
JOURNAL OF ALGEBRAIC STATISTICS
Vol. 2, No. 1, 2011, 1-13
ISSN 1309-3452 – www.jalgstat.com

An Iterative Method Converging to a Positive Solution
of Certain Systems of Polynomial Equations

Dustin Cartwright

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. We present a numerical algorithm for finding real non-negative solutions to a certain
class of polynomial equations. Our methods are based on the expectation maximization and it-
erative proportional fitting algorithms, which are used in statistics to find maximum likelihood
parameters for certain classes of statistical models. Since our algorithm works by iteratively im-
proving an approximate solution, we find approximate solutions in the cases when there are no
exact solutions, such as overconstrained systems.
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We present an iterative numerical method for finding non-negative solutions and ap-
proximate solutions to systems of polynomial equations satisfying the following two as-
sumptions. First, for each equation, all the coefficients other than the constant term must
be non-negative. Second, there is a technical assumption on the exponents, described at
the beginning of Section 1, which, for example, is satisfied if all non-constant terms have
the same total degree. In Section 3, there is a discussion of the range of possible systems
which can arise under these hypotheses.

Because of the assumption on signs, we can write our system of equations as,∑
α∈S

aiαx
α = bi for i = 1, . . . , `, (1)

where the coefficients aiα are non-negative and the bi are positive, and S ⊂ Rn≥0 is a finite
set of possibly non-integer multi-indices. Our algorithm works by iteratively decreasing
the generalized Kullback-Leibler divergence of the left-hand side and right-hand side of (1).
The generalized Kullback-Leibler divergence of two positive vectors a and b is defined to
be

D (a ‖b) :=
∑
i

(
ai log

(
ai
bi

)
− ai + bi

)
. (2)
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The standard Kullback-Leibler consists only of the first term and is defined only for proba-
bility distributions, i.e. when the sum of each vector is 1. The last two terms are necessary
so that the generalized divergence has, for arbitrary positive vectors a and b, the property
of being non-negative and zero exactly when a and b are equal (Proposition 2).

Our algorithm converges to local minima of the Kullback-Leibler divergence, including
exact solutions to the system (1). In this paper, we define an approximate solution to be
a local minima of the Kullback-Leibler divergence. In order to find multiple local minima,
we can repeat the algorithm for randomly chosen starting points. For finding approximate
solutions, this may be sufficient. However, there are no guarantees of completeness for the
exact solutions obtained in this way. Nonetheless, we hope that in certain situations, our
algorithm will find applications both for finding exact and approximate solutions.

Lee and Seung applied the EM algorithm to the problem of non-negative matrix factor-
ization [7]. They introduced the generalized Kullback-Leibler divergence in (2) and used it
to find approximate non-negative matrix factorizations. Since the product of two matrices
can be expressed by polynomials in the entries of the matrices, matrix-factorization is a
special case of the equations in (1).

In [4], Dedieu and Shub study a generalization of Newton’s algorithm to overdeter-
mined systems of equations within the context of Smale’s α-theory. Their analogue of our
apporximate solutions are local minima of the norm-squared error of the equations in (1):

∑̀
i=1

(∑
α∈S

aiαx
α − bi

)2

,

and, under certain conditions, they obtain effective bounds on convergence to these min-
ima. While their approach has the advantage of using the more standard Euclidean norm
instead of the Kullback-Leibler divergence, the convergence of Newton iterations depends
on the choice of starting point. When our hypotheses on the system of equations are
satisfied, we obtain convergence for any starting point, albeit without explicit bounds on
the rate of convergence like in [4].

For finding exact solutions to arbitrary systems of polynomials, there are a variety of
approaches which find all complex or all real solutions. Homotopy continuation methods
find all complex roots of a system of equations [9]. Even to find only positive roots, these
two methods finds all complex or all real solutions, respectively. Lasserre, Laurent, and
Rostalski have applied semidefinite programming to find all real solutions to a system of
equations and a slight modificiation of their algorithm will find all positive real solutions [5,
6]. Nonetheless, neither of these methods has any notion of approximate solutions.

