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ABSTRACT 

 

This paper deals with fundamental arithmetic operations on fuzzy numbers and use of these operations for carrying out 

various fuzzy processes. When modelling specific problems in the field of sciences as well as engineering, it's common to 

notice that the problem's characteristics aren't known precisely and instead fall into a range. Interval arithmetic, which 

permits mathematical evaluations (operations) to be conducted on intervals in order to produce significant estimations of 

required values in terms of intervals, has already been used to deal with similar problems. Fuzzy arithmetic can be thought 

of as an extension of arithmetic interval, in which numerous levels in [0,1] are considered instead of only one (constant) 

level. 
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I. INTRODUCTION 

 

Fuzzy subgroups of the real numbers that meet certain additional criteria are fuzzy numbers. Non-probabilistic uncertainty 

can be easily modelled using fuzzy numbers. The extension principle or interval arithmetic have been used to build 

arithmetic operations on fuzzy integers (Kumar & Dhiman, 2021; Lynch, 1985). The structure of the membership functions 

of fuzzy numbers has a significant impact on the outcome of our computations when working with them. Calculations 

become more complex as membership functions are less regular (Dhiman & Kumar, 2018). Furthermore, fuzzy numbers 

with a simpler membership function form are generally more logical and natural to read. 

 

In several scientific fields, such as systems evaluation and operations research, a model must be built with data that is only 

known to be approximated. This is made possible by Zadeh's (1965) fuzzy sets theory (Zadeh, 1965). Fuzzy numbers are 

fuzzy partitions of the real line that can be used to describe fuzzy numerical values. Only if we can readily execute algebraic 

operations on them will this technique be useful (Gaines, 1978; Lynch, 1985; Sugeno & Nishida, 1985). Tolerance analysis 

is generalised using fuzzy sets theory, which differs significantly from a probabilistic method. The literature is well-versed 

in representation of fuzzy sets in two fuzzy numbers. Fuzzy numbers as well as some arithmetic operations on them were 

introduced by Dubois and Prade (DUBOIS & PRADE, 1978). The fundamental advantage of employing fuzzy set theory 

for fuzzy control is that it allows us to utilise fuzzy logic to evaluate fuzzy rules, whereas traditional control systems use 

"classical" arithmetic to compute the controller output for a particular input. Combining the benefits of fuzzy logic with 

the versatility of arithmetic operations is appealing (Dhiman & Kumar, 2021; SLOAN, 1992). A function f(x) in the 

conclusion section of a fuzzy rule brings the versatility of conventional arithmetic, as explained by the Sugeno-type fuzzy 

controller (Sugeno & Nishida, 1985). If the representation is extended to a quintuple of parameters on which the operations 

are conducted, both arithmetic and logic operations can be defined inside this class of fuzzy numbers.  

 

II. PRELIMINARIES 

A. Crisp Number 

The number which are having the grade of membership as either 1 or 0 are well known as crisp numbers (Kumar & Dhiman, 

2021). 
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𝜒𝐵(𝑎) = {
1 if a ∈  B
0 if a ∉  B

 

B. Fuzzy Set Theory 

The definition of crisp set has expanded and extended by having a partial composition, i.e., from 0 to 1, well known as 

Fuzzy sets. It determines membership function’s degree that takes values between 0 and 1 and is associated to that set 

referred to in [0, 1], in which 0 stands for "no" and 1 stands for "yes." (Dhiman & Kumar, 2018, 2021) Thus, based on it, 

fuzzy set is a mapping from universal set X to the interval [0, 1] i.e., 𝐹̃ = {(z, 𝜇𝐹̃ (z)) | z ∈ X} where z is an element of X 

and 𝜇𝐹̃ (z) represents membership’s grade of element x in fuzzy set 𝐹̃. Certainly 𝜇𝐹̃ (z) ∈ [0, 1]. 

