded 

and equicontinuous on [𝔥0, ∞], by theorem of Arzelã-Ascoli [17]. From (2.5), yield {Ψ𝒵 ∶ 𝒵 ∈ 𝔇} is a 

uniformly bounded. 

 To secure that {Ψ2𝒵 ∶ 𝒵 ∈ 𝔇} is equicontinuouson on [𝔥0, ∞), let 𝒵 ∈ 𝔇 and any 휀 ≻ 0, by (2.12), so 

∃  𝔥∗ ≽  𝔥1 large enough:  

              

∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵 (𝜏 (𝑡))

∞

𝑠

∞

 𝔥∗

𝑑𝑧 𝑑𝑡 𝒹𝑠 ≺
휀

2𝔮2𝜎2
, ,

𝔥 ≽   𝔥∗ ≽  𝔥1   ,                                                                           (2.14) 

Then, for any given 휀 ≻ 0 and  𝒵 ∈ Ψ, 𝑇2 ≻ 𝑇1 ≽ 𝔥∗, we have 

‖(Ψ2𝒵𝑘)(𝑇2) − (Ψ2𝒵)(𝑇1)‖ = 𝑠𝑢𝑝
𝑇2≻𝑇1≽𝔱∗

|(Ψ2𝒵𝑘)(𝑇2) − (Ψ2𝒵)(𝑇1)|  

                                            ≼ |(Ψ2𝒵𝑘)(𝑇2)| + |(Ψ2𝒵)(𝑇1)|      

 

 

≼ ∫ ∫ ∫∑ 

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵𝑘 (𝜏 (𝑡)))

∞

𝑠

∞

𝑇2

𝑑𝑧 𝑑𝑡 𝒹𝑠 + ∫ ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2 ∫ ∫ ∫∑ 

𝛤

=1

∞

𝑟

𝒯 (𝒵𝑘 (𝜏 (𝑡)))

∞

𝑠

∞

𝑇2

𝑑𝑧 𝑑𝑡 𝒹𝑠 + 𝔭2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

∞

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝔮2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵𝑘 (𝜏 (𝑡))

∞

𝑠

∞

𝑇2

𝑑𝑧 𝑑𝑡 𝒹𝑠 + 𝔭2𝔮2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵 (𝜏 (𝑡))

∞

𝑠

∞

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝔮2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝔛𝑘 (𝜏 (𝑡))

∞

𝑠

∞

𝑇2

𝑑𝑧 𝑑𝑡 𝒹𝑠 + 𝔭2𝔮2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝔛(𝜏 (𝑡))

∞

𝑠

∞

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

                  

≺ 𝔮2𝔭2
휀

2𝔮2𝔭2
+ 𝔮2𝔭2

휀

2𝔮2𝔭2
= 휀,                                                                                                                     (2.15) 

                                 

 

For  𝒵 ∈ 𝔇 and 𝜉1 ≼ 𝑇1 ≺ 𝑇2 ≼ 𝔥∗, we get 

‖(Ψ2𝒵)(𝑇2) − (Ψ2𝜒)(𝑇1)‖ = 𝑠𝑢𝑝
𝔥1≼ 𝑇1≺𝑇2≼ 𝔥 ∗

|(Ψ2𝒵)(𝑇2) − (Ψ2𝒵)(𝑇1)| 
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= 𝑠𝑢𝑝
𝔥1≼ 𝑇1≺𝑇2≼ 𝔥 ∗

|∫ ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑟

(𝑡)𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

𝔱∗

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 − ∫ ∫∑  

𝛤

=1

𝒜

∞

𝑠

(𝑡)𝒯 (𝒵 (𝜏 (𝑡)))

𝔱∗

𝑇2

𝑑𝑡 𝒹𝑠| 

≼ 𝑠𝑢𝑝
𝔥1≼ 𝑇1≺𝑇2≼ 𝔥 ∗

𝔭2 |∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

𝔱∗

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 − ∫ ∫∑  

𝛤

=1

∞

𝑠

𝒯 (𝒵 (𝜏 (𝑡)))

