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Abstract. Uncertainty plays an important role in our daily life. The belief function, commonality
function, and plausibility function deal with uncertainty. The Belief function and the plausibility
function give one of the important pairs of lower and upper bounds of the probability function
respectively. From [8], we have another basic belief assignment based on probability mass function
which is different from Shafer‘s basic belief assignment [12]. From this basic belief assignment, the
belief function, commonality function, and plausibility function are obtained. In this paper, it is
used to obtain lower and upper bounds of statistical quantities viz. distribution function, mean,
variance, standard deviation, raw moments, central moments, coefficient of skewness, and coefficient
of kurtosis of probability distribution under study with two methods. With help of algorithms,
computer programs are written or constructed. Also, we obtain algorithms to obtain lower and
upper bounds of statistical quantities of probability distribution under study. These bounds consist
of probabilities given by the probability mass function of a probability distribution.

Keywords: Uncertainty, Belief function, Plausibility function, probability, probability mass func-
tion.
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1. Introduction

In the beginning, a special case of upper and lower probabilities has been introduced by Dempster
[3, 4]. The existence of a probability function is assumed to be a mapping m from space X, where
X is the frame of discernment Θ. The lower probability of A in X is equal to the probability
of the largest subset of Θ such that its image under m is included in A. The upper probability
of A in space X is that the image under m of all elements has a non-empty intersection with A.
In [13], belief functions on a system of sets of an infinite or finite universe are represented by a
probability measure or probability charge. In Kyburg’s article [10], let set Π of all those probability
distributions compatible with the available information

∀ A ⊆ Θ, P ∗(A) = supp∈Πp(A) P∗(A) = supp∈Πp(A)

with Π is a convex set of probability distributions. For confidence bands, F (x) ≤ F (x) ≤ F (x),
where F (x) is not precisely known and we can specify F (x) and F (x) from R to [0, 1]. Then the
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distribution band is Γ(F , F ) = (F |∀ x ∈ R, F ((−∞, x]) ≤ F (x) ≤ F (x)) [9]. If F (x) and F (x)
are step functions then distribution band s becomes probability box [5].

In [2], Imprecise belief structures are set of belief structures whose masses on focal elements A,
interval-valued constraints M = {m : ai ≤ m(Ai) ≤ bi}. The intervals [aibi] specifying an Imprecise
belief structures are not unique if m(Ai) ≤ min.{bi, 1−

∑
j ̸=i aj}. The upper and lower bounds to

m determine interval ranges for belief and plausibility functions. In [14], Yager considers the same
situations in which the masses of focal elements lie in some known interval, allowing us to model
realistically situations in which the basic probability assignments can not be precisely identified.

In this paper, firstly we give preliminaries about discrete belief function theory, probability the-
ory, and interval arithmetics. In the third section, we obtain the lower and upper bounds of the
distribution function. In the fourth section, we explain the first method and derive a formula to
obtain the lower and upper bound of statistical quantities of probability distribution under study.
In the fifth section, we explain the second method and derive a formula to obtain the lower and
upper bound of statistical quantities of probability distribution under study. In the sixth section,
we provide algorithms to calculate the lower and upper bounds of statistical quantities of proba-
bility distribution under study. Finally, we explain the first and second methods by an illustrative
example.

2. Preliminaries

Here we will provide necessary preliminaries about discrete belief function theory [12], interval
arithmetics [11], and discrete distribution theory [1].

2.1. Discrete Belief Function Theory

Frame of Discernment : Dictionary meaning of Frame of Discernment is the frame of good
judgment insight. The word discerns means to recognize or find out or hear with difficulty. If the
frame of discernment Θ is

Θ = {θ1, θ2, . . . , θn} (1)

then every element of Θ is a proposition. The set of all propositions of interest has a one-to-one
correspondence with the set of all subsets of Θ, denoted by 2Θ. A function m : 2Θ → [0, 1] is called
basic probability assignment whenever

m(∅) = 0 and
∑
A⊂Θ

m(A) = 1. (2)

The quantity m(A) is called A’s basic probability number and it is a measure of the belief
committed exactly to A. The total belief committed to A is the sum of m(B), for all proper subsets
B of A.

Bel(A) =
∑
B⊂A

m(B). (3)

If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1] is called belief function over Θ
if it satisfies above condition (3). A function Bel : 2Θ → [0, 1] is belief function if and only if it
satisfies following conditions

(1) Bel(∅) = 0.
(2) Bel(Θ) = 1.
(3) For every positive integer n and every collection A1, A2, . . . , An of subsets of Θ

Bel(A1 ∪ A2 ∪ . . . ∪ An) ≥
∑

I⊂{1,2,··· ,n}

(−1)|I|+1Bel(
⋂
i∈I

Ai). (4)
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Degree of doubt :
Dou(A) = Bel(Ā) or Bel(A) = 1−Dou(Ā). (5)

The quantity pl(A) = 1−Dou(A) =
∑

A∩B ̸=∅m(B) which expresses the extent to which one finds A

credible or plausible. We have a relation between the belief function, probability mass (or density)
function, and plausibility function as:

Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊂ Θ. (6)

