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Abstract. A current need in the robotics field is the definition of methodologies for quantitatively
evaluating the results of experiments. This paper contributes to this by defining a new criterion
for assessing path-following tasks in the planar case, that is, evaluating the performance of robots
that are required to follow a desired reference path. Such criterion comes from the study of the
local differential geometry of the problem. New conditions for deciding whether or not the zero
locus of a given polynomial intersects the neighbourhood of a point are defined. Based on this,
new algorithms are presented and tested on both simulated data and experiments conducted at
sea employing an Unmanned Surface Vehicle.
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1. Introduction and motivation

We present new conditions for deciding whether or not the zero locus of a given poly-
nomial intersects the neighbourhood of a point. This problem has already been addressed
in [19] where a local analysis is performed, and both necessary and sufficient numerical
crossing conditions are provided in terms of the polynomial’s evaluation at the point and
using ‖ · ‖1 and ‖ · ‖∞ norms. Extending some results presented in [14], in this paper we
exploit the approach of [19] to get new crossing conditions which use the more popular
‖ · ‖2 norm. The main reason for this choice stands in the application of our methods to
the robotic field, a true guideline of our work. The importance of developing and spread-
ing Good Experimental Methodologies (GEMs) and standards for performance evaluation
within the robotic community is recognized in many papers. A brief but comprehensive
review of the issues related to measuring and comparing research results in robotics is pro-
vided in [5], which also discusses the need of defining benchmarks for specific sub-domains
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of robotics (visual servoing, grasping, motion planning,...) rather than benchmarks valid
for all domains. At the same time, there are very few works in the literature that actively
address these issues and even less in marine robotics, the subfield in which we are mainly
interested. In [4] the author lists the main challenges in marine robotics, stressing the
importance of obtaining a credible measurement for algorithms’ performance versus the
costs needed for organizing sea trials. Recent work by the authors deals with the definition
of the identification of GEMs and practices to carry out repeatable experiments with Un-
manned Surface Vehicles (USVs) [3] and with the definition and validation of performance
indices in marine robotics applications [16].

Using the new ‖ · ‖2-norm crossing conditions (see Propositions 3, 4, 6 and 8), in the
current paper we extend to the ‖·‖2 norm the methodology presented in [15] for evaluating
surface path-following experiments executed employing marine robots. A two step strategy
for evaluating the capability of a robot to follow a reference path and an overall index of
performance are defined. This is exploited for evaluating the control system mounted on
the Charlie USV, a vessel developed in Genova by the Institute of Intelligent Systems for
Automation (ISSIA) of the National Research Council (CNR).

The remainder of the paper is organized as follows: in Section 2 some background
material used throughout the paper is introduced. In Section 3 the main theoretical results
are presented: the necessary and sufficient crossing conditions (presented in Subsections 3.1
and 3.2) are gathered in the CROSSING Algorithm (CA-2) and Approximate CROSSING
Algorithm (ACA-2), see Subsection 3.3. The behaviour of the crossing criteria under some
affine transformations is analyzed in Subsection 3.4: namely, in the general case invariance
under translation and rotation is proved, whereas invariance under uniform scaling holds
for polynomials of special form. In Section 4 a two step methodology to be applied to
path-following experiments in robotics’ trials is set up, and results on real and simulated
data are presented in Sections 5 and 6. Finally, in Section 7 the online applicability of the
ACA-2 algorithm is supported by some simulated tests and corresponding computational
time recorded.

2. Background material

We start this section recalling basic definitions and properties of matrices (see [8]).
Let m, n be positive integers; we denote by Matm×n(R) the set of m×n matrices with

entries in R; if m = n we simply write Matn(R). For any M ∈ Matm×n(R), we denote
by M t its transpose. Let v be an element of Matn×1(R). The ∞-norm of v is defined
by ‖v‖∞ = maxni=1 |vi|; the 2-norm (also known as Euclidean norm) of v is defined by

‖v‖2 =
(∑n

i=1 |vi|2
)1/2

. The well-known Cauchy-Schwarz inequality states that for each
v, w ∈ Matn×1(R) we have |vtw| ≤ ‖v‖2‖w‖2.

In the following definition we recall another very useful norm on Matn×1(R), the
weighted 2-norm (see [20]).

Definition 1. Let W be a positive diagonal matrix in Matn(R).
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1. The W -weighted 2-norm on Matn×1(R) is defined by the formula

‖v‖W := ‖Wv‖2

where v ∈ Matn×1(R) and Wv denotes the usual product of matrices.

2. Let p be a point of Rn; the (2,W )-unit ball centered at p, simply denoted by BW (p),
is the closed convex set defined as

BW (p) = {x ∈ Rn such that ‖(x− p)t‖W ≤ 1}.

In the following definition we recall two matrix norms on Matm×n(R) (n > 1): the
matrix 2-norm induced by the 2-norm on Matn×1(R) and the Frobenius norm.

Definition 2. Let M = (mij) be a matrix in Matm×n(R).

1. The matrix 2-norm is the norm on Matm×n(R) induced by the 2-norm on Matn×1(R)
and defined by the formula

‖M‖2 := max
‖v‖2=1

‖Mv‖2,

where v ∈ Matn×1(R).

2. The Frobenius norm is the norm on Matm×n(R) defined by

‖M‖F :=

√√√√ m∑
i=1

n∑
j=1

|mij |2.

Thanks to the natural identification of Matn(R) with Matn2×1(R), a matrix M ∈
Matn(R) can be viewed as an element, that we will denoted by M (v) to avoid confusion,
of Matn2×1(R). Moreover,

‖M‖F = ‖M (v)‖2. (1)

We recall a useful relation between the norms introduced above.

Proposition 1. For each M ∈ Matm×n(R) the following inequalities hold true:

‖M‖2 ≤ ‖M‖F ≤
√

min{m,n}‖M‖F .

Now, we collect some basic facts of analytic nature. We recall the following version of
the Mean Value Theorem for vector valued real functions (for the proof we refer to [9]).

Proposition 2. Let U ⊆ Rn be a convex open set and let p ∈ U . Let φ : U → Rm be a
differentiable vector valued function on U and denote by Dφ(x) the m× n matrix of first
order derivatives of each component of φ, that is,

Dφ(x) =


∂φ1
∂x1

. . . ∂φ1
∂xn

...
...

∂φm
∂x1

. . . ∂φm
∂xn
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Then, for each x ∈ U , we have

‖(φ(x)− φ(p))t‖2 < sup
0<ν<1

‖Dφ(p+ ν(x− p))‖2‖(x− p)t‖2.

Let U ⊆ Rn be a convex open set, and let M(x) = (mij(x)) be a matrix whose entries
are the evaluations at x ∈ U of differentiable vector valued functions mij : U → Rn. Hence,
in particular, M(p) ∈ Matn(R) for each given point p ∈ U . Following [19, Lemma 1.13],
we will use the following special case of Proposition 2.

Lemma 1. Let U ⊆ Rn be a convex open set. Fix a point p of U and let M(x) = (mij(x))
be a matrix as above. For each x ∈ U , we have

‖M(x)‖2 <
√
n‖M(p)‖2 + O(‖(x− p)t‖2).

Proof. From Proposition 1 and equality (1) it follows that

‖M(x)‖2 ≤ ‖M(x)‖F = ‖M (v)(x)‖2. (2)

Consider the vector valued function φ = (M (v))t : U → Rn2
defined by φ(x) :=

(M(x)(v))t. Clearly, φ is differentiable on U , so we can apply Proposition 2 to get

‖M(x)(v) −M(p)(v)‖2 < sup
0<ν<1

‖D(M(p+ ν(x− p))(v))t‖2‖(x− p)t‖2 = O(‖(x− p)t‖2).