C. Classical Set 

Consider the universe of discourse, A, as a well-defined collection of objects with similar properties. Individual elements 

in that universe of discourse will be depicted by the small letter ‘a’. Elements in A can have discrete as well as continuous 

valued quantities as characteristics on the real line (Bělohlávek et al., 2002; Wu & Gong, 2001). As a collection of objects 

with comparable qualities, define a universe of discourse, B. Every element in the universe of discourse B will be denoted 

by the letter b. The membership for the element in the set will be 1 if it belongs to that set otherwise it will be zero. 

D. Fuzzy Numbers 

A fuzzy set F defined on R must have following properties for being treated as a fuzzy number: 

a) The fuzzy set F should be normal. 

b) Alpha cut of F should be an interval which is closed for every alpha in (0,1]. 

c) Strong alpha cut of a must be bounded. 

E. Membership Function 

It well represents the extent of fuzziness in a fuzzy set, which is same for both type of elements like discrete or continuous. 

The membership value is within the range [0, 1] i.e., a subset of positive real numbers including "0" with a finite supremum 

as "1" is well known as membership function. It is usually indicated for fuzzy set 𝐴̃ by 𝜇𝐴 (x) to the membership range 

(Dhiman & Kumar, 2018; Kumar & Dhiman, 2021).  

𝜇𝐴 (x): 𝑋 → 𝑀 

F. Alpha Cut 

The most fundamental and extensively utilised notion in fuzzy set theory (Given by Zadeh) is " α−cut of set A" (Zadeh, 

1965). For the given fuzzy set 𝐴, the strong alpha cut and the weak alpha cut can be represented respectively as 

𝐴(𝛼) = {𝑎|𝜇𝐴(𝑎) > 𝛼};  𝛼 𝜖 [0,1) 

𝐴(𝛼) = {𝑎|𝜇𝐴(𝑎) ≥ 𝛼};  𝛼 𝜖 [0,1) 

III. FUNDAMENTAL ARITHMETIC OPERATION ON FUZZY SET 

In order to analyse the fundamental concepts of fuzzy arithmetic, we should first recite the arithmetic of intervals as well 

as how to "add", "subtract", "multiply", & "divide" two closed intervals in ℝ. A closed interval, a subset of real numbers is 

also known as an interval of confidence in this sense since it confines the ambiguity of data to an interval (DUBOIS & 

PRADE, 1978; Gupta & Qi, 1991). Two closed intervals in ℝ are Z1 = [𝜀1, 𝜀2] and Z2 = [𝛼1, 𝛼2]. Then there's the following 

list of definitions: 

A. Addition (+) 

If 𝜀 ∈ [𝜀1, 𝜀2] and 𝛼 ∈ [𝛼1, 𝛼2], then 𝜀 + 𝛼 ∈ [𝜀1+𝛼1, 𝜀2+𝛼2]. As a result, we will obtain the addition of two given sets Z1 

and Z2, namely Z1 (+) Z2, which can be mathematically stated as 

Z1 (+) Z2 = [𝜀1, 𝜀2] (+) [ 𝛼1, 𝛼2]= [𝜀1+𝛼1, 𝜀2+𝛼2]. 
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B. Subtraction (-) 

If 𝜀 ∈ [𝜀1, 𝜀2] and 𝛼 ∈ [𝛼1, 𝛼2], then 𝜀 - 𝛼 ∈ [𝜀1-𝛼2, 𝜀2-𝛼1]. As a result, we will obtain the subtraction of two given sets Z1 

and Z2, namely Z1 (-) Z2, which can be mathematically stated as 

Z1 (-) Z2 = [𝜀1, 𝜀2] (-) [𝛼1, 𝛼2]= [𝜀1-𝛼2, 𝜀2-𝛼1]. 

C. Multiplication (∙) 

For the given two closed intervals Z1 = [𝜀1, 𝜀2] and Z2 = [𝛼1, 𝛼2] of ℝ, their multiplication, namely Z1 (·) Z2, can be 

mathematically stated as 

Z1 (·) Z2 = [𝜀1, 𝜀2] (·) [ 𝛼1, 𝛼2]. 