If |Θ| = n then every element in the frame of discernment Θ is repeated exactly 2n−1 number of
times and the sum of probabilities of all subsets of Θ is 2n−1. Now, let A = {{a1}, {a2}, . . . , {an}} ⊆
Θ. In discrete space, since singletons are disjoint, the intersection of any number of singleton subsets
of Θ is always an empty set. Therefore we have basic probability assignment [8] as:

m(A) =
p(A)

2n−1
,∀A ⊆ Θ. (7)

2.2. Interval Arithmetics

Interval arithmetic operations are useful to do calculations with intervals. We have interval
arithmetic [11] as:
Let X = [X,X] and Y = [Y , Y ] be any intervals, in set of real numbers. Here X = inf{x : x ∈ X}
and X = sup{x : x ∈ X}. Therefore X and X are lower and upper bounds of X respectively. The
computations with intervals are as:

X + Y = [X + Y ,X + Y ].

X − Y = [X − Y ,X − Y ].

X · Y = [Min.S,Max.S], where S = {XY ,XY ,XY ,XY }.
(8)

X/Y =



[X,X][1/Y , 1/Y ] if 0 ̸∈ [Y , Y ]

[−∞,∞] if 0 ∈ [X,X] and 0 ∈ [Y , Y ]

[X/Y ,∞] if X ≤ 0 and Y = 0

[−∞, X/Y ] ∪ [X/Y ,∞] if X ≤ 0 and Y < 0 < Y

[−∞, X/Y ] if X ≤ 0 and Y = 0

[−∞,∞] if X < 0 < X and Y < 0 < Y

[−∞, X/Y ] if X ≥ 0 and Y = 0

[−∞, X/Y ] ∪ [X/Y ,∞] if X ≥ 0 and Y < 0 < Y

[X/Y ,∞] if X ≥ 0 and Y = 0

∅ if 0 ̸∈ [X < 0 < X] and Y = 0

(9)

f(X) = {f(x)|x ∈ X}.
|X| = max.{X,X}.

Xn = {xn|x ∈ X} =


[Xn, X

n
], if X > 0 or n is odd

[X
n
, Xn], if X < 0 and n is even

[0, |X|n], if 0 ∈ X and n is even

.

(10)
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2.3. Indexing of subsets of Θ and Some Statistical Quantities

To apply statistical concepts for our defined basic belief assignment, we apply indexing of subsets
of Θ as follows:
Let Θ = {θ1, θ2, . . . , θn} hence |Θ| = n. The number of subsets of Θ is 2n. We define indicator
function as :

For any subset A of Θ, IA(θi) =

{
0 if θi ̸∈ A

1 if θi ∈ A.
(11)

If A = {θj, θk, θl, θm, θp, θq} then indexing number of A in Θ is

v =
n∑

i=1

IA(θi)2
i−1 = 2j−1 + 2k−1 + 2l−1 + 2m−1 + 2p−1 + 2q−1 (12)

Notes :-

1 0 ≤ v ≤ 2n − 1.
2 v = 0 corresponds to ∅.
3 v = 2n − 1 corresponds to Θ.
4 Any value in between 0 and 2n − 1 corresponds to proper subset of Θ.
5 Indexing of subsets of Θ helps in obtaining statistical quantities as it does not affect the
results of statistics and mathematics.

With this indexing of set, we obtain some statistical quantities [1] as :

1 Distribution Function: P (x) = P [X ≤ x].

2 Expectation of V =Mean: E(V ) =
∑2n−1

V=0 V p(V ).

3 rth raw moment : µ
′
r = E(V r) =

∑2n−1
V=0 V rp(V ).

4 rth central moment : µr = E((V − E(V ))r) =
∑2n−1

V=0 (V − E(V ))rp(V ).

5 Variance : V ar(V ) = E(V 2)− (E(V ))2.

6 Standard Deviation : σV =
√

V ar(V ).

7 Coefficient of Skewness : β1 =
µ2
3

µ3
2

.

8 Coefficient of Kurtosis : β2 =
µ4

µ2
2

.

3. The Lower and Upper Bounds of Distribution Function

By indexing of subsets of Θ, we have

X : x0 x1 x2 x3 x4

V : 1 2 4 8 16

Now subsets of Θ required for the probability distribution, have a relation between X and V as
shown in Table 1.
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Sr. No. Subset of Θ V
1 {x0} = {0} 1
2 {x0, x1} = {0, 1} 1+2=3
3 {x0, x1, x2} = {0, 1, 2} 1+2+4=7
4 {x0, x1, x2, x3} = {0, 1, 2, 3} 1+2+4+8=15
5 {x0, x1, x2, x3, x4} = {0, 1, 2, 3, 4} 1+2+4+8+16=31
...

...
...

k {x0, x1, x2, . . . , xk} = {0, 1, 2, . . . , k} 1 + 2 + 4 + · · ·+ 2k = 2k+1 − 1
Table 1. Indexing of Subsets of Θ

Now by notation
p(v) = p(Av) v = 0, 1, 2, 3, · · · , 2n − 1

By indexing of sets, F (x) = P (X ≤ x) = p({0, 1, 2, 3, . . . , x}) = p(Av) and only in this case,
relation between x and v is v = 2x+1 − 1, x = 0, 1, 2, 3, . . . , n. By lower and upper bounds of the
probability of sets (6), Bel(Av) ≤ P (Av) ≤ Pl(Av), we get Bel(Av) ≤ F (X) ≤ x) ≤ Pl(v), x =
0, 1, 2, 3, . . . , n andv = 2x+1−1 Therefore we get lower and upper bounds of the distribution function
of given probability distribution including the case of a subset ∅.