Combining the previous inequality with∣∣ ‖M(x)(v)‖2 − ‖M(p)(v)‖2
∣∣ ≤ ‖M(x)(v) −M(p)(v)‖2

(a consequence of the usual triangular inequality), we obtain

‖M(x)(v)‖2 < ‖M(p)(v)‖2 + O(‖(x− p)t‖2) = ‖M(p)‖F + O(‖(x− p)t‖2).

Applying again Proposition 1 we then find

‖M(x)(v)‖2 < ‖M(p)‖F + O(‖(x− p)t‖2) ≤
√
n‖M(p)‖2 + O(‖(x− p)t‖2). (3)

Combining (3) with (2) we are done.

3. Crossing conditions

Following the approach of [19], in this section we provide both necessary and sufficient
numerical conditions so that the zero locus of a polynomial crosses a bounded region
containing a given point of Rn.

We need to fix some notation which is borrowed from [13]. In particular, we let
x1, . . . , xn be indeterminates and most of the times we use for simplicity the notation
x = (x1, . . . , xn). The multivariate polynomial ring R[x] = R[x1, . . . , xn] is denoted by P .
Given α = (α1, . . . , αn) ∈ Nn, we denote by |α| the number α1 + · · · + αn, by α! the
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number α1! . . . αn!, by xα the power product xα1
1 . . . xαnn , and by ∂αf

∂xα := ∂|α|f
∂x
α1
1 ...∂xαnn

the

α-partial derivative of a polynomial f = f(x) ∈ P .

Moreover, following the standard notation, we denote by Jacf (x) :=
(
∂f
∂x1

, . . . , ∂f∂xn

)
the Jacobian (or gradient) of f , and by Hf (x) :=

(
∂2f

∂xi∂xj

)
i,j=1,...,n

the n × n symmetric

Hessian matrix of f .
Let f = f(x) be a polynomial of P and let p = (p1, . . . , pn) be a point of Rn. Let

ε1, . . . , εn be positive real numbers. Set

ε := (ε1, . . . , εn), εmin := min{ε1, . . . , εn}, εmax := max{ε1, . . . , εn},

and let E ∈ Matn(R) be the positive diagonal matrix with entries 1/ε1, . . . , 1/εn. Through-
out this section we shall use the E-weighted 2-norm on Rn and we consider the correspond-
ing closed unit ball Bε(p) centered at p (see Definition 1).

3.1. Necessary crossing conditions

We start providing necessary conditions on |f(p)| so that the locus f = 0 crosses Bε(p).
Such a condition is expressed in terms of the quantity (depending on Bε(p))

H := max
x∈Bε(p)

‖Hf (x)‖2. (4)

Proposition 3. Let f = f(x) be a non-costant polynomial of P , let p be a point of Rn,
and let Bε(p) be the unit ball centered at p. If

|f(p)| > ‖ Jacf (p)‖2εmax +
H

2
ε2max =: B1(f, p, ε), (5)

then the zero locus of f does not cross Bε(p).

Proof. The proof runs parallel to the proof of [19, Proposition 2.1]: it is sufficient to
replace ‖ · ‖1 and ‖ · ‖∞ norms by ‖ · ‖2 norm.

Since the quantity H is hard to be computed, the use of Proposition 3 is sometimes
not possible in the applications. Therefore, in the following we state another result which
is analogous to Proposition 3 but it avoids the computation of H, yet providing a non-
crossing cell condition. The following statement holds in a second-order error analysis, so
it is valid for small values of (the components of) the vector ε. To this purpose, for the
rest of this section, we assume εmax � 1.

Proposition 4. Let f(x) be a degree ≥ 2 polynomial of P . Let p be a point of Rn and let
Bε(p) be the unit ball centered at p. If

|f(p)| > ‖Jacf (p)‖2εmax +
1

2
‖Hf (p)‖2ε2max := B′1(f, p, ε), (6)

then the zero locus of f does not cross Bε(p) neglecting contributions of order O(ε3max).
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Proof. The proof runs parallel to the proof of [19, Proposition 2.5]: it is sufficient to
replace ‖ · ‖1 and ‖ · ‖∞ norms by ‖ · ‖2 norm.

It is immediate to observe that the inequalities provided by Proposition 3 and 4 do not
depend on the representation of f (that is, they are invariant under scalar multiplication
of f).

We end this section by comparing the bounds B1(f, p, ε), B
′
1(f, p, ε) (given in Propo-

sition 3 and 4) and the non-crossing bounds provided in [19].

Proposition 5. Let B1(f, p, ε), B
′
1(f, p, ε) be the bounds as above. Further, let

B1,∞(f, p, ε) := ‖ Jacf (p)‖1εmax +
H∞
2
ε2max

B′1,∞(f, p, ε) := ‖ Jacf (p)‖1εmax +
1

2
‖Hf (p)‖∞ε2max

where H∞ := maxx∈Bε(p) ‖Hf (x)‖∞. Then:

(i) B1(f, p, ε) ≥ B′1(f, p, ε);

(ii) B1(f, p, ε) ≥ 1√
n
B1,∞(f, p, ε);

(iii) B′1(f, p, ε) ≥ 1√
n
B′1,∞(f, p, ε).

Proof. Item (i) follows from the definition of B1(f, p, ε) and B′1(f, p, ε), and from the
inequality H = maxx∈Bε(p) ‖Hf (x)‖2 ≥ ‖Hf (p)‖2. Item (iii) follows from the definition
of B′1(f, p, ε) and B′1,∞(f, p, ε), and from the inequalities ‖ Jacf (p)‖2 ≥ ‖ Jacf (p)‖1 ≥
1√
n
‖ Jacf (p)‖1 and ‖Hf (p)‖2 ≥ 1√

n
‖Hf (p)‖∞. Finally, since H ≥ 1√

n
H∞ item (ii) easily

follows.

3.2. Sufficient crossing conditions

In this subsection we provide sufficient numerical conditions so that the zero locus of
a polynomial crosses a bounded region containing a given point of Rn.

We first need some technicalities. For each x = (x1, . . . , xn) such that Jacf (x) is not
zero, we consider the pseudo-inverse matrix of Jacf (x), defined by

Jac†f (x) := Jacf (x)t
(
Jacf (x)Jacf (x)t

)−1
=

Jacf (x)t

‖Jacf (x)‖22
.

Note that ‖Jac†f (x)‖2 = 1
‖Jacf (x)‖2 .

For any positive real number R, set

D(p,R) := {x ∈ Rn such that ‖(x− p)t‖2 < R}.

Obviously, D(p,R) ⊆ B(p) as soon as R < εmin.
The following lemma is useful for the main result of this subsection.
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Lemma 2. Let f = f(x) be a degree ≥ 2 polynomial of P and let p be a point of Rn
such that the Jacobian Jacf (p) is nontrivial. Let R be a positive real number such that

R < εmin. If R <
‖ Jacf (p)‖2

H , then Jacf (x) is nontrivial for x ∈ D(p,R).

Proof. The proof runs parallel to the proof of [19, Lemma 3.1]: it is sufficient to replace
‖ · ‖1 and ‖ · ‖∞ norms by ‖ · ‖2 norm.

Proposition 6. Let f = f(x) be a degree ≥ 2 polynomial of P , let p be a point of Rn
such that Jacf (p) is not the zero vector, and let Bε(p) be the unit ball centered at p. Let

R be a positive real number such that R < min
{
εmin,

‖ Jacf (p)‖2
H

}
and let

J := sup
x∈D(p,R)

‖Jac†f (x)‖2 =
1

infx∈D(p,R) ‖Jacf (x)‖2
(7)

If

|f(p)| < 2R

J(2 + HJR)
=: B2(f, p, ε, R), (8)

then the zero locus of f crosses Bε(p).

Proof. The proof runs parallel to the proof of [19, Proposition 3.2] (to which we refer for
more details) with some minor changes on the upper bound constants. For completeness
we report it here.

If f(p) = 0 there is nothing to prove. From Lemma 2 we know that the Jacobian
Jacf (x) is nonzero for x ∈ D := D(p,R). Moreover, since R < εmin, one has D ⊆ Bε(p).

