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ABSTRACT 

        An application of variational  iteration method(VIM) for linear and non-linear differential equation with fuzzy initial 

conditions  is introduced. Using the VIM , it is very possible to find the exact or an approximate solution for the most of the 

proposed initial value problems without complications and with complete ease  .Convergence analysis of the proposed 

method and also the maximum absolute truncation error are proved. Some illustrative numerical example are introduced to 

confirm the validity  and  powerfulness of the VIM through the results obtained.  
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1. Introduction 

       In the past years, both physicists and mathematicians have devoted considerable effort to fined stable and strong 

analytical and numerical methods for solving fuzzy differential eq- uations(FDEs) of physical interest[1]. Ji – Huan He 

proposed the VIM to find the solution of a differential equations by using an iterative scheme [2-4]. Several researches in 

series of scientific fields applied this method as well, Wazwaz [5] using the VIM for solving linear and nonlinear Volterra 

integral and integro-differential equations, Subashini [6] blended Sumudu transform and VIM to solve delay differential 

equations (DDEs) , Nabaa [7] presented VIM to approximate the solution  of  nonlinear  fractional  order  ordinary  

differential equations, in [8] Harir, Melliani, 

 El Harfi and Chadli presented VIM and Transformation Method to find a solution for the model of nonlinear ordinary 

differential equations (ODEs) describing the so-called coronavirus (COVID-19), Mathankumar and Poornima[9] used VIM 

to solve the system of fuzzy Volterra integro-differential equations of first kind. Modified VIM applied in Faribrzi [10] and 

Tamer [11] for nonlinear  ODEs. Some researchers have presented other methods for solving FDEs such as, Smita[12-13] 

improved Euler type method and orthogonal polynomials to obtain numerical solution of FDEs, Narayanamoorthy [14] 

proposed Adomian decomposition to solve fuzzy DDEs, Mine and Emine [15] presented Milne’s predictor – corrector 

method to find  numerical solution of  FDEs , Mayada [16] suggested Runge-Kutta algorithms for solving FDEs to mention 

only a few.  

The aim of this work is applied VIM to solve the linear and nonlinear FDEs, comparsion of VIM with another methods such 

as  Adams , Milne and orthogonal polynomials, also convergence analysis is proved. This paper is organized as follows:  In 

Sec.2, some basic  definitions of fuzzy set theory are brought. In  Sec.3, the VIM procdure for  solving FDE is explained. In 

Sec.4, the  convergence analysis and an  estimation of the maximum absolute  error is present. In Sec.5, several numerical 

examples are selected for solving by VIM to verify its efficiency and validity. Finally, in the last section a brief conclusion is 

drawn.  

2. Preliminaries  

 Some fundamental definitions of fuzzy set theory are recalled in this section. 
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Definition 2.1[19] If   X  is  a collection of  objects with generic element denoted by x,then  a fuzzy set Ã in X with the 

membership function μÃ(x) is a set of ordered pairs: 

Ã = { (x , μÃ(x) )| x ϵ X }  

Dfinition 2.2[19]  The  α − level set  of fuzzy set Ã is the crisp set  of elements that  belong to the fuzzy set  Ã  at lest to the 

degree  α  i.e. 

Aα = { x ϵ X | μÃ(x)  ≥  α }   

Definition 2.3:[18]  A fuzzy number  V   is represented by an ordered pair  of function  ( V(r) , V(r) )  , 0 ≤ r ≤ 1 ,which 

satisfies all the following requirements 

(i) V(r) is a bounded, left continuous  and non-decreasing function  over [0 , 1] 

(ii) V(r) is a bounded, left continuous  and non-increasing function  over [0 , 1] 

(iii) V(r)  ≤ V(r)  ,   0 ≤ r ≤ 1   

 

3. Variational Iteration Method of FDE  

To illustrate the basic idea of  VIM  technique we consider the general  nonlinear equation: 

L[u(t)] + N[u(t)] = g(t) ,                                                                                                          (1) 

where L is represent a linear  operator, N is represent a nonlinear operator, and g(t) is a given  continuous function. The  

correction functional for Eq (1) is constructed as [1]  functional 

 un+1(t) = un(t) + ∫ λ {L[un(s)] + N[ũn(s)] − g(s)} ds
t

0
,                                                      (2)                                      