For directly finding only positive real solutions, Bates and Sottile have proposed an
algorithm based on fewnomials bounds on the number of real solutions [1]. However, their
method is only effective when the number of monomials (the set S in our notation) is only
slightly more than the number of variables. Our method only makes weak assumptions
on the set of monomials, but stronger assumptions on the coefficients.

Our inspiration comes from tools for maximum likelihood estimation in statistics. Pa-
rameters which maximize the likelihood are exactly the parameters such that the model
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probabilities are closest to the empirical probabilities, in the sense of mimimizing Kullback-
Leibler divergence. Expectation-Maximization [8, Sec. 1.3] and Iterative Proporitional
Fitting [3] are well-known iterative methods for maximum likelihood estimation. We
re-interpret these algorithms as methods for approximating solutions to polynomial equa-
tions, in which case their applicability can be somewhat generalized.

The impetus behind the work in this paper was the need to find approximate positive
solutions to systems of bilinear equations in [2]. In this case the variables represented
expression levels, which only made sense as positive parameters. Moreover, in order to
accomodate noise in the data, there were more equations than variables, so it was necessary
to find approximate solutions. Thus, the algorithm described in this paper was the most
appropriate tool. Here, we generalize beyond bilinear equations and present proofs.

An implementation of our algorithm in the C programming language is freely available
at http://math.berkeley.edu/~dustin/pos/.

In Section 1, we describe the algorithm and the connection to maximum likelihood
estimation. In Section 2, we prove that the necessary convergence for our algorithm.
Finally, in Section 3, we show that even with our restrictions on the form of the equations,
there can be exponentially positive real solutions.

1. Algorithm

In addition to the assumption on the non-negativity of the coefficients, we make a
further assumption on the exponent set. We assume that we have an s× n non-negative
matrix g, with no column identically zero, and positive real numbers dj for 1 ≤ j ≤ s such
that for each α ∈ S and each j ≤ s,

∑n
i=1 gjiαi is either 0 or dj . For example, if all the

monomials xα have the same total degree d1, we can take s = 1 and g1i = 1 for all i. The
other case of particular interest is multilinear systems of equations, in which each αi is at
most one. In this case the variables can be partitioned into sets such that the equations
are linear in each set of variables, so we can take dj = 1 for all j. Note that because dj
is in the denominator in (4), convergence is fastest when the dj are small, such as in the
multilinear case. We also note that, for an arbitrary set of exponents S, there may not
exist such a g.

The algorithm begins with a randomly chosen starting vector and iteratively improves
it through two nested iterations:

• Initialize x with n randomly chosen positive real numbers.

• Loop until the vector x stablizes:

• For all α ∈ S, compute

wα :=
∑
i

bi
aiαx

α∑
β aiβx

β
. (3)

• Loop until the vector x stablizes:

• Loop for j from 1 to s:
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• Simultaneously update all entries of x:

xi ← xi

( ∑
α αigjiwα∑
α αigjiaαx

α

)gji/dj
where aα =

∑
i

aiα. (4)

Because there is no subtraction, it is clear that the entries of x remain positive throughout
this algorithm.

Since our algorithm is iterative, it is dependent on stopping criteria to determine
when to stop the iterations. For the inner loop, we terminate when the relative change
in the components of the vector x is less than the square of the relative change in the
last iteration of the outer loop. In this way, the threshold becomes more stringent as
the algorithm converges. For the outer loop, we use the quadratic Taylor expansion of
the divergence (2) to estimate the distance between the current value of x and the local
minimum of the divergence. When the estimated distance is less than a given threshold,
the loop terminates. This criterion was chosen over more straightforward ones, which
proved to be unreliable in practice.