We now construct a sequence of points {pk}k∈N as follows. We let p0 = p and, for each
k ≥ 0, we define

sk := − Jac†f (pk)f(pk) = − f(pk)

‖Jacf (pk)‖22
Jacf (pk)

t and pk+1 := pk + stk. (9)

Obviously, p = p0 ∈ D. We prove by induction that the points pk’s all lie in D and satisfy
the inequality

|f(pk)| < |f(pk−1)| for each k ≥ 1. (10)

Step I (The k = 1 case). From the definitions of s0 and J we have

‖s0‖2 = ‖Jac†f (p)‖2|f(p)| ≤ J|f(p)|.

Moreover, by assumption, it follows that |f(p)| < B2 <
2R
2J = R

J . Thus ‖s0‖2 < R showing
that p1 ∈ D. Applying Taylor’s theorem to f(x) at p and then evaluating at p1 we get

f(p1) = f(p) + Jacf (p)(p1 − p)t +
1

2
(p1 − p)Hf (ξ)(p1 − p)t,

where ξ is a point of the line that connects p to p1. Therefore, by definitions (9), we get

f(p1) = f(p) + Jacf (p)s0 +
1

2
st0Hf (ξ)s0
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= |f(p)|
(

1

2

|f(p)|
‖Jacf (p)‖42

Jacf (p)Hf (ξ) Jacf (p)t
)
.

Let us upper bound the absolute value of the quantity

Q :=
1

2

|f(p)|
‖Jacf (p)‖42

Jacf (p)Hf (ξ) Jacf (p)t.

To this end, use Cauchy-Schwarz inequality and recall the definitions of H (see (4)) and J
to get:

|Q| ≤ 1

2

|f(p)|
‖Jacf (p)‖42

‖ Jacf (p)‖22 ‖Hf (ξ)‖2 =
1

2

|f(p)|
‖Jacf (p)‖22

‖Hf (ξ)‖2

=
1

2

|f(p)|
‖Jacf (p)‖2

‖Jac†f (p)‖2‖Hf (ξ)‖2 ≤
1

2

|f(p)|
‖ Jacf (p)‖2

JH.

By the assumption on R we thus obtain |Q| < 1
2 |f(p)| JR . On the other hand, |f(p)| <

B2 <
2R
2J < 2R

J . Therefore |Q| < 1, so that equality (11) reads |f(p1)| < |f(p)|, showing
condition (10) for k = 1.

Step II (The inductive step). Suppose that the points p, p1, . . . pk of the sequence lie
in D and that 0 < |f(pk)| < |f(pk−1)| < · · · < |f(p)|. Hence, in particular, the points
p, p1, . . . pk are all distinct, so that, by definition, ‖si−1‖2 6= 0 for i = 1, . . . , k.

First we show that pk+1 ∈ D. For each i = 1, . . . , k, we apply Taylor’s theorem to f(x)
at pi−1 and evaluate at pi to get

f(pi) = f(pi−1) + Jacf (pi−1)(pi − pi−1)t +
1

2
(pi − pi−1)Hf (ξi)(pi − pi−1)t, (11)

where ξi is a point of the line that connects pi−1 to pi. On the other hand, by definition of
si−1 and recalling that Jacf (x)Jac†f (x) = 1, we have Jacf (pi−1)si−1 = −f(pi−1), whence

f(pi−1) = − Jacf (pi−1)si−1 = − Jacf (pi−1)(pi − pi−1)t. (12)

By combining (11) and (12) with Cauchy-Schwarz inequality, we get

|f(pi)| =
1

2
|(pi − pi−1)Hf (ξi)(pi − pi−1)t|

≤ 1

2
‖Hf (ξi)‖2‖(pi − pi−1)t‖22 ≤

1

2
H‖si−1‖22. (13)

Now, define τi := ‖si‖2
‖si−1‖2 . Therefore inequality (13) gives

‖si‖2 = ‖ Jac†f (pi)‖2|f(pi)| ≤ J|f(pi)| ≤
1

2
JH‖si−1‖22.

Thus

τi =
‖si‖2
‖si−1‖2

≤ 1

2
JH‖si−1‖2 ≤

1

2
J2H|f(pi−1)| <

1

2
J2H|f(p)|. (14)
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Since |f(p)| < B2 <
2

J2H
, it must be τi < 1 by the above inequality. Let τ := maxi=1,...,k{τi}.

We bound ‖(pk+1 − p)t‖2 as follows:

‖(pk+1 − p)t‖2 ≤ ‖s0‖2 + ‖s1‖2 + · · ·+ ‖sk‖2
= ‖s0‖2 + τ1‖s0‖2 + τ1τ2‖s0‖2 + · · ·+ τ1τ2 . . . τk‖s0‖2
= ‖s0‖2(1 + τ1 + τ1τ2 + · · ·+ τ1τ2 . . . τk)

≤ ‖s0‖2
k∑
i=0

τ i < ‖s0‖2
∞∑
i=0

τ i =
‖s0‖2
1− τ

≤ J|f(p)|
1− τ

.

Then, by inequality (14) and the assumption |f(p)| < B2, we find

‖(pk+1 − p)t‖2 <
J|f(p)|

1− 1
2J2H|f(p)|

=
2J|f(p)|

2− J2H|f(p)|
< R,

therefore pk+1 ∈ D.
Now, let us prove that |f(pk+1)| < |f(pk)|. To this purpose we observe that relation

(11) can be easily adapted to the pair of points pk, pk+1 in the form

f(pk+1) = |f(pk)|
(

1

2

|f(pk)|
‖Jacf (pk)‖42

Jacf (pk)Hf (ξk) Jacf (pk)
t

)
, (15)

where ξk is a point of the line connecting pk to pk+1. Let us upper bound the absolute
value of the quantity

Qk :=
1

2

|f(pk)|
‖Jacf (pk)‖42

Jacf (pk)Hf (ξk) Jacf (pk)
t.

As previously done to upper bound the quantity |Q|, by using Cauchy-Schwarz inequality
and the definition of H, we get

|Qk| ≤
1

2

|f(pk)|
‖Jacf (pk)‖22

‖Hf (ξk)‖2 ≤
1

2

|f(pk)|
‖Jacf (pk)‖22

H

≤ 1

2
|f(pk)|J2H <

1

2
|f(p)|J2H, (16)

where the last inequality comes from the inductive hypothesis |f(pk)| < |f(p)|. On the
other hand, |f(p)| < B2 < 2

HJ2
. Thus we find |Qk| < 1, so that equality (15) yields

|f(pk+1)| < |f(pk)|, as we want.

Step III (Conclusion). If there exists k ∈ N such that f(pk) = 0 we are done. Otherwise,

we know from Step II that τk := ‖sk‖2
‖sk−1‖2 < 1 for k ∈ N. Then, by D’Alembert criterion,

the series
∑∞

k=1 ‖sk‖2 converges, so that limk→∞
(∑∞

i=k+1 ‖si‖2
)

= 0. Define p∗t :=

pt +
∑∞

k=1 sk. Then, since ptk = pt +
∑k

i=1 si, one has

lim
k→∞

‖(pk − p∗)t‖2 = lim
k→∞

∥∥∥∥∥
∞∑

i=k+1

si

∥∥∥∥∥
2

 ≤ lim
k→∞

( ∞∑
i=k+1

‖si‖2

)
= 0.
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Thus the sequence of points {pk}k∈N converges to the point p∗. Since the pk’s belong
to D, the point p∗ belongs to the closure D ⊆ Bε(p). We also know that ‖sk‖2 =
τ1τ2 . . . τk‖s0‖2 < τk‖s0‖2, where τ = supk∈N{τk}. Therefore

lim
k→∞

‖sk‖2 < lim
k→∞

τk‖s0‖∞ = 0.