𝔱∗

𝑇2

𝑑𝑡 𝒹𝑠| 

= 𝔭2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒯 (𝒵 (𝜏 (𝑡)))

∞

𝑠

𝑇2

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝔮2 ∫ ∫ ∫∑  

𝛤

=1

∞

𝑟

𝒵 (𝜏 (𝑡))

∞

𝑠

𝑇2

𝑇1

𝑑𝑧 𝑑𝑡 𝒹𝑠 

≼ 𝔭2𝔮2 
휀

2𝔮2𝔭2
(𝑇2 − 𝑇1). 

Thus there exists 𝛿1 =
2

√
 , such that 

 

        |(Ψ2𝒵)(𝑇2) − (Ψ2𝒵)(𝑇1)| ≺ 휀1, if   0 ≺ 𝑇2 − 𝑇1 ≺ 𝛿1 , and  √휀 = 휀1                            (2.16) 

Finally, let  𝐹(𝔥) =
𝔛(𝔥)

𝒜(𝔥)
, then for any 𝒵 ∈ Ψ, 𝔥0 ≼ 𝑇1 ≺ 𝑇2 ≼ 𝔥1, by mean value theorem there exist 𝑘1 ∈

(𝑇1, 𝑇2) and 𝛿2 = 𝐹′(𝑘1)
≻ 0 such that 

|(Ψ2𝒵)(𝑇2) − (Ψ2𝒵)(𝑇1)| = |(
𝔛

𝒜
) (𝑇2) − (

𝔛

𝒜
) (𝑇1)| 

                                                                         = |𝐹(𝑇2) − 𝐹(𝑇1)| 

                                                                  = |𝐹′(𝑘1)(𝑇2 − 𝑇1)| 

                                                                  = |𝐹′(𝑘1)|(𝑇2 − 𝑇1) ≺ 휀,     

           if   0 ≺ 𝑇2 − 𝑇1 ≺ 𝛿2 ≺  𝛿1.                                                               (2.17) 

Hence Ψ2𝔇 is a compact relatively set. By using lemma (1.1), it reduces that Eq. (1.1) has solution which 

is bounded relatively from below.  

 

Example 2.1 

𝑑3

𝑑𝜉3
𝒵(𝔥) = −∑  

𝛤

=1

𝒜 (𝔥)𝒯 (𝒵 (𝜏 (𝔥))) +
𝑑2

𝑑𝜉2
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

Set 𝔭1 = 𝜇1 = 𝔮1=1,  𝔭2 = 𝜇2 = 𝔮2 = 2, 𝜏𝜍(𝔥) = 𝔥 + 1, 𝔛(𝔥) =
15

𝔥4
, 𝔏(𝔥) =

12

𝔥4
, 𝔛 (𝜏 (𝔥)) =

15

(𝔥+1)4
, 𝔏 (𝜏 (𝔥)) =

12

(𝔥+1)4
, 휁 = 1,2 

 

∫∑𝔛(𝜏 (𝑡))

2

=1

∞

𝔥

𝑑𝑡 = ∫[𝔛 (𝜏 (𝑡)) + 𝔛 (𝜏 (𝑡))]

∞

𝔥

𝑑𝑡 = ∫
30

(𝑡 + 1)4

∞

𝔥

𝑑𝑡 =
10

(𝔥 + 1)3
                      (2.18) 
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𝔭1𝔮1
𝔭2𝜇2

∫ ∫ ∫∑𝔏(𝜏 (𝑡))

2

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+
1

𝔭2𝜇2
𝔛(𝔱) =

2

𝔥 + 1
+
15

4𝔥4
                                                  (2.19) 

             from eq. (2.18) and (2.19),  we have  

10

(𝔥 + 1)3
≼

2

𝔥 + 1
+
15

4𝔥2
, 𝔥 ≽ 1  

Thus  

∫∑𝔛(𝜏𝜍(𝔥))