4. First Method

If p(A) = 0 then Bel(A) = 0 and Pl(A) = 0 hence Bel(A) = p(A) = Pl(A) = 0. We have, for
any subset A ⊆ Θwith p(A) ̸= 0, by using series results [6], we have

Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊂ Θ.

⇒ Bel(A)

p(A)
≤ 1 ≤ Pl(A)

p(A)
provided p(A) ̸= 0.

⇒
∑
A⊆Θ

Bel(A)

p(A)
≤

∑
A⊆Θ

1 ≤
∑
A⊆Θ

Pl(A)

p(A)

⇒
∑
A⊆Θ

Bel(A)

p(A)
≤

2n−1∑
v=1

1 ≤
∑
A⊆Θ

Pl(A)

p(A)

⇒
∑
A⊆Θ

Bel(A)

p(A)
≤ 2n − 1 ≤

∑
A⊆Θ

Pl(A)

p(A)

⇒ 1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
≤ 1 ≤ 1

2n − 1

∑
A⊆Θ

Pl(A)

p(A)

⇒ 1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
(SQ)pd ≤ (SQ)pd ≤

1

2n − 1

∑
A⊆Θ

Pl(A)

p(A)
(SQ)pd.

(13)

where (SQ)pd is statistical quantity based on probability distribution under study. Note that we

discard quantities
Bel(A)

p(A)
and

Pl(A)

p(A)
where p(A) = 0. This is important in obtaining approximate

lower and upper bounds of statistical quantities.
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4.1. Proper Magnification or Reduction of Upper and Lower bounds of Raw
Moments

The above formula is applicable for the calculation of statistical quantities viz. raw moments only
and we obtain lower and upper bounds of rth raw moments of probability distribution under study
as interval [µ

′

r
, µ

′
r], where lower bound of interval represents the lower bound of rth raw moment

and upper bound of interval represents the upper bound of rth raw moment.

1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
µ

′

r ≤ µ
′

r ≤
1

2n − 1

∑
A⊆Θ

Pl(A)

p(A)
µ

′

r

µ
′

r
≤ µ

′

r ≤ µ
′

r

(14)

where µ
′
r = corresponding rth raw moment of concerned probability distribution [1, 2].

4.2. Central Moments

In [1], we have central moments of probability distribution as:

µ1 = 0

µ2 = µ
′

2 − (µ
′

1)
2

µ3 = µ
′

3 − 3µ
′

2µ
′

1 + 2(µ
′

1)
3

µ4 = µ
′

4 − 4µ
′

3µ
′

1 + 6µ
′

2µ
′

1

2 − 3(µ
′

1)
4

(15)

Lower and Upper Bounds of Central Moments :-
Using intervals for raw moments (14), formulae for central moments based on raw moments (15),
and rules of interval arithmetics (8), (9) and ( 10), we obtain lower and upper bounds for central
moments of probability distribution under study. Here p(A) ≥ 0 hence Bel(A) ≥ 0, P l(A) ≥

0 and 1/p(A) ≥ 0. The quantities
∑

A⊆Θ

Bel(A)

p(A)
≥ 0 and

∑
A⊆Θ

Pl(A)

p(A)
≥ 0. Therefore, the quan-

tities
1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
≥ 0 and

1

2n − 1

∑
A⊆Θ

Pl(A)

p(A)
≥ 0. The formulae for central moments

in terms of intervals become as: For the first central moment, we have

µ1 = 0

= µ
′

1 − µ
′

1

= [µ
′

1
, µ

′

1]− [µ
′

1
, µ

′

1]

= [µ
′

1
− µ

′

1, µ
′

1 − µ
′

1
].

(16)

For the second central moment, we have

µ2 = µ
′

2 − µ
′

1

2

= [µ
′

2
, µ

′

2]− [µ
′

1
, µ

′

1]
2

= [µ
′

2
− µ

′

1

2
, µ

′

2 − µ
′

1

2
].

(17)

For the third central moment, we have

µ3 = µ
′

3 − 3(µ
′

2)(µ
′

1) + 2µ
′

1

2

= [µ
′

3
, µ

′

3]− 3[µ
′

2
, µ

′

2][µ
′

1
, µ

′

1] + 2[µ
′

1
, µ

′

1]
3

= [µ
′

3
− 3(µ

′

2)(µ
′

1) + 2µ
′

1

3
, µ

′

3 − 3(µ
′

2
)(µ

′

1
) + 2µ

′

1

3
].

(18)

1012



JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.1007-1025

https://publishoa.com

ISSN: 1309-3452

For the fourth central moment, we have

µ4 = µ
′

4 − 4(µ
′

3)(µ
′

1) + 6(µ
′

2)(µ
′

1)
2 − 3µ

′

1

4

= [µ
′

4
, µ

′

4]− 4[µ
′

3
, µ

′

3][µ
′

1
, µ

′

1]

+ 6[µ
′

2
, µ

′

2][µ
′

1
, µ

′

1]
2 − 3[µ

′

1
, µ

′

1]
4

= [µ
′

4
− 4µ

′

3µ
′

1 + 6µ
′

2
µ

′

1

2 − 3µ
′

1

4
,

µ
′

4 − 4µ
′

3
µ

′

1
+ 6µ

′

2µ
′

1

2 − 3µ
′

1

4
].