Where the λ symbol is represents a  general Lagrange’s multiplier  which one can be recognised  optimally via  vartiational 

theory, un is  the nth approximate  solution  and ũn is said to be a restricted  variation, i.e.,  δũn = 0. It is obligatory to 

determine the Lagrange  multiplier λ which can be identified  optimally by using  a restricted  variation and integration by  

parts. The general formula for Lagrange multiplier λ for the nth order differential equation it was found in [5] is of the form: 

λ = (−1)n  
(s−t)(n−1)

(n−1)!
                                                                                                                                   (3) 

Now after determined the Lagrange  multiplier λ, the successive  approximation  un+1 will be obtained through using any 

selective function u0. Consequently, the solution is obtained by taking the limit: 

u(t) = lim
n→∞

un(t)                                                                                                                    (4)                                                                                                                        

More generally, so easy to see”that the VIM can be simply extended to the n th order”FDE 

 u(n)(t) + f (t, u(t), u′(t), u′′(t), … u(n)(t)) = 0 ,    t ∈ [0 , 1]               

 ũ(k)(0) = ck     , 0 ≤ k ≤ n − 1 .                                                                                                (5)   

where ck = ( ck , ck ), are given fuzzy number. To solve Eq. (5) , by using VIM we have, 

λ(s, t) = λ(s, t) = (−1)n  
(s−t)(n−1)

(n−1)!
                                                                                             (6) 
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and as a result,”the iteration formula will be derived as following: 

un+1(t, r) = un(t, r) + ∫  (−1)n  
(s−t)(n−1)

(n−1)!
  {

dn

dsn  un(s, r) +  f (s,  un(s, r), un
′(s, r), un

′′(s, r), … ,   un
(n)(s, r))}  ds

t

0
      

                                                                                                                                                       (7)                                                                                                                                                    

un+1(t, r) = un(t, r) + ∫  (−1)n  
(s−t)(n−1)

(n−1)!
 {

dn

dsn  un(s, r) + f (s,  un(s, r),  un
′(s, r),  un

′′(s, r), … ,  un
(n)

(s, r))}  ds
t

0 
   

where  u0(t, r) = ∑
ck

k !
 tkn−1

k=0  and   u0(t, r) = ∑
ck

k !
 tkn−1

k=0 . 

4. Convergence Analysis  

 

The VIM approach is derived using mathematical induction of Cauchy sequence in Banach space, according to that 

maximum absolute truncation error is estimated.  

Theorem (4.1):   the sequence  un+1 is converges  to exact solution  of the problem (1)  if   ∃ 0 ≤ q ≤ 1  such  that ‖B[u] −

B[v]‖ ≤ q‖u − v‖,       u , v ∈ X 

where B is an operator from a Banach space X  to X  defined as  

B[u(t)] = u(t) + ∫ λ {L[u(s)] + N[u(s)] − g(s)} ds
t

0
.  

Proof:   Define the sequence un+1 for arbitrary initial term c0 as, 

u0 = c0,   u1 = B[u0],   u2 = B[u1] . . . un+1 = B[un] 

To show   ‖un+1 − un‖ ≤ qn‖u1 − u0‖ 

if n = 0 then ‖u1 − u0‖ ≤ q0‖u1 − u0‖, is clearly true 

assume that ‖un+1 − un‖ ≤ qn‖u1 − u0‖, is true  

‖un+2 − un+1‖ = ‖B[un+1] − B[un]‖ ≤ q‖un+1 − un‖ ≤ q qn‖u1 − u0‖ = qn+1‖u1 − u0‖, 

then its true for all n ≥ 0.  

suppose that  m > n, ∀ m, n ∈ N, then 

‖um − un‖ ≤ ‖um − um−1‖ + ‖um−1 − um−2‖ + ⋯ + ‖un+1 − un‖ 

         ≤  qm−1 ‖u1 − u0‖ + qm−2 ‖u1 − u0‖ + ⋯ + qn‖u1 − u0‖ 

         ≤  qn ‖u1 − u0‖  (1 + q + q2 + ⋯ + qm−n−1) 

         =  
1−qm−n

1−q
 qn‖u1 − u0‖,  since  0 ≤ q ≤ 1 ,  we get, 

lim
m,n→∞

‖um − un‖ = 0. thus, the sequence un+1 is a Cauchy sequence in the Banach space X.       