Note that each iteration is quite fast. The computation in (3) is equivalent to a single
evaluation of the system of polynomials, plus a division for each term. On the other hand,
each update (4) is potentially faster than a single evaluation of the system of polynomials,
especially if dj = 1, because the iteration is only over S, the set of exponent vectors, and
not over all the terms. Finally to gain additional speed, in our implementation, when the
algorithm gets close to an actual solution, we use Newton’s algorithm to quickly refine it.

Our method is inspired by interpreting the equations in (1) as a maxmimum likelihood
problem for a statistical model and applying the well-known methods of Expectation-
Maximization (EM) and Iterative Proportional Fitting (IPF). For simplicity, let us as-
sume that all the monomials xα have the same total degree. Our statistical model is that
a hidden process generates an integer i ≤ ` and an exponent vector α with joint proba-
bility aiαx

α. The vector x contains n positive parameters for the model, restricted such
that the total probability

∑
i,α aiαx

α is 1. The empirical data consists of repeated obser-
vations of the integer i, but not the exponent α, and bi is the proportion of observations
of i. In this situation, the vector x which minimizes the divergence of (1) is the maximum
likelihood parameters for the empirical distribution bi. The inner loop of the algorithm
consists of using IPF to solve the log-linear hidden model and the outer loop consists of
using EM to estimate the distribution on the hidden states.

We give a simple example of our algorithm in action.

Example 1. The (reciprocal of the) golden ratio is the unique positive root of the equation

x2 + x− 1 = 0.

The coefficients have the correct signs, but doesn’t satisfy the condition on the exponent
vectors. We can fix this by adding a dummy variable y, which will be force to be equal
to 1:

x2 + xy = 1

y2 = 1.
(5)
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Inner loop iterations x y

5 0.6944381615 0.9327435254
4 0.6339861529 0.9862879982
3 0.6217014340 0.9968624369
5 0.6187745905 0.9993672667
6 0.6181817273 0.9998738089
8 0.6180632943 0.9999749698
9 0.6180397990 0.9999950375

11 0.6180351404 0.9999990163

Table 1: Eight iterations of the outer loop applied to the system of equations in (5).

A sample run took 8 iterations of the outer loop and a total of 51 iterations of the inner
loop to converge to 5 digits of accuracy, as detailed in Table 1.

Example 2. Next we give an example of a system with only approximate solutions. One
can check that the system of equations

x2 + y2 = 1

x2 + 2xy + y2 = 4

has no real solutions. On this system, our algorithm converges to the approximate solution
(x, y) = (

√
5/6,

√
5/6) ≈ (0.91287, 0.91287). With these values, x2 + y2 = 5/3, which is

somewhat greater than 1, and x2 + 2xy + y2 = 10/3, which is somewhat less than 4.

Although the Kullback-Leibler divergence is rarely used outside probability and statis-
tics, it can be approximated as a weighted L2-norm. In order to make this statement
precise, we define the function C(t) to be 1 if t ≤ 1 and to be log(t)/(t− 1) if t > 1. Note
that C(t) is approximately equal to 1 in a neighborhood fo t = 1, which will be the case
when comparing vectors which are close to each other.

Proposition 1. With a and b two positive real vectors, and C(t) as defined above, then
D (a ‖b) is bounded below by the square of the weighted L2-norm

n∑
i=1

C(ai/bi)

2bi
(ai − bi)2 (6)

Proposition 1 implies that, at least for nearby vectors, the major difference between
divergence and Euclidean distance is that divergence places more weight on components
whose values are closer to zero.

Proof. [Proof of Proposition 1] Note that D (a ‖b) =
∑m

i=1D (ai ‖bi ) and thus, it
suffices to prove the statement in the case when a and b are scalars. We let t = a/b, and
then,

D (a ‖b) = a log
(a
b

)
− a+ b = b(t log t− t+ 1) = b

∫ t

1
log s ds.
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Now we bound the integral using a linear approximation of the logarithm. For s ≤ 1,
log s ≤ s− 1. On the other hand, for 1 ≤ s ≤ t, log s ≥ (s− 1) log(t)/(t− 1), since log is
a convex function. Therefore, whether t ≤ 1 or t ≥ 1∫ t

1
log s ds ≥ C(t)

∫ t

1
(s− 1) ds.