(19)

4.3. Coefficients of Skewness and Kurtosis

Using interval arithmetic (8), (9), and (10) and lower and upper bounds of central moments (17),
(18), and (19), we obtain the lower and upper bounds of coefficient of skewness and coefficient of
kurtosis as:

The Coefficient of Skewness = β1 =
µ3

2

µ2
3

=
[µ

3
, µ3]

2

[µ
2
, µ2]

3

=
[0, µ3

2]

[µ
2
3, µ2

3]

The Coefficient of Kurtosis = β2 =
µ4

µ2
2

=
[µ

4
, µ4]

[µ
2
, µ2]

2

=
[µ

4
, µ4]

[0, µ2
2]
.

(20)
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By using series results [6], consider∑
A⊆Θ

Bel(A)

p(A)
=

∑
A⊆Θ

Bel(A)
1

p(A)

=
∑
A⊆Θ

p(A)

2n−k

1

p(A)
where k is cardinality of A ⊆ Θ

=
∑
A⊆Θ

1

2n−k

=
n∑

k=1

(
n

k

)
1

2n−k

=
n∑

k=1

(
n

k

)
1

2n · 2−k

=
1

2n

n∑
k=1

2k
(
n

k

)

=
1

2n

n∑
k=0

2k
(
n

k

)
− 1

2n

=
1

2n
(1 + 2)n − 1

2n
where

n∑
k=0

xk

(
n

k

)
= (1 + x)n

=
1

2n
3n − 1

2n

=
3

2

n

− 1

2n
.

Therefore
1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
=

1

2n − 1
{3
2

n

− 1

2n
}

=
3n − 1

2n(2n − 1)
.

(21)
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Now, consider

∑
A⊆Θ

Pl(A)

p(A)
=

∑
A⊆Θ

p(A) +
2k − 1

2k
p(Ā)

p(A)

where Pl(A) = p(A) +
2k − 1

2k
p(Ā), with k = |A| and Ā is complement of A ⊆ Θ .∑

A⊆Θ

Pl(A)

p(A)
=

∑
A⊆Θ

1 +
2k − 1

2k
p(Ā)

p(A)

=
∑
A⊆Θ

1 +
∑
A⊆Θ

2k − 1

2k
p(Ā)

p(A)

=
2n−1∑
v=1

1 +
∑
A⊆Θ

2k − 1

2k
p(Ā)

p(A)

= (2n − 1) +
∑
A⊆Θ

2k − 1

2k
p(Ā)

p(A)

= (2n − 1) +
∑
A⊆Θ

2k − 1

2k
1− p(A)

p(A)

= (2n − 1) +
∑
A⊆Θ

2k − 1

2k
(

1

p(A)
− 1), provided p(A) ̸= 0

= (2n − 1) +
∑
A⊆Θ

2k − 1

2k
1

p(A)
−

∑
A⊆Θ

2k − 1

2k
.

(22)

Since 0 ≤ p(A) ≤ 1, ∀A ⊆ Θ, the quantity
1

p(A)
lies between 1 and ∞. Therefore it becomes

difficult to calculate
∑

A⊆Θ

Pl(A)

p(A)
hence the upper bound of the statistical quantity of probability

distribution under study but this upper bound is less than ∞ as p(A) ̸= 0 for some A ⊆ Θ.
Remark: Consider, for any A ⊆ Θ,

Bel(A)

p(A)
=

2|A|−1m(A)

p(A)
=

2|A|−1p(A)

2n−1

p(A)
=

2|A|−1

2n−1
.
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Therefore, for any A ⊆ Θ, ∑
A⊆Θ

Bel(A)

p(A)
=

∑
A⊆Θ

2|A|−1

2n−1

=
1

2n−1

∑
A⊆Θ

2|A|−12n−1

=
1

2n−1

n∑
k=1

(
n

k

)
2k−1

=
1

2n

n∑
k=1

(
n

k

)
2k

=
1

2n

n∑
k=0

(
n

k

)
2k − 1

2n

=
(1 + 2)n

2n
− 1

2n

=
3n

2n
− 1

2n

=
3n − 1

2n
.

(23)

If for some A ⊆ Θ, p(A) = 0 then substract corresponding term
1

2n−|A| from
∑

A⊆Θ

Bel(A)

p(A)
=

3n − 1

2n
. Repeat this step for all A ⊆ Θ, with p(A) = 0. Therefore from the equations, we have

3n − 1

2n(2n − 1)
(SQ)pd ≤ (SQ)pd ≤

1

2n − 1
{(2n − 1) +

∑
A⊆Θ

2k − 1

2k
1

p(A)
−

∑
A⊆Θ

2k − 1

2k
}(SQ)pd

5. Second Method

From [8], we have ∑
A⊆Θ

Bel(A) = (
3

2
)
n−1

,∑
A⊆Θ

p(A) = 2n−1,

and
∑
A⊆Θ

Pl(A) = 2n−1 +
n−1∑
r=1

(
n− 1

r

)
(1− 2−r).