𝛤

=1

∞

𝔥

𝑑𝑡 ≼
1

𝔭2𝜇2
(𝔭1𝔮1∫ ∫ ∫∑𝔏(𝜏𝜍(𝑡))

𝛤

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+ 𝔛(𝔱)) ≼ ℳ                             

Now,  

𝔭2𝔮2
𝔭1𝜇1

∫ ∫ ∫∑𝔛(𝜏𝜍(𝑡))

2

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+
1

𝔭1𝜇1
𝔏(𝔱) =

20

𝔥 + 1
+
12

𝔥4
                                  (2.20) 

∫∑𝔏(𝜏 (𝑡))

2

=1

∞

𝔥

𝑑𝑡 =
8

(𝔥 + 1)3
                                                                          (2.21) 

1

𝔭1𝜇1
(𝔭2𝔮2∫ ∫ ∫∑𝔛(𝜏 (𝑡))

𝛤

=1

𝑑𝑟 𝑑𝑡 𝒹𝑠

∞

𝑟

∞

𝑠

∞

𝔥

+ 𝔏(𝔱)) ≼ ∫∑𝔏(𝜏 (𝑡))

𝛤

=1

∞

𝔥

𝑑𝑡, 𝔥 ≽ 𝔥1 

 

3. Property of oscillation for third order multiple delay differential equation: 

In the present section, we′ll seek for oscillatory criteria to Eq. (1.1) and we use some basic lemmas: 

Lemma 3.1 [18]: 

  

Let 𝒵 ∈ ∁𝛤[ℜ,ℜ] and 𝒵(𝛤)(𝔥)𝒵(𝛤−1)(𝔥) > 0, 𝔥 ≥ 𝔥0, 𝔥 ∈ (−∞,∞) 

Then the following statements hold 

1. If 𝒵(𝛤)(𝔥)is positive for 𝔥 ≥ 𝔥0 then 𝒵( )(𝔥) is increasing for 𝔥 ≥ 𝔥0 and  

lim
𝔥→∞

  𝒵( )(𝔥) = ∞ for 휁 =  𝛤 − 1, 𝛤 − 2, … ,0 

2. If 𝒵(𝛤)(𝔥)is negative for 𝔥 ≥ 𝔥0 then 𝒵( )(𝔥) is decreasing for 𝔥 ≥ 𝔥0 and 

 lim
𝔥→∞

  𝒵( )(𝔥) = −∞ for 휁 =  𝛤 − 1, 𝛤 − 2,… ,0 

Then 𝒵(𝔥) cannot be negative for  𝔥 ≽ 𝔥1 ≽ 𝔥0. 

Lemma 3.2 [19]: 

 Assume that 휀, 𝜚 ∈ 𝐶[ℜ+, ℜ+] are continuous functions such that 휀(𝔥) ≺ 𝔥, 휀′(𝔥) ≽ 0  for 𝔥 ≽ 𝔥0 with 

lim
𝔥→∞

휀(𝔥) = ∞. 

 If  

lim
𝔥→∞

 inf ∫ 𝜚(𝑠) 𝒹𝑠 ≻
1

𝑒

𝔥

(𝔥)

                                                                                                      (3.1)  

 then the inequality 
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𝒵′(𝔥) + 𝜚(𝔥)𝒵(휀(𝔥)) ≼ 0 

 has no eventually positive solution.   