From inequality (13), we then conclude that

|f(p∗)| = lim
i→∞
|f(pi)| ≤

1

2
H lim
i→∞
‖si−1‖22 = 0.

This completes the proof.

As already pointed out in the previous subsection, the quantities H and J are sometimes
hard to be computed. As a consequence, applying Proposition 6 could be difficult in some
applications. For this reason, in the following we state another result which is analogous
to Proposition 6 but it avoids the computation of the quantities H and J, yet providing a
sufficient crossing condition. Note that the statement holds in a first-order error analysis,
so it is only valid for small values of (the components of) the vector ε.

We first need to state some more technical details. The following result yields an upper
bound for the quantity J = supx∈D(p,R) ‖ Jac†f (x)‖2 introduced in Proposition 6.

Proposition 7. Let f(x) be a degree ≥ 2 polynomial of P and let p be a point of Rn.
Let R be a positive real number and suppose that the Jacobian Jacf (x) is nonzero for each
x ∈ D(p,R). Then

J <
1

‖ Jacf (p)‖2

(
1 + 3

√
n
‖Hf (p)‖2
‖ Jacf (p)‖2

R

)
+ O(R2).

Proof. The proof runs parallel to the proof of [19, Proposition 4.1] (to which we refer for
more details) with some minor changes on the upper bound constants. For completeness
we report it here.

Let x ∈ D := D(p,R). Consider the vector valued function (Jac†f )t : D → Rn. Since

by hypothesis Jacf (x) has full row rank in D, it follows that (Jac†f )t is differentiable on
the open convex set D. We apply Proposition 2 to get

‖ Jac†f (x)− Jac†f (p)‖2 < sup
0<ν<1

‖D Jac†f (p+ ν(x− p))‖2‖(x− p)t‖2. (17)

Combining (17) with
∣∣‖ Jac†f (x)‖2 − ‖ Jac†f (p)‖2

∣∣ ≤ ‖ Jac†f (x) − Jac†f (p)‖2 (the usual con-
sequence of the triangular inequality), we have

‖ Jac†f (x)‖2 < ‖ Jac†f (p)‖2 + sup
0<ν<1

‖D Jac†f (p+ ν(x− p))‖2‖(x− p)t‖2. (18)

Applying Lemma 1 to the matrix M(x) = D Jac†f (x) ∈ Matn(R), one has

sup
0<ν<1

‖D Jac†f (p+ ν(x− p))‖2 <
√
n‖D Jac†f (p)‖2 + O(R). (19)
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We explicitly express D Jac†f (x) by computing the partial derivatives of each component

of Jac†f (x). That is,

D Jac†f (x) =
1

‖ Jacf (x)‖42

(
‖ Jacf (x)‖22Hf (x)− 2 Jacf (x)t Jacf (x)Hf (x)

)
.

We now upper bound ‖D Jac†f (p)‖2 by

‖D Jac†f (p)‖2 ≤ 1

‖ Jacf (p)‖42

(
‖ Jacf (p)‖22 + 2‖ Jacf (p)‖22

)
‖Hf (p)‖2

=
3

‖ Jacf (p)‖22
‖Hf (p)‖2 (20)

By combining (19) and (20) and recalling that ‖ Jac†f (p)‖2 = 1
‖ Jacf (p)‖2 , inequality (18)

yields

‖ Jac†f (x)‖2 <
1

‖ Jacf (p)‖2
+ 3
√
n
‖Hf (p)‖2
‖ Jacf (p)‖22

R+ O(R2).

By definition of J we are done.

We prove the following technical result, which is valid up to a first-order error analysis.

Lemma 3. Let f = f(x) be a degree ≥ 2 polynomial of P and let p be a point of Rn such
that both the Jacobian Jacf (p) and the Hessian matrix Hf (p) are nontrivial. Let R be a

positive real number such that R < εmin. If R <
‖ Jacf (p)‖2√
n‖Hf (p)‖2

, then, neglecting contributions

of order O(R2), the Jacobian Jacf (x) is nonzero for each x ∈ D(p,R).

Proof. The proof runs parallel to the proof of [19, Lemma 4.2] (to which we refer for
more details) with some minor changes on the upper bound constants.

Proposition 8. Let f = f(x) be a degree ≥ 2 polynomial of P , let p be a point of
Rn such that Jacobian Jacf (p) and the Hessian matrix Hf (p) are nontrivial, and let
Bε(p) be the unit ball centered at p. Let R be a positive real number such that R <

min
{
εmin,

‖ Jacf (p)‖2√
n‖Hf (p)‖2

}
and set

Θ :=
1

‖ Jacf (p)‖2

(
1 + 3

√
n
‖Hf (p)‖2
‖ Jacf (p)‖2

R

)
.

If

|f(p)| < 2R

Θ(2 +
√
n‖Hf (p)‖2ΘR)

=: B′2(f, p, ε, R), (21)

then the zero locus of f crosses Bε(p) neglecting order O(R2) contributions.
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Proof. The proof uses similar arguments to the proof of Proposition 6 and runs parallel
to the proof of [19, Proposition 4.3] (to which we refer for more details) with some minor
changes on the upper bound constants. For brevity we omit it here.

As for the necessary crossing conditions, it is immediate to observe that the inequalities
provided by Proposition 6 and 8 do not depend on the representation of f (that is, they
are invariant under scalar multiplication of f).

We conclude this subsection by comparing the bounds B′1(f, p, ε), B2(f, p, ε, R) and
B′2(f, p, ε, R) given in Propositions 4, 6 and 8.

Proposition 9. Notation and assumptions as above. Further assume εmax � 1 and let R
be a positive real number such that

R < min

{
εmin,

‖ Jacf (p)‖2
H

,
‖ Jacf (p)‖2√
n‖Hf (p)‖2

}
.

Then B′2(f, p, ε, R) + O(R3) < B2(f, p, ε, R) < B′1(f, p, ε).

Proof. The proof runs parallel to the proof of [19, Proposition 4.5] (to which we refer
for more details). For brevity we omit it here.

As conclusive remark, we observe that from Proposition 9 and Proposition 5, it follows
that B1(f, p, ε) > B2(f, p, ε, R). Therefore, there may be cases in which B2 < |f(p)| < B1.
In such cases, with the only use of Proposition 3 and 6, we can draw no conclusion on the
crossing of f = 0 around the given point p. Nevertheless, since the previous results hold
locally, a more accurate analysis, performed by iteratively considering smaller balls, may
overcome the problem.

3.3. The crossing algorithm

In this section, we gather the results obtained in Section 3.1 and 3.2 and introduce an
algorithm for deciding whether or not the zero locus of a polynomial f intersects a ball
centered at a given point p.

Let ε = (ε1, . . . , εn) be a vector of tolerances; let f be a polynomial and Bε(p) the
(2, ε)-unit ball centered at a point p. Analogously to the Crossing Cell Algorithm (see
[19]) for brevity called CA-∞ here, our algorithm processes f and Bε(p) and returns a
value which describes the intersection of f = 0 with Bε(p). Namely,

• 0 if f = 0 does not cross Bε(p);

• 1 if f = 0 crosses Bε(p);

• ξ (unknown) if neither Proposition 3 nor Proposition 6 applies.

Summarizing, we have:
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The CROSSING Algorithm (CA-2)
Given a non-costant polynomial f = f(x) ∈ P , a point p ∈ Rn such that both the
Jacobian Jacf (p) and the Hessian matrix Hf (p) are nontrivial at p, and a tolerance
vector ε = (ε1, . . . , εn), the algorithm returns an element of {0, 1, ξ}, namely 0 if f = 0
does not cross Bε(p), 1 if f = 0 crosses Bε(p), and ξ (unknown) if neither Proposition 3
nor Proposition 6 applies.

1. Compute |f(p)| and the bounds B1(f, p, ε) (from Proposition 3).
If |f(p)| > B1(f, p, ε) return 0.

2. Else R < min
{
εmin,

‖ Jacf (p)‖2
H

}
and compute B2(f, p, ε, R) (from Proposition 6).