(24)
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Also, we have, for any A ⊆ Θ,

Bel(A) ≤ p(A) ≤ Pl(A)

⇒
∑
A⊆Θ

Bel(A) ≤
∑
A⊆Θ

p(A) ≤
∑
A⊆Θ

Pl(A)

⇒ (
3

2
)
n−1

≤ 2n−1 ≤ 2n−1 +
n−1∑
r=1

(
n− 1

r

)
(1− 2−r)

⇒
(
3

2
)
n−1

2n−1
≤ 1 ≤

2n−1 +
∑n−1

r=1

(
n−1
r

)
(1− 2−r)

2n−1

⇒ 3n−1

22n−2
≤ 1 ≤ 1 +

1

2n−1

n−1∑
r=1

(
n− 1

r

)
(1− 2−r)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1

n−1∑
r=1

(
n− 1

r

)
(1− 2−r)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
(
n−1∑
r=1

(
n− 1

r

)
−

n−1∑
r=1

(
n− 1

r

)
2−r)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
(
n−1∑
r=1

(
n− 1

r

)
−

n−1∑
r=1

(
n− 1

r

)
(
1

2
)
r

)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
((2n−1 − 1)− ((1 +

1

2
)
n−1

− 1))

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
(2n−1 − 1− (1 +

1

2
)
n−1

+ 1)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
(2n−1 − (1 +

1

2
)
n−1

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 +
1

2n−1
(2n−1 − (

3

2
)
n−1

)

⇒ (
3

4
)
n−1

≤ 1 ≤ 1 + 1− (
3

2
)
n−1 1

2n−1
)

⇒ (
3

4
)
n−1

≤ 1 ≤ 2− (
3

4
)
n−1

⇒ (
3

4
)
n−1

· (SQ)pd ≤ (SQ)pd ≤ (2− (
3

4
)
n−1

) · (SQ)pd. (25)

The procedure to obtain lower and upper bounds of statistical quantities of probability distribution
under study is similar to the procedure in the first Method with change in quantities BP and PlP .

The quantities BP and PlP are replaced by (
3

4
)
n−1

and 2− (
3

4
)
n−1

respectively.

6. Algorithms

Algorithms play an important role in the logical sequencing of tasks or operations in any pro-
cedure. It helps in framing or constructing or writing computer programs hence mechanizing the
whole procedure.

In this section, we obtain algorithms for indexing, probability and basic probability numbers,
belief function, commonality function, and plausibility function of subsets of Θ and summation of
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belief function, commonality function, and plausibility function of subsets of Θ with ratios of belief
function to probability function and plausibility function to probability function in the first method
and the second method. Also, we obtain algorithms for the lower and upper bounds of raw moments
and central moments. Here, the number of distinct elements of Θ is n, the number of subsets of Θ is
2n − 1, P (·) represent the probability of singleton subset {θi} of Θ, and Pi, Beli, P li, and Commi

represent belief, plausibility, and commonality of the subset with index i of Θ respectively.
A: Indexing, Probability, and Basic Probability Numbers of Subsets of Θ:

Input n For i = 0 to 2n − 1

Vi = 0 and Pi = 0

For j = 1 to n

For Ii(θj) = 0 to 1

Vi = Vi + Ii(θj) ∗ 2i−1

Pi = Pi + Ii(θj) ∗ P (θj)

next Ii(θj)

next j

mi =
Pi

2n−1

next i

B: Belief Function of Subsets of Θ:
For i = 0 to 2n − 1

Beli = 0

For k = 0 to 2n − 1

For j = 1 to n

if Ik(θj) ≤ Ii(θj) then next j else next k

Beli = Beli +mk

next k

next i

C: Plausibility Function of Subsets of Θ:

For i = 0 to 2n − 1

Pli = 0

For k = 0 to 2n − 1

For j = 1 to n

if Ik(θj) ̸= Ii(θj) = 1 then next j else Pli = Pli +mk next k

next k

next i
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D: Commonality Function of Subsets of Θ:

For i = 0 to 2n − 1

Commi = 0

For k = 0 to 2n − 1

For j = 1 to n

if Ik(θj) ≥ Ii(θj) then next j else next k

Commi = Commi +mk

next k

next i

E: Summation of Belief Function, Commonality Function, and Plausibility Function
of subsets of Θ:
Here Bel and Pl represent the summation of belief functions and plausibility functions of all subsets
of Θ respectively.

Bel = 0, Comm = 0, P l = 0

For i = 0 to 2n − 1

Bel = Bel +Beli

Comm = Comm+ Commi

Pli = Pl + Pli

next i

6.1. First Method

Calculation of BP and PlP :
Here, BP and PlP represent the summation of ratios of belief and plausibility of a subset of Θ
respectively with a probability of the same subset of Θ. while calculating BP and PlP , we consider
those subsets Ai of frame of discernment Θ with P (Ai) = Pi ̸= 0 hence neglect those subsets Ai of
frame of discernment Θ with P (Ai) = Pi = 0.