Lemma 3.3: Assume that:  

𝒥(𝔥) = 𝒵(𝔥) −∑  

𝛤

=1

∫∫∫ 𝒜 (𝔱)𝒯 (𝒵 (𝜏 (𝔱)))𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝔥

𝑇

−∑  

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥)))                                   (3.2) 

And the following assumptions hold: 

H1: 𝜗2(𝔥) ≤
𝒮 (𝔥, 𝒵 (𝜏 (𝔥)))

𝒵 (𝜏 (𝔥))
≤
𝒯 (𝒵 (𝜏 (𝔥)))

𝒵 (𝜏 (𝔥))
≤ 𝜗1(𝔥), 𝜌(𝔥) = max {𝜏 (𝔥)} 

H2: lim
𝔥→∞

 inf∑  

𝛤

=1

[∫ ∫∫ 𝒜 (𝔱)𝜗1(𝔱)𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝛼𝞾

𝑇

+∑  

𝛤

=1

ℬ (𝛼𝞾)𝜗1(𝔥)] ≤ 1 

  If 𝒵(𝔥) is eventually positive bounded solution of Eq. (1.1) with (𝜏−1 (휀 (𝔥)))′ ≥ 0 then: 

𝒥(𝔥) positive non-increasing function. 

 

Proof. Assume that a solution 𝒵(𝔥) is a non-oscillatory bounded solution of the Eq.(1.1). So, suppose 

that 𝒵(𝔥) is eventually positive bounded solution, there is 𝔥1 ≥  𝔥0 + 𝜌 such that  𝒵(𝔥) > 0  for   𝔥 ≥ 𝔥1. 

 

 

𝒹

𝒹𝔥
𝒥(𝔥) =

𝒹

𝒹𝔥
𝒵(𝔥) −∑  

𝛤

=1

∫∫ 𝒜 (𝔱)𝒯 (𝒵 (𝜏 (𝔱))) 𝑑𝔱 𝒹𝑠 
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔥

𝑇

−
𝒹

𝒹𝔥
∑  

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

 

 

d2

d𝔥2
𝒥(𝔥) =

d2

d𝔥2
 𝒵(𝔥) −∑  

𝛤

=1

∫ 𝒜 (𝔱)𝒯 (𝒵 (𝜏 (𝔱)))𝑑𝔱 
𝜏𝜁
−1( 𝜁(𝔥))

𝔥

−
d2

d𝔥2
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

d3

d𝔥3
𝒥(𝔥) =

d3

d𝔥3
 𝒵(𝔥)

−∑  

𝛤

=1

[𝒜 (𝜏−1 (휀 (𝔥)))𝒯 (𝒵 (𝜏 (𝜏−1 (휀 (𝔥))))) (𝜏−1 (휀 (𝔥)))′

−𝒜 (𝔥)𝒯 (𝒵 (𝜏 (𝔥)))] −
d3

d𝔥3
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

From equation (1.1), we obtain that:  
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d3

d𝔥3
𝒥(𝔥) = −∑  

𝛤

=1

𝒜 (𝔥)𝒯 (𝒵 (𝜏 (𝔥))) +
𝚍3

𝚍𝔥3
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥)))  

−∑  

𝛤

=1

[𝒜 (𝜏−1 (휀 (𝔥)))𝒯 (𝒵 (휀 (𝔥))) (𝜏−1 (휀 (𝔥)))′ −𝒜 (𝔥)𝒯 (𝒵 (𝜏 (𝔥)))]

−
d3

d𝔥3
∑ 

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

d3

d𝔥3
𝒥(𝔥) = −∑  

𝛤

=1

𝒜 (𝜏−1 (휀 (𝔥)))𝒯 (𝒵 (휀 (𝔥))) (𝜏−1 (휀 (𝔥)))′

≤ 0                                                                                              (3.5) 

 

 

 

So, we conclude that 
d3

d𝔥3
𝒥(𝔥) ≤ 0 and 

d2

d𝔥2
𝒥(𝔥),

𝒹

𝒹𝔥
𝒥(𝔥), 𝒥(𝔥) are monotone (nonincreasing) functions. 

We have two cases to consider: 

 

Case1: 

If 
d3

d𝔥3
𝒥(𝔥) ≤ 0 with 

d2

d𝔥2
𝒥(𝔥) ≤ 0,

𝒹

𝒹𝔥
𝒥(𝔥) ≤ 0 and 𝒥(𝔥) ≤ 0 

for   𝔥 ≥ 𝔥1 by Lemma 3.1  it follows that lim
𝔥→∞

𝒥(𝔥) = −∞ and with (3.4) we imply that lim
𝔥→∞

𝒵(𝔥) = −∞, 

which is a contradiction. 

