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Abstract 

Many continuing fraction applications from different mathematical contexts and levels are the topic of this investigation. 

Many continuing fraction qualities are examined as the first step in the investigation. When looking for the best rational 

approximations of a real number x, the continuous fraction expansion is a particularly effective method. In addition, 

continuing fractions are a remarkably flexible tool for handling issues involving motions spanning more than one time 

period. In mathematics, continued fractions play a crucial role. The fact that they may be used in so many different areas 

of pure and practical research is a major reason for their significance. Although though many people have heard of them, 

Continuous Fractions (CF) are an old topic. Algebra and other areas of study including arithmetic, physics, and chemistry 

all make use of repeated fractions. 
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Introduction 

The continued fraction is an alternative representation of numbers. Although it is a powerful and insightful representation 

of numbers, it is largely ignored in the mathematics we have been taught. Every real number may be written as a 

continuing fraction, which is just the sum of a series of divisions. Many fields have found use for continued fractions. 

They showed us how to approximate irrational numbers with rational ones. Several computer programs made 

approximations based on continuous fractions. Solutions to the Diophantine and Pell's equations may also be found via 

the use of continued fractions. In addition, Robert M. Corless noted in a 1992 study that continuous fractions and chaos 

theory have some common ground. Applications such as building calendars, astronomy, music, and others all benefit 

greatly from the use of continuing fractions in the mathematical handling of issues that arise. 

There is a lengthy history behind continued fractions, maybe dating back to Euclid's technique for finding the greatest 

common divisor. Yet, because to their use in modern, fast, and precise computer mathematics, they are enjoying a 

renaissance. The use of continuing fractions in computer arithmetic has several benefits, including the elimination of 

roundoff and truncation mistakes, quicker division and multiplication compared to positional number representations, and 

accurate evaluation of trigonometric, logarithmic, and other functions. In a normal situation, each succeeding numerator 

would be 1. 

The notion of continuing fractions was initially introduced by the Euclidean method for finding the greatest common 

divisor (GCD) of two numbers, which had been around for quite some time. Around 300 B.C. was the approximate time 

frame. Since then, research has continued to be conducted, and a plethora of applications have been developed, all thanks 

to the ease with which these problems can be solved and the speed with which they can be calculated using just addition, 

subtraction, multiplication, and division. Nevertheless, continuing fractions remain a profitable and attractive area of 

study. In reality, their applications are evident in a wide variety of fields, including medicine, chemistry, physics, and 

mathematics. 

Literature Review 

Han, Guo-Niu (2014) the Jacobi continuous fraction expansion of a power series $f$ may be used to get the Hankel 

determinants of $f$. All Hankel determinants of $f$ must, however, be positive if the Jacobi continuing fraction is to 

exist. We present the "its Hankel continuing fraction". The Hankel continuing fraction is another useful tool for assessing 

the Hankel determinants. A power series $f$ over a finite field is said to be periodic in the Hankel continuing fraction if 

and only if it satisfies a quadratic functional equation. As an example of our application, we calculate the Hankel 

determinant for the standard paperfolding sequence among others. As a consequence, we provide a computer-generated 

proof of a result proved by Guo, Wu, and Wen that was previously just a conjecture by Coons-Vrbik. 
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Sharaf, Mohammed & Saad, A. S. & Motlep, N. (2015) We provide a powerful technique for the universal Y's functions 

of space dynamics, one that rests on the continuous fractions theory. For every conic motion, the method works (elliptic, 

parabolic or hyperbolic). 

Greene, J. & Schmieg, J. (2017) looked at an extension of traditional continuing fractions in which the "numerator" 

might be any positive integer other than 1. Next, we generalize even more to the situation when z is a real integer that is 

not 1. The situation in which z is rational but not an integer is the one on which we concentrate. Substantial discussion is 

devoted to periodic and n-expansions, with comparisons drawn between the cases in which z is an integer and a rational 

number. Since z is not an integer, the periodic expansion of n is no longer required. We provide examples of periodic 

expansions in numerous infinite families. 

Continued Fractions 

Two non-zero integers, p and q, are assumed to exist. The expression gcd(p, q) represents the largest positive integer d such 

that: 

• d is a divisor of both p and q. 

• c ≤d if and only if it is a divisor of both p and q. 

Definition 1: If the gcd(p, q) = 1, then the provided numbers p and q are said to be relatively prime. 

Theorem 1: Let p, q, and s all be integers. For any x and y ∈Z, if p divides both q and s, then p divides qx + sy. 

Algorithm for Division (Theorem 2): A unique pair of positive integers m and r (0 r q) exists such that given two positive 

numbers p and q (where q > 0), p = q.m + r. The symbol for the dividend is p, the divisor is q, the quotient is m, and the 

remainder is r. 

The Euclidean Algorithm 

To determine the largest common factor of two numbers, the Euclidean algorithm may be used. It is made up of a series of 

subdivisions. This method employs repeated applications of the Division Algorithm until a zero residual is obtained. Given that 

gcd(p, q) = gcd(±p, ±q), we know that p is greater than q, thus we can conclude that p > q are both positive integers.  