BP = 0, P lP = 0

For i = 1 to 2n − 1

if Pi ̸= 0 then {BP = BP +
Beli
Pi

PlP = PlP +
Pli
Pi

}
else next i

next i

6.2. Second Method

A: Calculation of BP and PlP :
Here, BP and PlP represent ratios of summation of belief and plausibility of a subset of Θ with
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probability same subset of Θ respectively.

For i = 1 to 2n − 1

Bel = Bel +Beli

P = P + Pi

Pli = Pl + Pli

next i

BP =
Bel

P
,

P lP =
Pl

P
.

B: rth raw moment = µ
′
r: ,

Here RMLi, RMUi, and RMi represent lower bound of ith raw moment, upper bound of ith raw
moment, and ith raw moment respectively.

For i = 1 To 4RMLi = BP ∗RMi,

RMUi = PIP ∗RMi,

next i,

(26)

C: Calculation of Central Moments:
Here CMLi and CMUi represent the lower bound of ith central moment, and the upper bound of
ith central moment respectively.

CML1 = RML1 −RMU1

CMU1 = RMU1 −RML1

CML2 = RNL2 −RMU2
2

CMU2 = RMU2 −RML2
2

CML3 = RML3 − 3(RMU2)(RMU1) + 2RML1
3

CMU3 = RMU3 − 3(RML2)(RML1) + 2RMU1
3

CML4 = RML4 − 4(RMU3)(RMU1) + 6(RML2)(RML1)
2 − 3RMU1

4

CMU4 = RMU4 − 4(RML3)(RML1) + 6(RMU2)(RMU1)
2 − 3RML1

4

(27)

These algorithms emphasize major steps of operations consisting of sequencing and looping hence
these algorithms help frame or construct computer programs.

7. Illustrative Example

Now we illustrate both methods by an example. Let X ∼ Binomial(n, p). Therefore p(x) =(
n
p

)
pxqn−x [1]. Now connsider n = 4, p = 2/3 and q = 1− p = 1/3. The distribution of X is

X : 0 1 2 3 4 Total

p(x) : 1/81 8/81 24/81 32/81 16/81 1 (28)

We have raw moments, central moments, coefficient of skewness, and coefficient of kurtosis of
Binomial distribution under study as:
µ

′
1 =

∑
xp(x) = 216/81 = 2.66666667, µ

′
2 =

∑
x2p(x) = 648/81 = 8,

µ
′
3 =

∑
x3p(x) = 2088/81 = 25.77777778, µ

′
4 =

∑
x4p(x) = 7080/81 = 87.4074074, µ1 = 0,

µ2 = µ
′
2 − µ

′
1

2
= 0.8889, µ3 = µ

′
3 − 3µ

′
2

2
+ 2µ

′
1

3
= −0.2963,

µ4 = µ
′
4 − 4µ

′
3µ

′
1 + 6µ

′
2µ

′
1

2 − 3µ
′
1

4
= 2.0741 and

1020



JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.1007-1025

https://publishoa.com

ISSN: 1309-3452

coefficient of skewness = β1 = µ2
3/µ

3
2 = −0.124998,

coefficient of kurtosis β2 = µ4/µ
2
2 = 2.624967.

7.1. First Method

Sr. No. subset of Θ p(·) m(·) Bel(·) Pl(·) Bel(·)/p(·) Pl(·)/p(·)
1 ∅ 0 0 0 0 — —
2 {0} 1/81 1/1296 1/1296 41/81 81/1296=1/16 41
3 {1} 8/81 8/1296 8/1296 89//162 81/1296=1/16 89/16
4 {0, 1} 9/81 9/1296 18/1296 63//81 162/1296=2/16 7
5 {2} 24/81 24/1296 24/1296 105/162 81/1296=1/16 105/48
6 {0, 2} 25/81 25/1296 50/1296 67/81 162/1296=2/16 67/25
7 {1, 2} 32/81 32/1296 64/1296 275/324 162/1296=2/16 275/128
8 {0, 1, 2} 33/81 33/1296 132/1296 75/81 324/1296=4/16 75/33
9 {3} 32/81 32/1296 32/1296 113/162 81/1296=1/16 113/128
10 {0, 3} 33/81 33/1296 66/1296 69/81 162/1296=2/16 69/33
11 {1, 3} 40/81 40/1296 80/1296 283/324 162/1296=2/16 283/160
12 {0, 1, 3} 41/81 41/1296 164/1296 76/81 324/1296=4/16 76/41
13 {2, 3} 56/81 56/1296 112/1296 299/324 162/1296=2/16 299/224
14 {0, 2, 3} 57/81 57/1296 228/1296 78/81 324/1296=4/16 78/65
15 {1, 2, 3} 64/81 64/1296 256/1296 631/648 324/1296=4/16 631/512
16 {0, 1, 2, 3} 65/81 65/1296 520/1296 80/81 648/1296=8/16 80/65
17 {4} 16/81 16/1296 16/1296 97/162 81/1296=1/16 97/64
18 {0, 4} 17/81 17/1296 34/1296 65/81 162/1296=2/16 65/17
19 {1, 4} 24/81 24/1296 48/1296 267/324 162/1296=2/16 267/96
20 {0, 1, 4} 25/81 25/1296 100/1296 74/81 324/1296=4/16 74/25
21 {2, 4} 40/81 40/1296 80/1296 283/324 162/1296=2/16 283/160
22 {0, 2, 4} 41/81 41/1296 164/1296 76/81 324/1296=4/16 76/41
23 {1, 2, 4} 48/81 48/1296 192/1296 615/648 324/1296=4/16 615/384
24 {0, 1, 2, 4} 49/81 49/1296 392/1296 79/81 648/1296=8/16 79/49
25 {3, 4} 48/81 48/1296 96/1296 291/324 162/1296=2/16 291/192
26 {0, 3, 4} 49/81 49/1296 196/1296 77/81 324/1296=4/16 77/49
27 {1, 3, 4} 56/81 56/1296 224/1296 623/648 324/1296=4/16 623/448
28 {0, 1, 3, 4} 57/81 57/1296 456/1296 159/162 648/1296=8/16 159/114
29 {2, 3, 4} 72/81 72/1296 288/1296 639/648 324/1296=4/16 639/576
30 {0, 2, 3, 4} 73/81 73/1296 584/1296 161/162 648/1296=8/16 161/146
31 {1, 2, 3, 4} 80/81 80/1296 640/1296 1295/1296 648/1296=8/16 1295/1280
32 {0, 1, 2, 3, 4} 1 81/1296 1 1 1 1∑