Combining this inequality with (1),

D (a ‖b) ≥ C(t)b

∫ t

1
(s− 1) ds =

C(a/b)b

2

(a
b
− 1
)2

=
C(a/b)

2b
(a− b)2,

which is the desired result.

As a corollary, we get:

Proposition 2. For a and b vectors of positive real numbers, the divergence D (a ‖b) is
always non-negative with D (a ‖b) = 0 if and only if a = b.

Proof. Since the quantity C(ai/bi) from Proposition 1 is always positive, each term of
the summation in (6) is non-negative and zero if and only ai = bi.

2. Proof of convergence

In this section we prove our main theorem:

Theorem 3. The Kullback-Leibler divergence

∑̀
i=1

D

(
bi

∥∥∥∥∥∑
a∈S

aiαx
α

)
. (7)

is weakly decreasing during the algorithm in Section 1. Moreover, assuming that the set
S contains a multiple of each unit vector ei, i.e. some power of each xi appears in the
system of equations, then the vector x converges to a critical point of the function (7) or
the boundary of the positive orthant.

Remark 4. The condition on S is necessary to ensure that the vector x remains bounded
during the algorithm.

We begin by establishing several basic properties of the generalized Kullback-Leibler
divergence in Lemmas 5 and 6. The proof of Theorem 3 itself is divided into two parts,
corresponding to the two nested iterative loops. The first step is to prove that the up-
dates (4) in the inner loop converge a local minimum of the divergence D (wα ‖aαxα ).
The second step is to show that this implies that the outer loop strictly decreases the
divergence function (7) exact at a critical point.



Dustin Cartwright / J. Alg. Stat., 2 (2011), 1-13 7

Lemma 5. Suppose that a and b are vectors of m positive real numbers. Let t be any
positive real number, and then

D (a ‖tb) = D (a ‖b) + (t− 1)

m∑
i=1

bi −
m∑
i=1

ai log t

Proof. As in the proof of Proposition 1, we can assume that a and b are scalars. In
this case, it becomes a straightforward computation.

Lemma 6. If a and b are vectors of m positive real numbers, then we can relate their
divergence to the divergence of their sums by

D (a ‖b) = D (
∑m

i=1 ai ‖
∑m

i=1 bi ) +D

(
a

∥∥∥∥∑m
i=1 ai∑m
i=1 bi

b

)
.

Proof. We let A =
∑m

i=1 ai and B =
∑m

i=1 bi, and apply Lemma 5 to the last term:

D

(
a

∥∥∥∥ABb
)

= D (a ‖b) +

(
A

B
− 1

)
B −A log

A

B

= D (a ‖b)−A log
A

B
+A−B = D (a ‖b)−D (A ‖B ) .

After rearranging, we get the desired expression.

Lemma 7. The update rule (4) weakly decreases the divergence. If

x′i = xi

( ∑
α αigjiwα∑
α αigjiaαx

α

)gji/dj
,

then∑
α

D
(
wα
∥∥aα(x′)α

)
≤
∑
α

D (wα ‖aαxα )− 1

d

n∑
i=1

D

(∑
α

αigjiwα

∥∥∥∥∥∑
α

αigjiaαx
α

)
. (8)

Proof. First, since the statement only depends on the jth row of the matrix g, we
can assume that g is a row vector and we drop j from future subscripts. Second, we can
assume that d = 1 by replacing gi with gi/d.