= [min (𝜀1𝛼1, 𝜀1𝛼2, 𝜀2𝛼1, 𝜀2𝛼2),  

    max (𝜀1𝛼1, 𝜀1𝛼2, 𝜀2𝛼1, 𝜀2𝛼2)]. 

D. Division 

For the given two closed intervals Z1 = [𝜀1, 𝜀2] and Z2 = [𝛼1, 𝛼2] of ℝ, their division, namely Z1 (/) Z2, can be mathematically 

stated as 

Z1 (/) Z2 = [𝜀1, 𝜀2] (/) [ 𝛼1, 𝛼2]. 

= [min (𝜀1/𝛼1, 𝜀1/𝛼2, 𝜀2/𝛼1, 𝜀2/𝛼2), max (𝜀1/𝛼1, 𝜀1/𝛼2, 𝜀2/𝛼1, 𝜀2/𝛼2)]. 

E. Scalar multiplication 

Let Z1 = [𝜀1, 𝜀2] be a subset of positive reals and c ∈ ℝ+. Manipulating the scalar ‘c’ as the closed interval  

[c, c], then scalar multiplication c · Z1 can be mathematically stated as 

c · Z1 = [c, c] (·) [ 𝜀1, 𝜀2] = [c 𝜀1, c 𝜀2]. 

F. Inverse 

Let Z1 = [𝜀1, 𝜀2] be a subset of positive reals, if 𝜀 ∈ [𝜀1, 𝜀2] and 0 ∉ [𝜀1, 𝜀2] then (1/ 𝜀) ∈ [1/𝜀2,1/𝜀1]. Therefore, the inverse 

of Z1, denoted by 𝑍1
−1, can be expressed mathematically as 

𝑍1
−1= [𝜀1, 𝜀2]−1 = [1/𝜀2,1/𝜀1], 

provided 0 ∉ [𝜀1, 𝜀2]. 

J. Minimum 

The minimum of two given intervals Z1 = [𝜀1, 𝜀2] and Z2 = [𝛼1, 𝛼2] of ℝ, namely Z1 (∧) Z2, can be mathematically stated 

as 

Z1 (∧) Z2 = [𝜀1, 𝜀2] (∧) [𝛼1, 𝛼2] = [𝜀1 ∧ 𝛼1, 𝜀2 ∧ 𝛼2]. 

K. Maximum 

The maximum of two given intervals Z1 = [𝜀1, 𝜀2] and Z2 = [𝛼1, 𝛼2] of ℝ, namely Z1 (∨) Z2, can be mathematically stated 

as 

Z1 (∨) Z2 = [𝜀1, 𝜀2] (∨) [𝛼1, 𝛼2] = [𝜀1 ∨ 𝛼1, 𝜀2 ∨ 𝛼2]. 

Illustrative Examples: 

Let us consider two intervals P and Q such that P= [2,3] and Q= [-2,1]. Now let us consider the aforementioned operations 

with intervals P and Q: 

P (+) Q = [2-2,3+1] = [0,4] 

P (-) Q = [2-1,3+2] = [1,5] 
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P (∙) Q = [min (-4,2, -6,3), max (-4,2, -6,3)] = [-6,3] 

P (/) Q = [min (-1,2, -3/2,3), max (-1,2, -3/2,3)]  

     = [-3/2,2] 

4 ∙ Q = [4 ∙ 2, 4 ∙ 3] = [8,12] 

𝑃−1 = [1/3, 1/2], 𝑌−1 = [-1/2, 1] 

P (∧) Q = [2∧-2, 3∧1] = [-2, 1] 

P (∨) Q = [2∨-2, 3∨1] = [2,3] 

 

Let us discuss one more example 

 