If |f(p)| < B2(f, p, ε) return 1; else return ξ.

Note that, as for the Approximated CROSSING Algorithm (ACA-∞, see [19]), a vari-
ant of the CROSSING Algorithm is simply obtained by replacing the bounds B1(f, p, ε)
and B2(f, p, ε, R) by B′1(f, p, ε) and B′2(f, p, ε, R) (defined in Proposition 4 and 8): in
this way the variant, called the Approximated CROSSING Algorithm (ACA-2), works
in a first-order error analysis. All the algorithms presented above and employed in Sec-
tions 5 and 6 (ACA-2, CA-2 and ACA-∞) are written in Matlab code and available at
https://sites.google.com/site/eleonorasaggini/shared-files.

3.4. Affine transformations

In this subsection we investigate on the behaviour of the bounds B1, B
′
1, B2, and B′2

under some affine transformations. In Proposition 10 it is shown that B1, B
′
1, B2, and

B′2 are invariant under translation and rotation. The invariance under uniform scaling is
proved in Proposition 11 for polynomials of special form.

Proposition 10. Fix notation and assumptions as in Proposition 3, 4, 6, and 8. Then,
the bounds B1, B′1, B2, and B′2 are invariant under translation and rotation.

Proof. Let f = f(x) be a degree ≥ 2 polynomial of P , let p be a point of Rn and
let Bε(p) be the unit ball centered at p. Let v ∈ Rn be a vector and W ∈ Matn(R) be
an orthogonal matrix (that is WW t = In). Let Tv : Rn → Rn and TW : Rn → Rn be
defined by

Tv(x) = x + v and TW(x) = Wx,

which denote a translation and a rotation, respectively. Let gv = f ◦ Tv and gW = f ◦ TW
be polynomials of P and let qv = T−1v (p) = p−v and qW = T−1W (p) = Wp be points of Rn.
Further, let εW = Wε. Regarding the Jacobian vectors, we have:

Jacgv(x) = Jacf (Tv(x)) · JacTv(x) = Jacf (x + v)
JacgW (x) = Jacf (TW (x)) · JacTW (x) = Jacf (Wx) ·W (22)
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from which

‖ Jacgv(qv)‖2 = ‖ Jacf (p)‖2
‖ JacgW (qW )‖2 = ‖ Jacf (p) ·W‖2 = ‖ Jacf (p)‖2

(23)

Regarding the Hessian matrices, we have:

Hgv(x) = Hf (Tv(x)) = Hf (x + v)

HgW (x) = W t ·Hf (TW (x)) ·W = W ·Hf (Wx) ·W

from which

‖Hgv(qv)‖2 = ‖Hf (p)‖2
‖HgW (qW )‖2 = ‖WHf (p) ·W‖2 = ‖Hf (p)‖2

(24)

From the definition of B′1 in Proposition 4 and equalities (23) and (24), it easily follows
that

B′1(gv, qv, ε) = B′1(f, p, ε),

B′1(gW , qW , εW ) = B′1(f, p, ε).

Now, let H(f, p, ε) = maxx∈Bε(p) ‖Hf (x)‖2 be as defined in (4); we have:

H(gv, qv, ε) = maxx∈Bε(qv) ‖Hgv(x)‖2 = maxx∈Bε(qv) ‖Hf (x + v)‖2
= maxx∈Bε(p) ‖Hf (x)‖2 = H(f, p, ε)

H(gW , qW , εW ) = maxx∈Bε(qW ) ‖HgW (x)‖2 = maxx∈BεW (qW ) ‖WHf (Wx)W‖2
= maxx∈Bε(p) ‖Hf (x)‖2 = H(f, p, ε)

(25)

From the definition of B1 in Proposition 3 and equalities (23) and (25), it easily follows:

B1(gv, qv, ε) = B1(f, p, ε),

B1(gW , qW , εW ) = B1(f, p, ε).

From Proposition 6, let R < min{εmin,
‖ Jacf (p)‖2
H(f,p,ε) } and J(f, p,R) = 1

infx∈D(p,R) ‖ Jacf (x)‖2
.

From equalities (22) on the Jacobian vectors we have J(gv, qv, R) = J(gW , qW , R) =
J(f, p,R). These equalities combined with equalities (25) and the definition of B2 in
Proposition 6 yield:

B2(gv, qv, ε, R) = B2(f, p, ε, R),

B2(gW , qW , εW , R) = B2(f, p, ε, R).

Finally, from Proposition 8, let R < min{εmin,
‖ Jacf (p)‖2√
n‖Hf (p)‖2

} and

Θ(f, p,R) =
1

‖ Jacf (p)‖2

(
1 + 3

√
n
‖Hf (p)‖2
‖ Jacf (p)‖2

R

)



E. Saggini, M. Torrente / J. Alg. Stat., 7 (2016), 45-71 59

From equalities (23) and (24) we have Θ(gv, qv, R) = Θ(gW , qW , R) = Θ(f, p,R). These
equalities combined with (24) and the definition of B′2 in Proposition 8 yield:

B′2(gv, qv, ε, R) = B′2(f, p, ε, R),

B′2(gW , qW , εW , R) = B′2(f, p, ε, R).

This concludes the proof.

Proposition 11. Fix notation and assumptions as in Proposition 3, 4, 6, and 8. Further
assume that the polynomial f ∈ P has degree d ≥ 2 and it is of the form f = fd + f0, with
f0, fd ∈ P homogeneous polynomials of degree 0 and d respectively. Then, the bounds B1,
B′1, B2, and B′2 are invariant under uniform scaling.

Proof. Let p be a point of Rn and let Bε(p) be the unit ball centered at p. Let γ ∈ R be
a positive constant and gγ(x) = f(γx) be the polynomial of P obtained uniformly scaling
the variables x. By definition of f and g we have:

g(x) = f(γx) = fd(γx) + f0(γx) = γdfd(x) + f0.

For each i = 1, . . . , n, the first order derivative ∂gγ/∂xi of g can be expressed as:

∂gγ
∂xi

= γd
∂fd
∂xi

+
∂f0
∂xi

= γd
∂fd
∂xi

.

Using the fact that ∂fd
∂xi

is homogeneous of degree d− 1 we obtain

∂gγ
∂xi

(γ−1x) = γd
∂fd
∂xi

(γ−1x) = γd(γ−1)d−1
∂fd
∂xi

(x) = γ
∂fd
∂xi

(x) = γ
∂f

∂xi
(x).

It easily follows that

Jacg(γ
−1x) = γ Jacf (x). (26)

Analogously, for each j = 1, . . . , n, the second order derivative ∂2gγ/∂xi∂xj of g can be
expressed as:

∂2gγ
∂xi∂xj

= γd
∂2fd
∂xi∂xj

and using the fact that ∂2fd
∂xi∂xj

is homogeneous of degree d− 2 we obtain

∂2gγ
∂xi∂xj

(γ−1x) = γd
∂2fd
∂xi∂xj

(γ−1x) = γd(γ−1)d−2
∂2fd
∂xi∂xj

(x) = γ2
∂2fd
∂xi∂xj

(x) = γ2
∂2f

∂xi∂xj
(x).

It easily follows that

Hg(γ
−1x) = γ2Hf (x). (27)
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From the definition of B′1 in Proposition 4 and equalities (26) and (27) evaluated at p, it
easily follows that B′1(gγ , γ

−1p, γ−1ε) = B′1(f, p, ε).
Now, let H(f, p, ε) = maxx∈Bε(p) ‖Hf (x)‖2 be as defined in (4). From (27) we have:

H(gγ , γ
−1p, γ−1ε) = maxx∈Bγ−1ε(γ

−1p) ‖Hgγ (x)‖2 = maxx∈Bε(p) ‖Hgγ (γ−1x)‖2
= maxx∈Bε(p) ‖γ2Hf (x)‖2 = γ2H(f, p, ε)

(28)

From the definition of B1 in Proposition 3 and equalities (26) evaluated at p and (28), it
easily follows that B1(gγ , γ

−1p, γ−1ε) = B1(f, p, ε).