16 1 6561/1296 26.5455247 121/16 102.458177
Table 2. Calculation of Belief Functions Bel, P l, and Bel/P, P l/P

From the Table 2, we have

1.
∑

A⊆Θ p(A) = 25−1 = 24 = 16 = 1296/81.
2.

∑
A⊆Θm(A) = 1.

3. for any subset A ⊆ Θ, Bel(A) = m(A) · 2|A|−1, where |A| = cardinality of set A.

4. for any subset A ⊆ Θ, P l(A) = p(A) +
(2k − 1

2k
)
p(A),

where k = |A| and A = complement of A in Θ.
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We have
1

2n − 1

∑
A⊆Θ

Bel(A)

p(A)
(SQ)pd ≤ (SQ)pd ≤ 1

2n − 1

∑
A⊆Θ

Pl(A)

p(A)
(SQ)pd. Here n = 5, and

from Table 2, we have
∑

A⊆Θ

Bel(A)

p(A)
= 121/16,

∑
A⊆Θ

Pl(A)

p(A)
= 102.458177.

Therefore the relationship becomes
1

25 − 1
(121/16)(SQ)pd ≤ (SQ)pd ≤

1

25 − 1
(102.458177)(SQ)pd.

⇒ (0.243951613)(SQ)pd ≤ (SQ)pd(3.30510248)(SQ)pd. (29)

Using the above equation (29), rules of operations on intervals (interval arithmetics) (8), (9), and
(10), and raw moments of discrete binomial probability distribution under study, we have lower and
upper bounds for raw moments as:

µ
′

1
= 0.650537635 ≤ µ

′

1 ≤ 8.81360662 = µ
′

1

µ
′

2
= 1.9516129 ≤ µ

′

2 ≤ 26.4408198 = µ
′

2

µ
′

3
= 6.28853047 ≤ µ

′

3 ≤ 85.1981973 = µ
′

3

µ
′

4
= 21.323178 ≤ µ

′

4 ≤ 288.890439 = µ
′

4

(30)

Using rules of interval arithmetics (8),(9), and (10) and intervals for raw moments (30), we have

µ1 = [µ
1
, µ1] = [µ

′

1
− µ

′

1, µ
′

1 − µ
′

1
],

µ2 = [µ
2
, µ2] = [µ

′

2
− µ

′

1

2
, µ

′

2 − µ
′

1

2
],

µ3 = [µ
3
, µ3] = [µ

′

3
− 3µ

′

2mu
′

1 + 2mu
′

1

3
, µ

′

3 − 3µ
′

2
µ

′

1
+ 2µ

′

1

3
],

µ4 = [µ
4
, µ4] = [µ

′

4
− 4µ

′

3mu
′

1 + 6µ
′

2
mu

′

1

2 − 3mu
′

1

4
,

µ
′

4 − 4µ
′

3
µ

′

1
+ 6µ

′

2mu
′

1

2 − 3µ
′

1

4
],

(31)

Using rules of interval arithmetics (8), (9), and (10) and equations (29) and (30), and intervals for
central moments (31), we have lower and upper bounds for central moments of discrete binomial
distribution as:

µ
1
= −8.16306899 ≤ µ1 ≤ 8.16306899 = µ1

µ
2
= −75.7280488 ≤ µ2 ≤ 26.0176206 = µ2

µ
3
= −692.277809 ≤ µ3 ≤ 1450.66536 = µ3

µ
4
= −21079.7244 ≤ µ4 ≤ 12595.4731 = µ4

(32)

1022



JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.1007-1025

https://publishoa.com

ISSN: 1309-3452

Using rules of interval arithmetics (8), (9), and (10) and equations (20) and (32), we have

The coefficient of skewness = β1 =
µ2
3

µ3
2

=
[µ

3
, µ3]

2

[µ
2
, µ2]

3

=
[−692.277809, 1450.66536]2

[−75.7280488, 26.0176206]3

=
[0, 1450.66536]2]

[−75.72804883, 26.01762063]

=
[0, 2104429.99]

[−434280.472, 17611.7588]

= [−∞, 0/(−434280.472)] ∪ [0/17611.7588,∞]

= [−∞, 0] ∪ [0,∞]

= [−∞,∞].

