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ABSTRACT  

Latin hypercube design and uniform design are two kinds of most popular space-filling designs for computer 

experiments. The fact that the run size equals the number of factor levels in a Latin hypercube design makes it difficult 

to be orthogonal. While for a uniform design, it usually has good space-filling properties, but does not necessarily have 

small or zero correlations between factors. In this paper, we construct a class of column-orthogonal and nearly column-

orthogonal designs for computer experiments by rotating groups of factors of orthogonal arrays, which supplement the 

designs for computer experiments in terms of various run sizes and numbers of factor levels and are flexible in 

accommodating various combinations of factors with different numbers of levels. The resulting column-orthogonal 

designs not only have uniformly spaced levels for each factor but also have uncorrelated estimates of the linear effects 

in first order models. Further, they are 3-orthogonal if the corresponding orthogonal arrays have strength equal to or 

greater than three. Along with a large factor-to-run ratio, these newly constructed designs are economical and suitable 

for screening factors for physical experiments.  
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INTRODUCTION  

Many physical phenomena encountered in science and engineering are governed by a set of complicated equations. 

These equations often have only numerical solutions that are carried out by computer programs. Latin hypercube design 

(LHD) and uniform design are two kinds of most popular space-filling designs for computer experiments. The fact that 

each factor in an LHD has as many uniformly spaced levels as its run size makes it attractive in that the design achieves 

the maximum stratification when projected into any univariate dimension. Efforts have been made to find orthogonal or 

nearly orthogonal LHDs. However, the factors in an LHD have as many levels as the run size, which makes it very 

difficult for an LHD to be orthogonal. Uniform designs were having received great attention in recent decades and the 

references therein. A uniform design seeks design points that are uniformly scattered on the design domain; it is robust 

against the model specification and limits the effects of aliasing to yield reasonable efficiency and robustness together. 

However, a uniform design does not necessarily have small or zero correlations between factors. For computer 

experiments, practical experiments have revealed that designs with many levels are desirable, but it is not essential that 

the run size equals the number of levels at which each factor is observed, as in an LHD. As we know, screening 

important factors and then estimating the effects accurately are the main objectives of experimental designs. Therefore, 

lower correlations among effect estimates are preferred, which will achieve the lowest correlation when the model 

matrix is orthogonal. By relaxing the condition that the number of levels for each factor must be identical to the run 

size, we, in this paper, propose some methods to construct column-orthogonal designs and nearly column-orthogonal 

designs, which not only have uniformly spaced levels for each factor but also have some other attractive properties, as 

will be discussed later. 
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SOME NOTATIONS AND RELATED WORK ON ROTATION DESIGNS  

A design with n runs and m factors, each having q1,. . . ,qm levels, respectively, is denoted by D(n, q1··· qm). A D(n, 

q1 ··· qm) design is an n×m matrix with entries of the jth column from a set of qj symbols, which are assumed here to 

be {(2i−qj −1)/2, i = 1,...,qj} for odd qj and {2i−qj −1, i = 1,...,qj} for even qj . If in each column the symbols occur 

equally often, the design is called a U-type design. The qj ’s are not necessarily distinct, for example, a D(n, qm1 1 qm2 

2 ) is a design that has m1 factors of q1 levels and m2 factors of q2 levels. In particular, when all the qj ’s are equal, the 

design is said to be symmetrical, otherwise, asymmetrical. A D(n, nm) is called an LHD and denoted by LHD(n, m). A 

U-type design D(n, q1 ··· qm) is called a column-orthogonal design, denoted by COD(n, q1 ··· qm), if the inner product 

of any two columns is zero; and is called an orthogonal array of strength t, denoted by OA(n, q1 ··· qm, t), if all 

possible level-combinations for any t columns appear equally often. We shall call the latter orthogonality combinatorial 

orthogonality to distinguish it from the column-orthogonality. Clearly, the combinatorial orthogonality implies the 

column-orthogonality, but the inverse is not necessarily true. Furthermore, a column-orthogonal design is called 3-

orthogonal (see [4]) if the sum of elementwise products of any three columns (whether they are distinct or not) is zero. 