Third, we reduce to the case when gi = 1 for all i. We define a new set of exponents α̃
and coefficients ãα̃ by α̃i = giαi and ãα = aα

∏
xi, where the product is taken over

all indices i such that gi = 0. We take x̃ to be a vector indexed by those i such that

gi 6= 0. Then, under the change of coordinates x̃i = x
1/gi
i , we have aαx

α = ãαx̃
α̃ and the

update rule in (4) is the same for the new system with coefficients ãα̃ and exponents α̃.
Furthermore, if all entries of α̃ are zero, then x̃α̃ = 1 for all vectors x and so we can drop
α̃ from our exponent set. Therefore, for the rest of the proof, we drop the tildes, and
assume that

∑
i αi = 1 for all α ∈ S and gi = 1 for all i, in which case g drops out of the

equations.
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To prove the desired inequality, we substitute the updated assignment x′ into the
definition of Kullback-Leibler divergence:

D
(
wα
∥∥aα(x′)α

)
= wα log

 wα

aαxα
∏n
i=1

( ∑
β wβ∑

β βiaβx
β

)αi
− wα + aα(x′)α

= wα log
wα
aαxα

−
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β
− wα + aα(x′)α

= D (wα ‖aαxα )−
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β
− aαxα + aα(x′)α. (9)

On the other hand, let C denote the last term of (8), which we can expand as,

C =
n∑
i=1

D

(∑
α

αiwα

∥∥∥∥∥∑
α

αiaαx
α

)

=

n∑
i=1

((∑
α

αiwα

)
log

∑
α αiwα∑
α αiaαx

α
−
∑
α

αiwα +
∑
α

αiaαx
α

)

=

n∑
i=1

∑
α

(
αiwα log

∑
β βiwβ∑
β βiaβx

β
− αiwα + αiaαx

α

)

=
∑
α

(
n∑
i=1

αiwα log

∑
β βiwβ∑
β βiaβx

β

)
− wα + aαx

α, (10)

where the last step follows from the assumption that that
∑

i αi = 1 for all α ∈ S. We
take the sum of (9) over all α ∈ S and add it to (10) to get,∑

α

D
(
wα
∥∥aα(x′)α

)
+ C =

∑
α

D (wα ‖aαxα )−
∑
α

bα +
∑
α

aα(x′)α. (11)

Finally, we expand the last term of (10) using the definition of x′ and apply the
arithmetic-geometric mean inequality,

∑
α

aα(x′)α =
∑
α

aαx
α

n∏
i=1

( ∑
β βibβ∑

β βiaβx
β

)αi

≤
∑
α

aαx
α

n∑
i=1

αi

∑
β βibβ∑

β βiaβx
β

=

n∑
i=1

(∑
α

αiaαx
α

) ∑
β βibβ∑

β βiaβx
β

=

n∑
i=1

∑
β

βibβ =
∑
β

bβ.
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Together with (11), this gives the desired inequality.

Proposition 8. A positive vector x is a fixed point of the update rule (4) for all 1 ≤ j ≤ s
if and only if x is a critical point of the divergence function

∑
αD (wα ‖aαxα ).

Proof. For the update rule to be constant means that the numerator and denominator
in (4) are equal, i.e. ∑

α

αigjiaαx
α =

∑
α

αigjiwα for all i and j. (12)

By our assumption on g, for each i, some gji is non-zero, so (12) is equivalent to∑
α

αiaαx
α =

∑
α

αiwα for all i. (13)

On the other hand, we compute the partial derivative

∂

∂xi

∑
α

D (wα ‖aαxα ) =
∑
α

−wα
αi
xi

+ αiaα
xα

xi
.

Since each xi is assumed to be non-zero, it is clear that all partial derivatives being zero
is equivalent to (13).

Lemma 9. If we define wα as in (3), then

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
−

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiαx
α

)
≤
∑
α

D
(
wα
∥∥aα(x′)α

)
−
∑
α

D (wα ‖aαxα ) .

Moreover, a positive vector x is a fixed point if and only if x is a critical point for the
divergence function.