(33)

The coefficient of kurtosis = β2 =
µ4

µ2
2

=
[µ

4
, µ4]

[µ
2
, µ2]

2

=
[−21079.7244, 12595.4731]

[−75.7280488, 26.0176206]2

=
[−21079.7244, 12595.4731]

[0,−75.72804882]

=
[−21079.7244, 12595.4731]

[0, 5734.73738]

= [−∞12595.4731/5734.73738]

= [−∞, 2.19634698].

(34)

7.2. Second Method

From Table 2, we have∑
A⊆ΘBel(A)∑
A⊆Θ p(A)

= (3/4)n−1 = (3/4)5−1 = (3/4)4 = 0.31640625

and

∑
A⊆Θ Pl(A)∑
A⊆Θ p(A)

= 2− (3/4)n−1 = 2− (3/4)5−1 = 2− (3/4)4 = 1.68359375

(35)

Using equations (25) and (35), we have,

(3/4)n−1(SQ)pd ≤ (SQ)pd ≤ [2− (3/4)n−1](SQ)pd

→ (0− 31640625)(SQ)pd ≤ (SQ)pd ≤ [1.68359375](SQ)pd
(36)

Using the above equation (36), rules of operations on intervals (interval arithmetics) (8), (9), and (
10), and raw moments of discrete binomial probability distribution under study, we have lower and
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upper bounds for raw moments as,

µ
′

1
= 0.84375 ≤ µ

′

1 ≤ 4.48958334 = µ
′

1

µ
′

2
= 0.53125 ≤ µ

′

2 ≤ 13.46875 = µ
′

2

µ
′

3
= 8.15625 ≤ µ

′

3 ≤ 43.3993056 = µ
′

3

µ
′

4
= 27.65625 ≤ µ

′

4 ≤ 147.158565 = µ
′

4.

(37)

Using rules of interval arithmetics (8), (9), and ( 10) and lower and upper bounds for raw moments
(37) and formulae for intervals for central moments (31), we have lower and upper bounds of central
moments of discrete binomial distribution as

µ
1
= −3.64583334 ≤ µ1 ≤ 3.64583334 = µ1

µ
2
= −19.6251086 ≤ µ2 ≤ 12.7568359 = µ2

µ
3
= −172.049622 ≤ µ3 ≤ 223.041882 = µ3

µ
4
= −1968.29009 ≤ µ4 ≤ 1746.99648 = µ4.

(38)

Using rules of interval arithmetics (8), (9), and (10) and lower and upper bounds for central moments
(38), we have

The coefficient of skewness = β1 =
µ2
3

µ3
2

=
[µ

3
, µ3]

2

[µ
2
, µ2]

3

=
[−0.172.049622, 223.041882]2

[−19.6251086, 12.7568359]3

=
[0, 223.0418822]

[−19.62510863, 12.75683593]

=
[0, 49747.6811]

[−7558.51025, 2076.00745]

= [−∞, 0/(−7558.51025)] ∪ [0/2076.00745,∞]

= [−∞, 0] ∪ [0,∞]

= [−∞,∞].

(39)

The coefficient of kurtosis = β2 =
µ4

µ2
2

=
[µ

4
, µ4]

[µ
2
, µ2]

2

=
[−1968.29009, 1746.99648]

[−19.6251086, 12.7568359]2

=
[−1968.29009, 1746.99648]

[0,−19.62510862]

=
[−1968.29009, 1746.99648]

[0, 385.144888]

= [−∞, 1746.99648/385.144888]

= [−∞, 4.53594617].

(40)

8. Applications

The intervals are the most appropriate approach or tool to deal with uncertainty. In the medical
field, most of the medical parameters are represented in terms of intervals containing a single value
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of parameters of interest viz. Body-Mass Index, RBC count, WBC count, Sugar Level, Blood
Pressure, Lymphocyte Counts, count, and so on. Using such medical parameters, medical analysis is
performed consisting of statistical quantities viz. Range, Mean, Median, Mode, Variance, Standard
Deviation, Skewness, Kurtosis, Correlation, Regression, Small Sample Tests, Large Sample Tests,
and so on. Some processes of withdrawing conclusions with uncertainty are based on interval
arithmetics. The approaches, mentioned in this paper, are useful to obtain lower and upper bounds
of statistical quantities in terms of intervals. Therefore these approaches are helpful in the process
of withdrawing conclusions with uncertainty. Also, using these approaches, we can obtain lower
and upper bounds of several statistical quantities such as kth ordered raw and central moments,
measures of dispersion for the function of one variable.

9. Conclusion

Instead of having a single value representing statistical quantity, it is always better, to have an
interval in which this single value is included. In this way, we include uncertainty regarding a
single value representing statistical quantity. While obtaining lower and upper bounds of statistical
quantities, we have taken care of getting more suitable bounds. This gives two approaches to finding
lower and upper bounds of statistical quantities. The second method is more appealing than the first
method and it gives closer lower and upper bounds of statistical quantities of discrete probability
distribution under study. We hope that these approaches may be very useful in further research.
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