Let us consider two intervals C and D such that C= [-3,4] and D= [1,2]. Now let us consider the aforementioned operations 

with intervals C and D: 

C (+) D = [-3+1, 4+2] = [-2,6] 

C (-) D = [-3-2, 4-1] = [-5,3] 

C (∙) D = [min (-3, -6, 4, 8), max (-3, -6, 4, 8)] = [-6,8] 

C (/) D = [min (-3, -3/2, 4, 2), max (-3, -3/2, 4, 2)]  

            = [-3,4] 

4 ∙ C = [4 ∙ -3, 4 ∙ 4] = [-12,16] 

𝐶−1 = [-1/3, 1/4], 𝐷−1 = [1/2,1] 

C (∧) D = [-3∧1, 4∧2] = [-3, 2] 

C (∨) D = [-3∨1, 4∨2] = [1,4] 

 

IV. OPERATIONS ON FUZZY SETS 

On the universal set X, construct the fuzzy sets 𝐴̃, 𝐵̃, and C̃. For the set based theoretic operations of union, intersection, 

& complement on a given member ‘a’ of the universal set, following are the function-theoretic operations for the fuzzy 

sets 𝐴̃, 𝐵̃, and C̃ on X are established: 

Union   𝜇𝐴∨𝐵̃(𝑎) = 𝜇𝐴(𝑎) ∨ 𝜇𝐵̃(𝑎). [1] 

Intersection  𝜇𝐴∧𝐵̃(𝑎) = 𝜇𝐴(𝑎) ∧ 𝜇𝐵̃(𝑎). [2] 

Complement  𝜇𝐴̅(𝑎) = 1 − 𝜇𝐴(𝑎).  [3] 

Related diagrams are shown below (see Fig 1-3) for these operations, extended to include fuzzy sets (Ross, 2010). The 

conventional fuzzy operations are defined as the operations described in Equations [1]-[3]. A discussion of these and other 

fuzzy operations is included later in this paper.  

A subset of a universe X will be any fuzzy set 𝐴̃ defined on that universe. Likewise, as with classical sets, any element ‘a’ 

of the null set Ø is equal to 0, and an element ‘a’ in the entire set X is equal to 1. These ideas may be expressed in the 

following manner: 

𝑋 ⊇ 𝐴̃ ⟹ 𝜇𝑋(𝑎) ≥ 𝜇𝐴(𝑎) 

For all 𝑎 ∈ 𝑋, 𝜇∅(𝑎) = 0. 

For all 𝑎 ∈ 𝑋, 𝜇𝑋(𝑎) = 1. 
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Figure 1: Union, Intersection and complement of a fuzzy set. 

All fuzzy sets as well as relative subsets on X are gathered together to compute the power set (fuzzy) P (𝑋̃), Given that all 

fuzzy sets can coincide, it should be evident that the fuzzy power set's cardinality, 𝑛𝑃(𝑋), is infinite, implying that 𝑛𝑃(𝑋)= 

∞ (Menger, 1942;  Negoita, 1988; Ross, 2010). 

For fuzzy sets, we can apply the principles given by De Morgan, as indicated by the following expressions: 

𝐴̃⋂𝐵̃ ̅̅ ̅̅ ̅̅ ̅= 𝐴̃ ̅⋃𝐵̃ ̅ 

𝐴̃⋃𝐵̃ ̅̅ ̅̅ ̅̅ ̅= 𝐴̃ ̅⋂𝐵̃ ̅ 

0 x 

1 

𝜇 

𝐴̃ 𝐵̃ 

0 
1(a): Union of fuzzy sets 𝑨෩ and 𝑩෩ 

0 x 

0 

1 

𝜇 𝐴̃ 𝐵̃ 

1 (b): Intersection of fuzzy sets 𝑨෩ and𝑩෩  

0 x 

𝜇 

𝐴̃ 

𝐴̃ ̅ 

1 (c): Complement of fuzzy set 𝑨෩. 
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Figure 2: Excluded middle axioms for crisp sets 
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Figure 3: Excluded middle axioms for fuzzy sets are not valid 