Case 2: 

If 
d3

d𝔥3
𝒥(𝔥) ≤ 0  and  

d2

d𝔥2
𝒥(𝔥) ≥ 0,  we claim that 

𝒹

𝒹𝔥
𝒥(𝔥) ≤ 0, 𝔥 ≥ 𝔥1 

 

 

 Otherwise 
𝒹

𝒹𝔥
𝒥(𝔥) ≥ 0,  by Lemma 3.1  it follows that lim

𝜉→∞
𝒥(𝔥) = ∞ and with (3.4) we imply that 

lim
𝔥→∞

𝒵(𝔥) = ∞, which is a contradiction. 

So  
𝒹

𝒹𝔥
𝒥(𝔥) ≤ 0, 𝔥 ≥ 𝔥1, 

we claim that 𝒥(𝔥) ≥ 0, 𝔥 ≥ 𝔥1 

 Otherwise 𝒥(𝔥) ≤ 0, so there exist 𝜑 < 0 such that 𝒥(𝔥) ≤ 𝜑,   𝔥 ≥ 𝔥2 ≥ 𝔥1 

Then from (3.2): 

𝒵(𝔥) ≤ 𝜑 +∑  

𝛤

=1

∫∫∫ 𝒜 (𝔱)𝒯 (𝒵 (𝜏 (𝔱)))𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝔥

𝑇

+∑  

𝛤

=1

ℬ (𝔥)𝒮 (𝔥, 𝒵 (𝜏 (𝔥))) 

Since 𝒵(𝔥) is bounded then lim
𝔥→∞

inf𝒵(𝔥) = 𝜓, 0 ≤ 𝜓 < ∞ 

So there is a sequence {𝛼𝞾}, such that lim
𝞾→∞

𝛼𝞾 = ∞ and lim
𝞾→∞

𝒵(𝛼𝞾) = 𝜑 

𝟈1(𝔥) = min {𝜏𝜍(𝔥)} and 𝟈2(𝔥) = max{𝜏𝜍(𝔥)} , 𝔥 ≥ 𝔥2 
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𝒵(𝛾𝞾) = max {𝒵(𝔥), 𝟈1(𝛼𝞾)  ≤ 𝔥 ≤ 𝟈2(𝛼𝞾)} 

So 𝒵(𝛾𝞾) ≥ 𝒵(𝜏 (𝔥)) 

lim
𝞾→∞

𝛾𝞾 = ∞ and lim
𝞾→∞

inf 𝒵(𝛾𝞾) ≥ 𝜓 

𝒵(𝛼𝞾) ≤ 𝜑 +∑  

𝛤

=1

∫ ∫∫ 𝒜 (𝔱)𝒯 (𝒵 (𝜏 (𝔱)))𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝛼𝞾

𝑇

+∑  

𝛤

=1

ℬ (𝛼𝞾)𝒮 (𝔥, 𝒵 (𝜏 (𝛼𝞾))) 

𝒵(𝛼𝞾) ≤ 𝜑 +∑  

𝛤

=1

∫ ∫∫ 𝒜 (𝔱)𝜗1(𝔱)𝒵 (𝜏 (𝔱)) 𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝛼𝞾

𝑇

+∑  

𝛤

=1

ℬ (𝛼𝞾)𝜗1(𝛼𝞾)𝒵 (𝜏 (𝛼𝞾)) 

𝒵(𝛼𝞾) ≤ 𝜑 +∑  

𝛤

=1

𝒵(𝛾𝞾) {∫ ∫∫ 𝒜 (𝔱)𝜗1(𝔱)𝑑𝔱 𝒹𝑠 𝒹𝔯
𝜏𝜁
−1( 𝜁(𝑠))

𝑠

𝔯

𝑇

𝛼𝞾

𝑇

+∑  

𝛤

=1

ℬ (𝛼𝞾)𝜗1(𝛼𝞾)} 

By taking limit inferior to the both sides of the last inequality as 𝞾 → ∞, it follows that:  

𝜓 ≤ 𝜑 + 𝜓 which is a contradiction. 