From Proposition 6, let R < min{εmin,
‖ Jacf (p)‖2
H(f,p,ε) } and J(f, p,R) = 1

infx∈D(p,R) ‖ Jacf (x)‖2
.

Using equality (26) we have J(gγ , γ
−1p, γ−1R) = γ−1J(f, p,R), which combined with (28)

and the definition of B2 in Proposition 6 yield B2(gγ , γ
−1p, γ−1ε, γ−1R) = B2(f, p, ε, R).

Finally, from Proposition 8, let R < min{εmin,
‖ Jacf (p)‖2√
n‖Hf (p)‖2

} and

Θ(f, p,R) =
1

‖ Jacf (p)‖2

(
1 + 3

√
n
‖Hf (p)‖2
‖ Jacf (p)‖2

R

)
.

From (26) and (27) evaluated at p it follows that Θ(gγ , γ
−1p, γ−1R) = γ−1Θ(f, p,R). This

equality combined with (27) evaluated at p and the definition of B′2 in Proposition 8 yields
B′2(gγ , γ

−1p, γ−1ε, γ−1R) = B′2(f, p, ε, R).

Example 1. We consider the polynomial f = x3− 2x2y+ y3− 8 and the point p = (1, 1).
We let ε = (1, 1) and consider the (2, ε)-unit ball centered at p. Propositions 4 and 8 can
not be applied since the components of ε are not small enough. According to Proposition 11
the problem can be uniformly scaled and crossing properties can be inferred by the new
scaled data.

Let γ = 2 be the scaling factor. Let g(x, y) = f(γx, γy) = 8x3 − 8x2y + 8y2 − 8,
q = γ−1p = (1/2, 1/2) and ε′ = γ−1ε = (0.5, 0.5). Propositions 4 and 8 are now applicable
to g in the (2, ε′)-unit ball Bε′(q) centered at q. From some computations we get

|g(q)| = 8, B′1 ≈ 5.6503 and B′2 ≈ 0.0152

Since |g(q)| > B′1, from Proposition 4 we conclude that the zero locus of g does not cross
Bε′(q). Applying Proposition 11 the same conclusion holds for the zero locus of f in Bε(p),
that is the zero locus of f does not cross Bε(p).

4. Applications to marine robotics

The theory presented in Section 3 is exploited to define a methodology for evaluating
the capability of an USV to follow a desired path. Let R = {(xR,i, yR,i), i = 1, . . . , r} ⊂
R2 and V = {(xV,i, yV,i), i = 1, . . . , v} ⊂ R2 be two sets identifying the reference and
vehicle paths, respectively. The proposed method provides a quantitative evaluation of
the closeness of a vehicle to the reference path through the following steps:
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Step I computation of an algebraic curve f = 0 that approximates the points in R within
a tolerance ε1;

Step II identification of the points in V which are close to the path defined by the curve
f = 0 by less than a tolerance ε2.

This method has been defined and tested for the first time in [15]; its feasibility has
been proved on simulated data for the metric induced by the ∞-norm. However, for the
specific goal of the path-following performance evaluation, the common sense suggests to
design the methodology using the Euclidean distance, that is employing the 2-norm. To
this aim, the results illustrated in Section 3 are exploited. Using this new methodology we
perform more simulations and experiments at sea, allowing comparison between the results
achieved with the two different metrics (see Section 5). In the following, details about
the two step methodology are presented and tests on real and simulated experiments are
reported in Section 5. The general methods behind the two steps hold in higher dimension
but we illustrate the basic ideas for n = 2 because of the application to 2D path-following.

4.1. Step I: approximation of a path by a polynomial curve

There are several methods in the literature to address the problem of approximating
a path through a polynomial curve. An interesting class of recently developed algorithms
relies on tools from Numerical Commutative Algebra [17, 2, 10, 6, 7]. For all these algo-
rithms the input is a set of points possibly in n-dimensions and the output is a polynomial
f in n-variables whose zero locus (which is a curve, or a surface, or more generally an
algebraic variety) gives an approximation for the input points and can be interpreted as
an implicit polynomial regression model [12, Ch 2]. The algorithm presented in [7] called
Low-degree Polynomial Algorithm (LPA) is particularly interesting for our purposes be-
cause it returns a “simple” polynomial f whose zero locus “almost” contains the points.
The “simplicity” of a polynomial f is measured by its total degree whereas a point is said
to be “almost” contained in the zero locus of f if the ε1-ball (w.r.t. a given norm) centred
at the point intersects the locus f = 0. In the LPA the ∞-norm is used, and ε1 represents
the maximum error of the coordinates of a point. For further details on the algebraic
perspective see [7].

4.2. Step II: identification of the points close to the reference path

In order to identify the points of the vehicle path close to the reference path we
introduce the following rule based on the analytic results of Section 3. Let f = 0 be the
algebraic plane curve computed in Step I and let ε2 be a fixed bidimensional vector of
tolerances for the closeness of a generic point p = (xV , yV ) of the vehicle path to f = 0.
For each point, the value of |f(p)| and the bounds B1(f, p, ε2) and B2(f, p, ε2, R) (refer to
equations (5) and (8)) are computed for establishing whether a point is far from f = 0 by
more than ε2. To this aim, the CROSSING algorithm (CA-2) introduced in Subsection 3.3
is applied to f and each point p ∈ V.
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As we have already observed, CA-2 requires the non trivial computation of H and J
(defined in (4) and in (7)) for B1(f, p, ε2) and B2(f, p, ε2, R). For this reason, we decided
to implement CA-2 adopting

H := max{‖Hf (xi)‖2, i = 1, . . . , nB : xi is a random point in Bε(p)}
J := 1/min{‖ Jacf (xi)‖2, i = 1, . . . , nD : xi is a random point in D(p,R)},

where nB and nD are big enough. In order to decrease computation time, a variant of
CA-2 which uses the approximated bounds B′1(f, p, ε2) and B′2(f, p, ε2, R) is also adopted
(called ACA-2, see Section 3.3) in the experiments presented in Section 5. Note that
the constraint ε2 < 1 does not limit the applicability of the proposed method within the
robotic community, since nowadays the majority of the vehicles are usually required to
stay close to the path for less than 1 meter.

Given the output of our algorithm, a measure for evaluating the path-following ma-
noeuvre from the starting time t∗ until time t is given by the percentage PC(t) of points
which are close to the path:

PC(t) = 100
Number of points close to the path in [t∗, t]

Number of total points in [t∗, t]
.

An online measure PNC(t) of the percentage of points of V far from the path is defined
analogously, and the percentage of undecided cases is PU (t) = 100−PC(t)−PNC(t). The
starting time t∗ corresponds to the instant in which the vehicle can be declared to be on
the path, namely it is said to be in steady state. Thus, in order to fairly evaluate the
capability to follow a path, the transient state of the vehicle approaching the path has to
be neglected; this depends on the type of experiments’ execution and it will be specified
in the examples presented in the following. Furthermore, a performance measure of the
overall path-following manoeuvre is given by a unique value PC := PC(ttot) computed
at the end of the experiment. Similarly, the quantities PNC and PU are defined at time
t = ttot.

Remark 1. Let PACA−2
NC and PCA−2

NC be the total percentage of points of V far from the
path, computed by using the ACA−2 and CA−2 algorithms respectively (see Section 3.3).
From Propositions 3, 4 and 5 it directly follows that

PACA−2
NC ≥ PCA−2

NC .

5. Experiments

In this section we present and discuss the results achieved when applying the two step
methodology defined in Section 4 to simulated and on field data collected employing the
Charlie USV.