Proof. We consider∑
i,α

D
(
wiα

∥∥aiα(x′)α
)

where wiα =
biaiαx

α∑
β aiβx

β
, (14)

and apply Lemma 6 in two different ways. First, by applying Lemma 6 to each group
of (14) with fixed α, we get

∑
i,α

D
(
wiα

∥∥aiα(x′)α
)

=
∑
α

D
(
wα
∥∥aα(x′)α

)
+
∑
i,α

D

(
wiα

∥∥∥∥∥
∑

j wjα∑
j aα(x′)α

aiα(x′)α

)
.
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In the last term, the monomials (x′)α cancel and so it is a constant independent of x′

which we denote E. On the other hand, we can apply Lemma 6 to each group in (14)
with fixed i,

∑
i,α

D
(
wiα

∥∥aiα(x′)α
)

=
∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
+
∑
i,α

D

(
wiα

∥∥∥∥∥ biaiα(x′)α∑
β aiβ(x′)β

)
.

We can combine these equations to get

∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
=
∑
α

D
(
wiα

∥∥aα(x′)α
)
+E−

∑
i,α

D

(
wiα

∥∥∥∥∥ biaiα(x′)α∑
β aiβ(x′)β

)
. (15)

By Proposition 2, the last term of (15) is non-negative, and by the definition of wiα, it is
zero for x′ = x. Therefore, any value of x′ which decreases the first term compared to x
will also decrease the left hand side by at least as much, which is the desired inequality.

In order to prove the statement about the derivative, we consider the derivative of (15)
at x′ = x. Because the last term is mimimized at x′ = x, its derivative is zero, so

∂

∂x′j

∣∣∣∣∣
x′=x

∑
i

D

(
bi

∥∥∥∥∥∑
α

aiα(x′)α

)
=

∂

∂x′j

∣∣∣∣∣
x′=x

∑
i,α

D
(
wiα

∥∥aiα(x′)α
)
.

By Proposition 8, a positive vector x is a fixed point of the inner loop if and only if these
partial derivatives on the right are zero for all indices j, which is the definition of a critical
point.

Proof. [Proof of Theorem 3] The Kullback-Leibler divergence
∑

αD (wα ‖aαxα ) de-
creases at each step of the inner loop by Lemma 7. Thus, by Lemma 9, the divergence

n∑
i=1

D

(
bi

∥∥∥∥∥∑
α

aiαx
α

)
(16)

decreases at least as much. However, the divergence (16) is non-negative according to
Proposition 2. Therefore, the magnitude of the decreases in divergence must approach
zero over the course of the algorithm. By Lemma 7, this means that the quantity C in
that theorem must approach zero. By Proposition 2, this means that the quantities in
that divergence approach each other. However, up to a power, these are the numerator
and denominator of the factor in the update rule (4), so the difference between consecutive
vectors x approaches zero.

Thus, we just need to show that x remains bounded. However, since some power of
each variable xi occurs in some equation, as xi gets large, the divergence for that equation
also gets arbitrarily large. Therefore, each xi must remain bounded, so the vector x must
have a limit as the algorithm is iterated. If this limit is in the interior of the positive
orthant, then it must be a fixed point. By Lemma 9 and Proposition 8, this fixed point
must be a critical point of the divergence (7).
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3. Universality

Although the restriction on the exponents and especially the positivity of the coeffi-
cients seem like strong conditions, such systems can nonetheless be quite complex. In this
section, we investigate the breadth of such equations.

Proposition 10. For any system of ` real polynomials in n variables, there exists a system
of ` + 1 equations in n + 1 variables, in the form (1), such that the positive solutions
(x1, . . . , xn) to the former system are in bijection with the positive solutions (x′1, . . . , x

′
n+1)

of the latter, with x′i = xi/xn+1.