Theorem (4.2):   If the sequence   un+1   is convergent as in theorem(4.1) then the maximum absolute truncation error of  

un+1  is estimated by the following inquality 
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En(t) = ‖u(t) − un(t)‖ ≤  
qn

1 − q
‖u1 − u0‖ 

Proof:   From theorem (4.1), we have, 

 ‖um − un‖ ≤
1−qm−n

1−q
 qn‖u1 − u0‖  

Now, as m → ∞  we have,  um(t) → u(t). So, 

‖u(t) − un(t)‖ ≤  
1−qm−n

1−q
 qn‖u1 − u0‖. 

Also, since 0 ≤ q ≤ 1  then (1 − qm−n ) ≤ 1. Therefore we have, 

‖u(t) − un(t)‖ ≤  
qn

1−q
 ‖u1 − u0‖                                                                                                                

5. Numerical examples 

Three test examples are illustrated below to solve fuzzy differential equations by VIM where, y(x, r) the approximate 

solution by the proposed method and the error = |Y(x, r) − y(x, r)|, where Y(x, r) the exact solution. 

Example(5.1): Consider the first order FDE:  

y′(t) = −y(t),        t ∈ [0,1]   

ỹ(0) = (0.96 + 0.04r, 1.01 − 0.01r)                                                                                          (8) 

the exact fuzzy solution [15]: 

Y(t, r) = (0.96 + 0.04r)e−t  

Y(t, r) = (1.01 − 0.01r)e−t                                                                                                        (9)          

Now to apply the VIM, we will be rewrite Eqs. (8) in the form   

L[ y (t) ] + N[ y (t) ] = 0,        

L[ y (t) ] + N[ y (t) ] = 0                                                                                                           (10)  

 

where   L[ y (t) ] =
d

dt
 y (t) + y (t),   L[ y (t) ] =

d

dt
y (t) + y (t)   symbolize the linear terms  and N[ y (t) ] = 0, N[ y (t) ] =

0 for the nonlinear terms. Thus, by taking the variation with respect to yn and y
n
, and noticing that δyn(0, r) = δy

n
(0, r) =

0, 

 

δyn+1(t, r) = δyn(t, r) + δ ∫ λ(s, t) {
d

ds
 yn (s, r) + yn (s, r)}  ds

t

0
  

                      = δyn(t, r) + λ(s, t)δyn (s, r)|0
t + ∫ {−

∂

∂s
λ(s, t) + λ(s, t)} δyn (s, r) ds = 0,

t

 0
 

 δy
n+1

(t, r) = δy
n

(t, r) + δ ∫ λ(s, t)  {
d

ds
 y

n
(s, r) + y

n
(s, r)}  ds

t

0
  

                      = δy
n

(t, r) + λ(s, t)δy
n

 (s, r)|0
t + ∫ {−

∂

∂s
λ(s, t) + λ(s, t)} δy

n
 (s, r) ds = 0.

t

 0
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Thus Euler-Lagrange equations [3] given by 

−
∂λ(s,t)

∂s
 + λ(s, t) = 0   ,   −

∂λ(s,t)

∂s
 + λ(s, t) = 0                                                                     (11)                                                                                                             

with natural boundary conditions: 

 1 + λ(t, t) = 0    ,    1 + λ(t, t) = 0                                                                                         (12) 

Now, by solve (11) and substituting the natural boundary conditions (12), we get: 

λ(s, t) = λ(s, t) = −e(s−t).                                                                                                        (13) 

As a results, the iteration formulation is: 

yn+1(t, r) = yn(t, r) − ∫ e(s−t)  {
d

ds
 yn (s, r) + yn (s, r)}  ds

t

0
,  

y
n+1

(t, r) = y
n

(t, r) − ∫ e(s−t)   {
d

ds
y

n
 (s, r) + y

n
 (s, r)}  ds

t

0
,   n ≥ 0.                                      (14)                                               

If we begin with  y0(t, r) = 0.96 + 0.04r  and  y
0

(t, r) = 1.01 − 0.01r, then 

y1(t, r) = (0.96 + 0.04r)e−t  

y
1

(t, r) = (1.01 − 0.01r)e−t 

which is represent the exact explicit solution itself. Results at t = 0.1 are shown, in table (1)-(2), 

where lower approximation y(t, r) , lower exact Y(t, r), upper approximation y(t, r) , upper exact Y(t, r). Error of VIM 

compare with error of Adams, Milne methods given in [15] 