Theorem 3: (Euclidean algorithm): Assume that there are two positive numbers p and q, and that p > q. Then, think about the 

repeated divisions below. 

 

The last non-zero residual after dividing by two is rn, therefore gcd(p, q) = rn. 

Proof: It is necessary to demonstrate that rn is the greatest common divisor of p and q. This is what we get if we apply 

Lemma 1.1 over and over again: 
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Hence, rn is the largest common factor between p and q. 

Theorem 4: Given p and q, two non-negative integers, prove Theorem 4. If p and q are linearly independent, then their 

GCD is a linear combination. That is, gcd(p, q)=mp+nq indicates that m and n are both integers. 

The Euclidean algorithm for determining the greatest common divisor of two numbers is the most direct route to proving 

this. Here's how the algorithm works: Assume a and b are both whole numbers. Given that gcd(a, b) = gcd(b, a) = gcd(|a|, 

|b|) [Bur11, Ch.2], we know that a ≥ b > 0. If we have a diminishing series of remainders, b > r1 > r2 > ... ≥ 0, using the 

division procedure numerous times will finally lead to 0. Let's do this the way it's supposed to be done: 

 

The gcd is the last non-zero residual, rn (a, b). We are less concerned with the gcd itself than with the algorithm used to 

find it. The FCF form [q1; q2,..., qn] = [a0; a1, a2,..., an] has one element for each quotient (q1, q2,..., qn). Let's try out 

the algorithm on a few real-world problems. To begin, let's run some numbers through the Euclidean Algorithm with 
187

57
 

here, a = 187 and b = 57: 

187 = (3)57 + 16 

57 = (3)16 + 9  

16 = (1)9 + 7  

9 = (1)7 + 2  

7 = (3)2 + 1  

2 = (2)1 + 0 

The FCF of 
187

75
 is [3; 3, 1, 1, 3, 2]. These values may be obtained through the algorithm's quotients. Take note that the 

gcd(187, 75) equals 1 in this scenario. Consider 
𝑎

𝑏
the case where a=147 and b=69 to see still another instance where 

gcd(a,b)≠ 1. 

147 = (2)69 + 9  

69 = (7)9 + 6  

9 = (1)6 + 3  

6 = (2)3 + 0.  



JOURNAL OF ALGEBRAIC STATISTICS 

Volume 9, No. 1, 2018, p. 116-122 

https://publishoa.com 

ISSN: 1309-3452 

DOI: https://doi.org/10.52783/jas.v9i1.1447 

119 

The FCF identifier for 

 

This is seen in the image below. 

 

Figure 1: Pictorial Representation of 147/69 

To get the tan of a 147 by 69 rectangle, We get the linear residual of 9 by counting the number of 69x69 squares we can 

generate, and we obtain 2. That's where we get the first pair of numbers in [2; 7; 1]. 2. Given that the first residual is 9,  

we can next count the number of 9 by 9 green squares that may be made from the remaining material, and we find that 

there are 7. As a result, we have a linear remaining of 6. Note that the subsequent FCF number is 7. For the next linear 

remainder of 3, the next digit in the FCF is 1, which we get by counting the number of blue 6x6 squares in the remaining 

space. The next step is to count the number of pink 3x3 squares that remain, and we find that there are just 2. 

Binomial Theorem: 

The expansion of (x +y)n according to the binomial theorem is as follows, for every positive integer n: 

 

Where 

 

the coefficient of the binomial distribution, or. 

The Algorithm of Continued Fractions  

The integral portion of each real number x is represented by a unique integer bxc, while the fractional part is represented 

by a unique real x in the range [0, 1]. 
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x = bxc + {x} 

In the event that x is not an integer, we get by setting x1:= 1/{x} and {x} ≠ 0. 

 

When we set x2:= 1/{x1} , if {x1} is not an integer, we receive {x1} ≠0. 

 

If for any i {xi}  = 0, then the procedure ends; otherwise, it goes on indefinitely. The so-called continuing fraction 

expansion of x is written a0 := ⌊𝑥⌋ and ai = ⌊𝑥𝑖⌋  for i ≥ 1. 

 

which from now on will be written using the shorter notation 

x = [a0, a1, a2, a3, . . .] 

Partial quotients of the continuing fraction of x are the integers a0, a1,..., whereas the rational numbers 

 

are also known as convergents. The convergents approximate x as closely as possible using just rational functions. If p > 

q are positive integers, then 

(1)  

Thus, p/q converges to x. In fact, if x has two convergents, pk/qk and pk+1/qk+1, then at least one of these fulfills (1). 

If x = a/b is a rational integer, then finding its continuing fraction is as simple as using the Euclidean technique to find 

their greatest common divisor: 

 

On the one hand, the continuing fraction of a rational integer is always finite since the Euclidean algorithm always halts. 