Proof. We write our system of equations as
∑

α∈S aiαx
α = 0 for 1 ≤ i ≤ `, where

S ⊂ Nn is an arbitrary finite set of exponents and aiα are any real numbers. We let d be
the maximum degree of any monomial xα for α ∈ S. We homogenize the equations with
a new variable xn+1. Explicitly, define S′ ⊂ Nn+1 to consist of α′ = (α, d−

∑
i αi) for all

α in S and we write aiα′ = aiα. We add a new equation with coefficients a`+1,α = 1 for all
α ∈ S′ and b`+1 = 1. For this system, we can clearly take g1i = 1 and d1 = d to satisfy the
condition on exponents. Furthermore, for any positive solution (x1, . . . , xn) to the original

system of equations, (x′1, . . . , x
′
n+1) with x′i = xi/

(∑
α x

α
)1/d

and x′n+1 = 1/
(∑

α x
α
)1/d

is a solution to the homogenized system of equations.
Next, we add a multiple of the last equation to each of the others in order to make all the

coefficients positive. For each 1 ≤ i ≤ `, choose a positive bi > −minα{aiα | α ∈ S′}, and
define a′iα = aiα + bi. By construction, the resulting system has all positive coefficients,
and since the equations are formed from the previous equations by elementary linear
transformations, the set of solutions are the same.

The practical use of the construction in the proof of Proposition 10 is mixed. The
first step, of homogenizing to deal with arbitrary sets of exponents, is a straightforward
way of guaranteeing the existence of the matrix g. However, for large systems, the second
step tends to produce an ill-conditioned coefficient matrix. In these cases, our algorithm
converges very slowly. Nonetheless, Proposition 10 shows that in the worst case, systems
satisfying our hypotheses can be as complicated as arbitrary polynomial systems.

Proposition 11. There exist bilinear equations in 2m variables with
(
2m−2
m−1

)
positive real

solutions.

Proof. We use a variation on the technique used to prove Proposition 10.
First, we pick 2m−2 generic homogeneous linear functions b1, . . . , b2m−2 onm variables.

By generic, we mean for any m of the bk, the only simultaneous solution of all m linear
equations is the trivial one. This genericity implies that any m−1 of the bk define a point
in Pm−1 By taking a linear changes of coordinates in each set of variables, we can assume
that all of these points are positive, i.e. have a representative consisting of all positive real
numbers.

Then we consider the system of equations

bk(x1, . . . , xm) · bk(xm+1, . . . , xn) = 0, for 1 ≤ k ≤ 2m− 2 (17)
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(x1 + . . .+ xm)(xm+1 + . . .+ x2m) = 1 (18)

x1 + . . .+ xm = 1. (19)

The equations (17) are bihomogeneous and so we can think of their solutions in Pm−1 ×
Pm−1. There are exactly

(
2m−2
m−1

)
positive real solutions, corresponding to the subsets

A ⊂ [2m− 2] of size m− 1. For any such A, there is a unique, distinct solution satisfying
bk(x1, . . . , xm) = 0 for all k in A and bk(xm+1, . . . , x2m) = 0 for all k not in A. By
assumption, for each solution, all the coordinates can be chosen to be positive. The last
two equations (18) and (19) dehomogenize the system in a way such that there are

(
2m−2
m−1

)
positive real solutions. Finally, as in the last paragraph of the proof of Proposition 10,
we can add multiples of (18) to the equations (17) in order to make all the coefficients
positive.

Example 3. We illustrate the construction in Proposition 11 in the simplest case, when
m = 2, and n = 2m = 4. We take the two homogenous functions b1 = x1 − x2 and
b2 = x1 − 2x2, which each have a positive real solution, as desired. Following (17), we
have the bilinear equations equations:

(x1 − x2)(x3 − x4) = x1x3 − x1x4 − x2x3 + x2x4 = 0

(x1 − 2x2)(x3 − 2x4) = x1x3 − 2x1x4 − 2x2x3 + 4x2x4 = 0

We appropriate multiples of (x1 + x2)(x3 + x4) = 1 to these two equations, to get the
system with non-negative coefficients:

2x1x3 + 2x2x4 = 1

3x1x3 + 6x2x4 = 2

x1x3 + x1x4 + x2x3 + x2x4 = 1

x1 + x2 = 1.

The two solutions to these equations are (1/2, 1/2, 2/3, 1/3) and (1/3, 2/3, 1/2, 1/2). Be-
cause of the symmetry, our algorithm will converge to each half of the time.
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