 

Table 1: Lower results of example 5.1 at t = 0.1 

r    Y(t, r) 

 

y(t, r) 

 

y(VIM Error) y(Adams Error) y(Milne Error) 

0 0.8686439        0.8686439      0.0000000        0.0002857          0.0000082 

0.2      0.8758826      0.8758826      0.0000000        0.0002286        0.0000065 

0.4      0.8831213      0.8831213      0.0000000        0.0001714        0.0000049 

0.6      0.8903600      0.8903600      0.0000000        0.0001143        0.0000032 

0.8      0.8975987      0.8975987      0.0000000        0.0000571        0.0000016 

1 0.9048374      0.9048374      0.0000000        0.0000000        0.0000000 

 

Table 2: Upper results of example 5.1 at t = 0.1 

r Y (t, r)    

       

 y(t, r) 

 

 y(VIM Error)  y(Adams Error)  y(Milne Error) 

0 0.9138857      0.9138857      0.0000000           0.0002857                 0.0000082 

0.2      0.9120761      0.9120761      0.0000000        0.0002286          0.0000065 

0.4      0.9102664      0.9102664      0.0000000        0.0001714          0.0000049 

0.6      0.9084567      0.9084567      0.0000000        0.0001143          0.0000032 
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0.8      0.9066470      0.9066470      0.0000000        0.0000571          0.0000016 

1 0.9048374      0.9048374      0.0000000        0.0000000          0.0000000 

 

It is clear from table 1 and 2 that the one-iteration of VIM approximate solution is more accurate than results from the Adams 

and Milne numerical solution when compared of with exact solution of Eq.(8) when t = 0.1  for all r ∈ [0,1]. 

Example(5.2): Consider the second order FDE [13]:  

y′′(t) − 4y′(t) + 4y(t) = 0,        t ∈ [0,1]   

ỹ(0) = (2 + r, 4 − r)                                                                                                                 (15) 

ỹ′(0) = (r + 5 , 7 − r) 

The exact fuzzy solution of Eq.(15) is as follows: 

Y(t, r) = (2 + r)e2t + (1 − r)te2t,  

Y(t, r) = (4 − r)e2t + (r − 1)te2t.                                                                                          (16) 

To solve Eq.(15) by means of VIM, we can obtain the Lagrange multiplier λ(s, t) = λ(s, t) = (s − t), and the following 

variational iteration can be obtained 

 yn+1(t, r) = yn(t, r) + ∫ (s − t) { 
d2

ds2  yn (s, r) − 4
d

dt
yn (s, r) + 4yn (s, r) }  ds

t

0
,  

 y
n+1

(t, r) = y
n

(t, r) + ∫ (s − t) {
d2

ds2  y
n

 (s, r) − 4
d

dt
y

n
 (s, r) + 4y

n
 (s, r)}  ds

t

0
      n ≥ 0,    

If we start with the initial approximation guesses of Eq.(15)  y0(t, r) = (2 + r) + (5 + r)t  and 

 y
0

(t, r) = (4 − r) + (7 − r)t. Then the results of  example (5.2) at t = 0.01, and  error of VIM compare with error of 

methods given in [13] are shown in Table 3 and 4.  

 

Table 3: Lower results of Example 5.2  at  t = 0.01 .   

r Y(Exact) 

 

y(VIM) y(VIM)                                                            

Error 

y (Legendra) 

 Error 

y (Chebyshev) 

 Error 

0 2.050604693 2.050604692 0.000000001 0.000461836 0.000461835 

0.2 2.252604558 2.252604558 0.000000000 0.000490272 0.000490272 

0.6 2.656604289 2.656604288 0.000000001 0.000547146 0.000547146 

0.8 2.858604154 2.858604154 0.000000000 0.000575582 0.000575582 

1 3.060604020 3.060604019 0.000000001 0.000604020 0.000604020 

 

Table 4. Upper results of Example 5.2  at  t = 0.01.   

r Y(Exact)            y(VIM) y(VIM )                                                            

Error 

y (Legendra) 

Error 

y (Chebyshev)  

 Error 

0 4.070603346 4.070603346 0.000000000 0.000746203 0.000746204 

0.2 3868603481 3868603480 0.000000001 0.000717767 0.000717767 

0.6 3.464603750 3.464603750 0.000000000 0.000660893 0.000660893 
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0.8 3.262603885 3.262603884 0.000000001 0.000632457 0.000632457 

1 3.060604020 3.060604019 0.000000001 0.000604020 0.000604020 

 

We can see that From table 3 and 4 that the 3- iterations of VIM approximate solution is more accurate than results from the 

numerical solution of methods given in [13] when compared of with exact solution of Eq.(15) when t = 0.01  for all r ∈

[0,1].  