The available implementation of LPA (see Section 4.1) is done using the C++ language,
the CoCoALib [1], and some routines of GSL - GNU Scientific Library [11]. All compu-
tations have been performed on an Intel Core i5 processor at 1.4 GHz. LPA assumes an
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ordering of monomials: we use the degree lexicographic term ordering and consider both
x < y and y < x. Further, note that in Section 5 the coefficients of the polynomials are
displayed as truncated decimals.

5.1. Experiments at sea

A test campaign was conducted in May 2015 in the Canale di calma di Prà, Genova,
using two different CNR-ISSIA vessels: Charlie USV and Shark USSV (Unmanned Semi-
Submersible Vehicle). The main aim consists to test a new software framework named
DeepRuler for the automatic execution of path-following tasks, collecting experimental
data and evaluating the performance of the control architecture through different perfor-
mance indices defined by the authors. For details about the test campaign see [18]. Here
we consider an example of execution of a sinusoidal path-following trial carried out by the
Charlie USV, when the path is a sine wave with amplitude 10 m and 3 hemi-periods in
100 m (see Figures 1 and 3). Because of possible presence of uncontrollable variables or
external disturbances that can influence the result of a single trial, DeepRuler has been
implemented for executing each path both in forward and backward directions, and other
repetitions can be added. Therefore, an analysis on the results is presented for both the di-
rections of execution. An important feature to mention is that the discrimination between
the transient state and the steady state is automatically decided by DeepRuler during the
experiment execution. For this reason, given V as the set for the vehicle motion during
the steady state, we have immediately t∗ = 0.

5.2. Forward path

In the forward case, the reference path R is made up of r = 26 points, whereas the
set V is made up of v = 1952 points representing the GPS coordinates of the Charlie
USV. Since the sampling rate is 8 Hz, we obtain that the experiment duration is about 4
minutes.

Step I. Different results can be achieved by applying LPA to R and by varying the term
ordering and the value of ε1. A “good” approximating curve fFW (x, y) = 0 is obtained
choosing the degree lexicographic term ordering with y < x and 0.01 ≤ ε1 ≤ 0.05:

fFW (x, y) = x5 + 1.90194x4y − 3.14118x3y2 + 2.009x2y3 + 1.1038xy4 + 0.578489y5

+77.6378x4 − 19.0024x3y + 90.0171x2y2 − 33.4575xy3 + 11.3227y4

−1740.85x3 − 3786.6x2y + 1483.78xy2 − 1047.06y3 − 188247x2

+205996xy + 145757y2 + 2.01272 · 106x+ 6.98548 · 106y + 5.43407 · 107.

The time for this computation is 3 minutes and 58 seconds. The curve fFW (x, y) = 0 is
represented by the black line in Figures 1 and 2.

Step II. Let ε2 = (0.9, 0.9) be the tolerance vector. For each point of V, we apply ACA-2
to fFW with tolerance ε2: the result is shown in Figure 1, where the vehicle motion is
displayed by dots differently coloured, that correspond to the three possible results of the
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Figure 1: Charlie USV forward execution of a sinu-
soidal path with 3 half-periods and an amplitude
of 10m within 100m. The black line is the curve
fFW (x, y) = 0 while the coloured dots (black, red
and green) correspond to the different outputs of
the ACA-2 (cross, not cross and uncertainty), re-
spectively.
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Figure 2: Figure 1 zoomed in the region
[−10, 30]× [−20, 20].

decision rule (black-the vehicle is close to the reference path, red-the vehicle is far from
the reference path, green-uncertainty). Figure 2 zooms on an interesting region, where
the vehicle is far from the path and this is highlighted by the proposed closeness criterion.
The results of an overall measure of the path-following performance are then reported in
Table 1 (column 1) by means of the indices PC , PNC and PU .

Table 1: Performance indices computed for the forward sinusoidal path depicted in Figure 1 employing different
algorithms, together with the computation time needed.

Algorithm
Index ACA-2 CA-2 ACA−∞
PC 50% 63% 13%
PNC 29% 29% 33%
PU 21% 8% 54%

Time [s] 85 902 75

Looking at Figures 1 and 2 and the values in Table 1, it is clear that the vehicle is able
to stay on the path for the majority of the time, apart from three evident oscillations, that
are all captured by the decision rule and depicted with red dots. The black dots on the
curve in Figure 2 also highlight the prompt response of the algorithm when the vehicle
crosses again the path, after being at a certain distance from it.

In addition to the ACA-2 algorithm, the CA-2 and ACA-∞ versions have been tested.
Results of the performance achieved by the vehicle together with the computation time
are displayed in Table 1 (columns 2-3). The following is a list of remarks.

(a) Looking at the performance evaluated with the 2-norm algorithms, it is clear that
for the ACA-2 algorithm there is much more uncertainty in the classification with
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respect to the CA-2 (columns 1-2). Furthermore, note that percentage of not crossing
points is the same and this is supported by Remark 1.

(b) There is a substantial difference between the values corresponding to the 2-norm and
∞-norm algorithms (columns 1-2 and 3). In particular, in the latter case a great
number of points are improperly unclassified, as suggested by the evidence that the
value of PACA−∞

C is too small to properly represent the percentage of points close
to the reference curve. This supports the initial conjecture about the choice of the
2-norm for a better correspondence to the common sense of closeness within path
following applications. Furthermore, note also that the PACA−∞

NC index is higher
than other cases.

(c) A check on the computation time needed by each algorithm is important to actively
discuss the online applicability of the proposed criterion, that refers to the possibility
to monitor and evaluate the experiments’ execution. In the following we make a few
remarks in the case of path-following experiments (2 dimensional case) while an
analysis on the computational time in higher dimensions is postponed in Section 7.
Recalling that the experiment duration is about 4 minutes and checking the last
row in Table 1, the conclusion is that the CA-2 algorithm can be exploited only
in a post-processing of the data as an additional technique, since it requires about
15 minutes to process data collected in only 4 minutes. On the contrary, the other
algorithms are suitable to be applied online. Further, note that the polynomial curve
fFW = 0 approximating R is computed only once and is given as input for step II
as soon as the vehicle starts the path-following.

The conclusion that can be drawn from the considerations above is that the ACA-
2 introduced in this paper reveals to be a valuable algorithm for evaluating online the
geometrical accuracy of path-following experiments, while more precision can be gained
in a post processing analysis with the CA-2 algorithm.

5.3. Backward path

Similarly to the forward case (see Subsection 5.2), a set R of r = 26 points is given as
reference for the backward path, whereas the set V is made up of v = 1520 points. The
total experiment duration is about 3 minutes.

Step I. A plane curve fBW (x, y) = 0 is computed with the LPA algorithm in 4 minutes
and 9 seconds. The curve is obtained with degree lexicographic term ordering, y < x and
0.01 ≤ ε1 ≤ 0.05:

fBW (x, y) = x5 + 1.90194x4y − 3.14118x3y2 + 2.009x2y3 + 1.1038xy4 + 0.578489y5

−77.6378x4 + 19.0024x3y − 90.0171x2y2 + 33.4575xy3 − 11.3227y4

−1740.85x3 − 3786.6x2y + 1483.78xy2 − 1047.06y3 + 188247x2

−205996xy − 145757y2 + 2.01272 · 106x+ 6.98548 · 106y − 5.43407 · 107.
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Note that, there is an evident similarity with the expression of fFW (x, y) and a sort of
“symmetry” between the black lines in Figures 1 and 3 that can be associated to the fact
that the path to follow is essentially the same. However, a deeper investigation of this fact
is not in the purposes of the present paper.
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Figure 3: Charlie USV backward execution of a
sinusoidal path with 3 half-periods and an ampli-
tude of 10m within 100m. For the legend the
reader can refer to Figure 1.
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Figure 4: Figure 3 zoomed in the region [10, 50]×
[−30, 10].