Let X denote the regression matrix for the first-order model of a column-orthogonal design with m factors, including a 

column of ones and the m factors in the design. Let Xint denote the n × m(m − 1)/2 matrix with all the possible bilinear 

interactions, and let Xquad denote the n×m matrix with all the pure quadratic terms. The alias matrices for the first-

order model associated with the bilinear interactions and the pure quadratic terms are then given by (X X)−1X Xint and 

(X X)−1X Xquad, respectively. A good design for factor screening should maintain relatively small terms in these alias 

matrices. It is easy to see that if a column-orthogonal design is 3-orthogonal, then these two alias matrices are both zero 

matrices. 

LHDs can be constructed by rotating the points in d-factor, q-level standard full factorial designs, where d is a power of 

2, and defined a sequence of rotation matrices by a recursive scheme. [5] proposed the idea of independently rotating 

groups of factors in two-level designs. Recently, [26, 28] combined the above two ideas with the knowledge of Galois 

field to produce the orthogonal LHD matrix with n = qd runs, where q is a prime and d is a power of 2. This severe run 

size constraint is the primary limitation to their rotation methods. 

 

Lemma 1. The matrix Rq c in (1) is a rotation of the d-factor (d = 2c), q-level standard full factorial design which yields 

unique and equally-spaced projections to each dimension. 

Remark 1. Here, we relax the definition of rotation to be a matrix R satisfying R R = kI for some scalar k, instead of R 

R = I. It can be easily checked that the matrix Rq c in (1) consists of columns (and rows) of permutations of {1, q,..., 

q2c−1} up to sign changes, which guarantees that, for a 2c-factor q-level standard full factorial design A, ARq c yields 

unique and equally-spaced projections to each dimension. This paper will extend the rotation method to orthogonal 

arrays for accommodating various run sizes. Though the obtained designs are not always LHDs, they are column-

orthogonal designs or nearly column orthogonal designs, and the factors have enough levels to be employed in 

computer experiments. 

CONSTRUCTION OF COLUMN-ORTHOGONAL DESIGNS  

In this section, we present the construction methods for column-orthogonal designs by rotating symmetrical as well as 

asymmetrical orthogonal arrays. 

1 Construction from symmetrical orthogonal arrays  

For convenience, we denote 
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Table 1 OA(12, 210, 2) and COD(12, 410) 

 

Table 2 OA(18, 36, 2) and COD(18, 96) 
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Table 3 OA(24, 212, 3) and COD(24, 412) 

 

 

Next, we discuss the construction of asymmetrical column-orthogonal designs by rotating symmetrical orthogonal 

arrays.  

Remark 2. In Example 1, if we take 
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The proof of Theorem 2 can be easily obtained from Lemma 1 along the lines of the proof of Theorem 1. Now, let us 

see two examples for illustration. 

 

Methods of partitioning the saturated factorial designs to the maximal number of full factorial sets using the Galois 

field. 

 

Table 4 OA(16, 215, 2) and COD(16, 16124221) 

 

Table 5 OA(36, 283462, 2) and COD(36, 4894362) 
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2 Construction from asymmetrical orthogonal arrays 

 

CONCLUSION 

In this paper, we propose some methods to construct column-orthogonal designs and nearly column orthogonal designs 

by rotating orthogonal arrays. The methods are easy to implement, and the resulting column-orthogonal designs keep 

the estimates of the linear effects of all factors uncorrelated with each other, sometimes even uncorrelated with the 

estimates of all quadratic effects and bilinear interactions, along with flexible and economical run sizes. In addition, in 

each rotation part, the resulting designs also preserve the geometric configuration of orthogonal arrays, thus have good 

space-filling properties. It is seen from our methods in the previous sections that if the orthogonal arrays have no 

repeated runs, so do the constructed designs. Therefore, such designs can be used for computer experiments. In 

addition, our asymmetrical column-orthogonal designs and nearly column-orthogonal designs are useful if one feels the 

need of studying some factors in more detail than others. Note that the column-orthogonality and uniformity do not 

necessarily agree with each other, i.e., the uniformity does not guarantee that the design possesses low correlations 

among its effects, and vice versa. The proposed designs can guarantee the nice column-orthogonality properties, and 

thus are optimal in terms of the column-orthogonality criteria as we have discussed, but they may be not optimal under 

the uniformity criteria. 
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