Example(5.3):   Consider the nonlinear” FDE [17] : 

y′(t) = y2(t),        t ∈ [0,1]   

ỹ(0) = (0.4 + 0.2r, 0.9 − 0.3r)                                                                                                (17) 

with the exact fuzzy solution  

Y(t, r) =
0.4+0.2r

1−(0.4+0.2r)t
   

Y(t, r) =
0.9−0.3r

1−(0.9−0.3r)t
                                                                                                                  (18)  

Now, to solve Eq.(17) by means of VIM, we can obtain the Lagrange multiplier 

λ(s, t) = λ(s, t) = −1 .As a results, we obtain the following iteration formulation: 

 yn+1(t, r) = yn(t, r) − ∫  {
d

ds
 yn (s, r) − yn

2(s, r)}  ds
t

0
,  

 y
n+1

(t, r) = y
n

(t, r) − ∫   {
d

ds
y

n
 (s, r) − y

n

2(s, r)}  ds
t

0
      n ≥ 0,                                                                                                                                                              

If we start with the initial approximation y0(t, r) = 0.4 + 0.2r   and   y
0

(t, r) = 0.9 − 0.3r,  then the VIM approximation 

solution of  example (5.3) at  t = 0.01  are shown in Table 5.   

 

Table 5. Upper and Lower VIM Approximate and Exact Solution of Example 5.3 at t = 0.01 .   

r Y 

(Exact) 

y 

(VIM) 

Y 

(Exact) 

y 

(VIM) 

y 

(VIM Error) 

y 

(VIM Error) 

0 0.40160642570 0.40160642570 0.90817356205 0.90817356205 0.00000000000 0.00000000000 

0.2 0.44194455604 0.44194455604 0.84711577248 0.84711577248 0.00000000000 0.00000000000 

0.4 0.48231511254 0.48231511254 0.78613182826 0.78613182825 0.00000000000 0.00000000000 

0.6 0.52271813429 0.52271813429 0.72522159548 0.72522159548 0.00000000000 0.00000000000 

0.8 0.56315366049 0.56315366049 0.66438494060 0.66438494060 0.00000000000 0.00000000000 

1 0.60362173038 0.60362173038 0.60362173038 0.60362173038 0.00000000000 0.00000000000 

 

         The results of table 5 are obtained by using 4-iterations of approximate solution which explaining the accurate of the 

method when compared of with exact solution of Eq.(15) at  t = 0.01 . 

Comparison of VIM approximate and exact solutions for the given examples are showing in the following figures.  
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                    Fig.1                                         Fig.2                                       Fig.3 

  

Where, figure 1, figure 2 and figure 3 represent the results of example (5.1) at t = 0.1, example (5.2) at t = 0.01 and 

example (5.3) at t = 0.01 respectively .Which shows the accuracy, efficiency and validity of the VIM through the 

comparison between the exact solution and approximate solution . 

  We use  r ∈ [0,1] where we calculate the error of the obtained fuzzy solution and exact solution with VIM. Tables show the 

convergence conduct of the method.the exact and obtained solution of fuzzy  differential equations at t = 0.1 or t = 0.01 and 

r ∈ [0,1] are shown in figures, also the results compare with results in [13] and [15 ] to show the convergence of the method.  

6. Conclusion 

It is easy to see that the VIM gives  fast convergent successive  approximations without  any transformation, through 

determining the general Lagrange multipliers. The theorems  of onvergence and  maximum absolute truncation error 

estimation  have been  discussed.  The numerical  results , of the proposed  method have been presented,  and compared the 

obtained results with the existing  results to show  the efficiency  and  powerfulness of the  method. As a future work we 

suggest fuzzy delay differantioal equations. 
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