Step II. The norms and bounds adopted in this step correspond to those of the forward
case and ε2 = (0.9, 0.9). The output of the ACA-2 algorithm is shown in Figure 3, while
Figure 4 zooms on a region where the vehicle clearly passes from being on the path to being
far from it (the interpretation of the backward path is right to left). There is an evident
difference between the vehicle behaviour during the forward and backward executions: this
can be imputed to external disturbances, because the difficulty in following the path is the
same and engineers assume that a path-following performance remains unvaried during a
test campaign. During the backward execution, in fact there are two significant departures
from the line, that can suggest the presence of a heavy disturbance, e.g. a current or wind.
The online monitoring of the path following performance could have alerted the human
operator about such unexpected behaviours.

Finally, a comparison of the results achieved with different algorithms can be deduced
from Table 2. The reader can note that the points (a)-(c) discussed in Subsection 5.2 also
hold in the backward case.

6. Simulated experiments

In this section we present two examples of path following trials executed employing the
Charlie USV simulator, a valuable tool for testing the vehicle behaviour while following a
desired path and validating new control algorithms. For details on this architecture the
reader can refer to [15].
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Table 2: Performance indices computed for the backward sinusoidal path depicted in Figure 3 employing different
algorithms, together with the computation time needed.

Algorithm
Index ACA-2 CA-2 ACA−∞
PC 43% 50% 13%
PNC 37% 37% 44%
PU 20% 13% 43%

Time [s] 65 667 62

6.1. Path following on a closed path

A closed circuit is given as reference for the vehicle by means of r = 32 points, whereas
the set V is made up of v = 2801 points.

Step I. A plane curve f = 0 is computed with the degree lexicographic term ordering,
x < y and 0.75 < ε1 < 0.95:

f(x, y) = y3x+ 1.5662y2x2 + 1.08512yx3 + 0.159258x4 − 23.448y3 − 26.0963y2x

−5.17682yx2 − 27.9674x3 + 3499.08y2 − 394.723yx− 2514.2x2

−153897y − 26141.8x+ 1.87511 · 106.
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Figure 5: Simulation of the Charlie USV executing
a circuit with coloured dots that refer to the out-
put of the ACA-2 algorithm. For the legend the
reader can refer to Figure 1.
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Figure 6: Simulation of the Charlie USV executing
a circuit with coloured dots that refer to the out-
put of the ACA-∞ algorithm. For the legend the
reader can refer to Figure 1.

Step II. The ACA-2 and ACA-∞ algorithms have been tested by setting ε2 = (0.9, 0.9).
From a quick comparison of the outputs displayed in Figures 5 and 6, it is clear how
better the ACA-2 performs w.r.t. ACA-∞, that never assesses that the vehicle is on the
path. Nevertheless, the numerous green points in Figure 5 suggest that many cases of
uncertainty in the decision rule can happen, especially in the vicinity of the singularities.
Finally, we observe that the red dots are limited to regions where the vehicle is definitely
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far from the path, e.g. during the approach (region [−12, 3]× [24, 36]) and during the turn
(region [−105, 95]× [64, 72]).

6.2. Path following on a path with a self-intersection

A path that exhibits a self-intersection is given as reference for the vehicle by means
of r = 33 points, whereas the set V is made up of v = 2854 points.

Step I. A plane curve f = 0 is computed with the degree lexicographic term ordering,
x < y and 0.01 < ε1 < 0.05:

f(x, y) = y4x+ 0.286695y3x2 + 0.132059y2x3 − 0.0401925yx4 + 0.0114993x5

+10.9289y4 − 204.845y3x− 66.1921y2x2 + 0.923376yx3 + 4.59715x4

−4914.98y3 + 12333.1y2x+ 6751.34yx2 + 2581.01x3 + 728885y2

−135438yx+ 1433.46x2 − 4.29953 · 107y − 3.16167 · 106x+ 7.81355 · 108.

A “good” property of the polynomial curve above is that it properly reflects the particular
geometry of the reference R showing a singularity around the point (−46, 52).
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Figure 7: Simulation of the Charlie USV executing
a path with a singularity, with coloured dots that
refer to the output of the ACA-2 algorithm. For
the legend the reader can refer to Figure 1.
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Figure 8: Simulation of the Charlie USV executing
a path with a singularity, with coloured dots that
refer to the output of the CA-2 algorithm. For
the legend the reader can refer to Figure 1.

Step II. The ACA-2 and CA-2 algorithms have been tested on the vehicle set V, by setting
ε2 = (0.9, 0.9). As it is expected by Remark 1, the number of points classified as far from
the path (red points) in Figure 7 is clearly greater than those in Figure 8. Furthermore, it
is evident that for both the algorithms the point of singularity is associated to uncertainty,
but the number of these points (that are green coloured) reduces when employing the most
accurate computation, that is the CA-2 algorithm.
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7. A simulation study for n ≥ 2

In this section we discuss test examples in higher dimensions focussing on the com-
putational time needed by the algorithms ACA-2 and CA-2. Our aim is not to present a
long careful complexity analysis of the two algorithms (which, apart from the dimen-
sion and the number of points, would heavily depend on their configuration), rather
to show via examples how the computational time scales as the dimension increases.
Matlab code for running the following example is freely available at the following link
https://sites.google.com/site/eleonorasaggini/shared-files.

Example 2. We consider three polynomials in 2, 4 and 8 variables:

f2 = −3x31 + 5x21 − x1 + x2 + 3

f4 = x4 + 3x31 − 2x32 + x33 + 5x1x
2
3 + x21 − 4x1x2 + 5x1x3 − 10x2x3 + 7x2 − 3x3 + 9

f8 = x8 + 3x31 − 2x35 + x34 + 5x2x
2
3 + x24 − 4x5x6 + 5x6x7 − 10x1x3 + 7x4 − 3x5 + 9

We consider three sets of points: X2 ⊂ R2, X4 ⊂ R4 and X8 ⊂ R8. For each n = 2, 4, 8
the set Xn is made up of 100 points: 40 points are obtained by perturbing points lying on
fn = 0 by less than 0.001; 60 points are randomly chosen. Table 3 contains the results of
the classification made by the algorithms ACA-2 and CA-2 and the relative computational
time for different choices of the tolerance vector which, for simplicity, is a n-dimensional
vector with all entries equal to ε = 10−4, 10−3, 10−2, 10−1.

Table 3: Results of classifications and computational time for polynomials f2, f4 and f8 employing the ACA-2
and CA-2 algorithms and tolerance values ε.

n ε = 10−4 ε = 10−3 ε = 10−2 ε = 10−1

2
Index

PC 11% 21% 40% 40%
PNC 89% 74% 60% 60%
PU 0% 5% 0% 0%

Time [s]
ACA-2 5 6 6 6
CA-2 35 40 47 43

4
Index

PC 5% 27% 40% 40%
PNC 95% 71% 60% 60%
PU 0% 2% 0% 0%

Time [s]
ACA-2 10 12 12 12
CA-2 370 396 388 362

8
Index

PC 3% 29% 40% 40%
PNC 96% 67% 60% 60%
PU 1% 4% 0% 0%

Time [s]
ACA-2 19 19 19 19
CA-2 638 988 1051 1040

If ε ≥ 10−2, in all the cases both ACA-2 and CA-2 make an exact classification of the
points. Further, as expected, smaller values for ε lead to identify more points far from the
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variety fn = 0. The computational time does not depend on the choice of ε: this is evident
for both the algorithms, especially for CA-2. On the other hand, the computational speed
is strongly related to the dimension of the problem: in the considered examples the compu-
tational time of ACA-2 grows linearly with the dimension, whilst the time increase is more
unpredictable in the case of CA-2. Just to give an idea, consider an online classification
of points given sequentially with a sampling rate of 0.5 Hz: while the CA-2 can be adopted
only for n = 2, the ACA-2 is applicable up to n = 8. Moreover, with the ACA-2 algorithm
we can handle 20 point per second when n=2, and 5 points per second if n = 8. Again,
these results confirm the large applicability of the ACA-2 algorithm, while for the CA-2 it
heavily depends on the sampling rate.
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