In contrast, a finite continuous fraction may be constructed for any rational integer. We have reached this conclusion 

because the growth of any continuous fraction of a real number is constrained if and only if the number is rational. Don't 

forget that if ak 2, 
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[a0, a1, a2, . . ., ak ] = [a0, a1, a2, . . ., ak−1, ak − 1, 1], (2)  

Hence, there are at least two methods to write a rational number as a continuing fraction. It turns out that there are only 

two ways to represent every rational integer as a continuous fraction, and both are supplied by (2). 

Elementary Applications of Continued Fractions 

One of the many uses of continuing fractions is finding a fraction with a small denominator that approximates a certain 

probability, percentage, or average rate. As an example, this concept may be used to speculate on the number of "at bats" 

a baseball player would have had in order to achieve a specific batting average. For calculating a batting average, the ratio 

of hits to at-bats is divided by three. As 0.334 = 
334 

1000
, we may safely infer that there were 1000 opportunities for the batter 

in question. This decimal may be written as 
167 

500
, and I think it's safe to say that 500 is the absolute minimum number of 

"at bats" that can be used. But, might I ask, is that right? Is it feasible to have an even lower number of "at bats" than 500 

and yet hit 0.334? We can discover it with the aid of continued fractions. Take the rational integer x to the third power, 

which is 0.334. In such case, x will range from 0.3335 < x < 0.3345. Have a look at the representation of the numbers 
3335 

10000
 = [0; 2, 1, 666] and 

3345 

10000
 = [0; 2, 1, 94, 1, 1, 3] in terms of continuing fractions. It follows that we must choose the 

continuing fraction 𝛼 such that [0; 2, 1, 666] <𝛼<[0; 2, 1, 94, 1, 1, 3]. The FCFs, 666 in the smaller fraction and 94 in the 

bigger fraction, are identical up to the point a3. Hence, 94 < a3 < 666 is the FCF of 𝛼. We'll use 95 as a3 since 95 94 + 1 

= 95, which satisfies our requirement for a rational integer with a small denominator. Let α = [0; 2, 1, 95]. This yields the 

lowest denominator fraction possible, between 
3335 

10000
 𝑎𝑛𝑑 

3345 

10000
: 

 

 

That leaves a minimum of 287 probable plate appearances. Let's have a look at an FCF that is more in line with [0; 2, 1, 

666], say [0; 2, 1, 600] 

 

 

In this example, there are 1802 "at bats," which is much more than the usual 287. It is clear that the denominator of the 

last rational number will be big if the last denominator in the FCF is big where 0.4275 = [0; 2, 2, 1, 18, 3] and 0.4285 = 

[0; 2, 2, 1, 285]. The range of possible batting averages is [0; 2, 2, 1, 18 3] [0; 2, 2, 1, 285] for the case when y = 0.428. 

In order to convert [0; 2, 2, 1, 18, 3] ≤ β < [0; 2, 2, 1, 285], we require a continuing fraction β. The smallest of these 

fractions has an a4 value of 18, while the largest has a value of 285. Because of this, 18 < a4 < 285. In this example, we'll 

use a4 = 19 and let β= [0; 2, 2, 1, 19] = 
59 

138
= 0.42753623190 ≈ 0.428. In order to illustrate another characteristic of 

continuing fractions, we looked at the second case.  
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Let's have a look at another use of FCF, this time to determine the lowest feasible denominator rational number that 

approximates a particular average rate. Opinion surveys are often reported in the media as percentages. It may be said 

that 70.37 percent of voters approved a measure, for instance. The general public could interpret this to suggest that 7037 

out of 10,000 persons voted in favor since this fraction is written in its lowest form: 
7037 

10000
. Nevertheless, this may not 

even come close to the reality. Determine the least number of voters needed to get a result of 70.37 percent. The result of 

70.37 percent is probably the result of rounding β. This means that the true percentage, which we'll round up to 70.374%, 

may have been anywhere in that range. The two extreme fractions, 
70365 

100000
 = [0; 1, 2, 2, 1, 2, 25, 5, 1, 4], and 

70374 

100000
 = [0; 

1, 2, 2, 1, 1, 1, 37, 6, 8], will be used to compute the FCF, just as they were in the batting average problem. Both when a5 

= 1 and a5 = 2, these FCF sum to the same value. Let β= [0; 1, 2, 2, 1, 2], where β’s a5 is the smaller of the two plus 1. 

This will get us to a tiny fraction, which is what we need. Then: 

 

This demonstrates that a yes vote of only 19 out of a possible 27 respondents would provide a response rate of 70.37 

percent. 

Conclusion 

This study examines a not-so-typical kind of numerical representation known as continuous fraction. One of the most 

dramatic and powerful representations of numbers, the continuing fraction has a long and storied history. In the case of 

irrational numbers, the decimal expansion doesn't always display the full beauty of the underlying numerical pattern. One 

of the most dramatic and powerful representations of numbers, the continuing fraction has a long and storied history. In 

the case of irrational numbers, the decimal expansion doesn't always display the full beauty of the underlying numerical 

pattern. Only quadratic continuing fractions are taken into account.  
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