 

Theorem 3.1 

 Assume that  all conditions of Lemma 3.3 hold and  𝒥(𝔥) is defined as in (3.2) with 휀 (𝔥) < 𝔥, 𝜏 (𝔥) <

𝔥  and (𝜏−1(휀 (𝔥)))′ = −휂(𝔥) in addition to the condition: 

lim
𝔥→∞

 inf∑  

𝛤

=1

[{ ∫ ∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝑟)

𝑟

𝔥

 𝜁(𝛿(𝔥))

𝑑𝑟}]

≥
1

𝑒
                                                              (3.4) 

Then every solution of Eq. (1.1) oscillates. 

Proof 

Assume that a solution 𝒵(𝔥) is a non-oscillatory of the Eq. (1.1). So, let 𝒵(𝔥) is eventually positive 

solution, there is 𝔥1 ≽  𝔥0 + 𝟈2(𝔥),  ∋ 𝒵(𝔥) ≻ 0,   𝔥 ≽ 𝔥1. 

Integrating (3.3) from 𝑇 to 𝔥, 0 ≤ 𝑇 ≤ 𝔥:   

d2

d𝔥2
𝒥(𝔥) −

d2

d𝔥2
𝒥(𝑇) = −∑  

𝛤

=1

∫𝒜 (𝜏−1 (휀 (𝔱)))𝒯 (𝒵 (휀 (𝔱))) (𝜏−1 (휀 (𝔱)))′𝑑𝔱

𝔥

𝑇

 

Integrating the last equation from 𝔥 to 𝛿(𝔥), 𝛿(𝔥) > 𝔥, 휀 (𝛿(𝔥)) < 𝔥, lim
𝔥→∞

휀 (𝛿(𝔥)) = ∞, 휁 = 1,2, … , 𝛤   

d

d𝔥
𝒥(𝛿(𝔥)) −

d

d𝔥
𝒥(𝔥) =∑  

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝒯 (𝒵 (휀 (𝔱))) 휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

 

d

d𝔥
𝒥(𝛿(𝔥)) −

d

d𝔥
𝒥(𝔥) ≥∑  

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))𝒵 (휀 (𝔱)) 휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

 

But from (3.2)  𝒵(𝔥) ≥ 𝒥(𝔥): 
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d

d𝔥
𝒥(𝛿(𝔥)) −

d

d𝔥
𝒥(𝔥) ≥∑  

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))𝒥 (휀 (𝔱)) 휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

 

d

d𝔥
𝒥(𝛿(𝔥)) −

d

d𝔥
𝒥(𝔥) ≥∑  𝒥 (휀 (𝛿(𝔥)))

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

 

−
d

d𝔥
𝒥(𝔥) ≥∑  𝒥 (휀 (𝛿(𝔥)))

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

 

d

d𝔥
𝒥(𝔥) +∑  𝒥 (휀 (𝛿(𝔥)))

𝛤

=1

∫ ∫𝒜 (𝜏−1 (휀 (𝔱)))𝜗2(𝜏𝜍
−1(휀 (𝔱)))휂(𝔥)𝑑𝔱 𝒹𝑠

𝑠

𝑇

𝛿(𝔥)

𝔥

≤ 0 

By Lemma 3.2 then the last inequality has no eventually positive solution. 

4. Conclusions 

We conclude that the novel conditions to demonstrate the existence of no oscillatory bounded solution to 

the differential equation of kind (TOMDDE) were very efficient and reliable. The illustrative  

 

example explained the quickness of calculations. Furthermore, the new conditions for lemma 3.3 were 

harmonious with theorem 3.1 to acquire the sufficient conditions for oscillatory solution. are more flexible 

and easy to apply in examples.  
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