In addition to all operations on classical sets, all other operations on fuzzy sets are also valid, excluded middle axioms is 

an exception. As fuzzy sets do not have the same axiomatic structure as formally defined sets, these axioms do not hold 

for them (see Gaines, 1978). A set and its complement can also overlap due to the overlap of fuzzy sets (Grattan-Guinness, 

1982). The following are the exempted middle axioms, which are generalised to fuzzy sets: 

𝐴̃ ̅⋃𝐴̃  ≠ 𝑋. 

𝐴̃ ̅⋂𝐴̃ ≠ ∅. 

Here, we compare exempted middle axioms for classical or crisp and fuzzy sets using enlarged venn diagrams. 

V. FUZZY SET CHARACTERISTICS 

Crisp sets have the same features as fuzzy sets. Classical sets can be regarded of as a particular instance of fuzzy sets due 

to this fact and the fact that the membership grades of a crisp set are contained in the interval [0,1]. As a result, the 

characteristics are the same as for fuzzy sets (Ross, 2010). 

Imagine a simple hollow ratchet with a radius of about 1m and thickness of the wall being 1/(2𝜋m). As shown below (see 

Fig 4), the ratchet is constructed by layering a ductile segment, D, of the suitable cross segment over a brittle segment, B. 

A force P acting downward and a torque T are imparted to the ratchet simultaneously (Lynch, 1985; Zadeh, 1965). The 

hypothetical shear stress on any component in the ratchet is T (pascals) due to the parameters employed, and the 

hypothetical vertical component of stress in the ratchet is P (pascals). We suppose that neither B nor D's failure properties 

are known with absolute knowledge. 

 

Utilising the fault function, 𝜇𝐴= f ([P2 + 4T2]1/2) as a metric, we identify the fuzzy set 𝐴̃ to be the portion in (P, T) 

space within which component D will be "safe." In a Similar way, we identify the set 𝐵̃  as the portion in (P, T) space 

within which component B will be "safe," Utilising the fault function 𝜇𝐵 = g (P − β|T |), as a metric (Menger, 1942; Zadeh, 

1965). Indeed, f and g are membership functions well defined on the interval [0, 1]. At this particular point, it is 
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insignificant to know exactly what they are. However, before specifying f and g, it is useful to go over the fundamental set 

operations in this framework. The following is a synopsis of the discussion: 

 

1. The loading's set for which either component B or component D is expected to be "safe" is denoted by 𝐴̃⋃𝐵̃. 

2. 𝐴̃⋂𝐵̃ denotes the loading's set for which both component B and component D are expected to be "safe." 

3. The loading's set for which component D and component B are unsafe are 𝐴̃ ̅ and 𝐵̃ ̅, respectively. 

4. The loading's set within which the flexible component is safe but the inflexible component is in risk is 𝐴̃ ̅|𝐵̃ ̅. 

5. The loading's set within which the inflexible component is safe but the flexible component is in hazard is described as 

𝐵̃ ̅|𝐴̃ ̅. 

6. According to De Morgan's law 𝐴̃⋂𝐵̃ ̅̅ ̅̅ ̅̅ ̅= 𝐴̃ ̅⋃𝐵̃ ̅, the loadings which are not safe for either material is the union of those 

which are unsafe for the brittle component and those that are unsafe for the ductile component. 

7. According to De Morgan's principle 𝐴̃⋃𝐵̃ ̅̅ ̅̅ ̅̅ ̅= 𝐴̃ ̅⋂𝐵̃ ̅, the loads that are neither safe for both component D & B is the 

intersection of those that are unsafe for material D and those that are unsafe for component B. 

Let us use the following numerical example to illustrate the idea: 

𝐴̃ = {
1

2
+

0.5

3
+

0.3

4
+

0.2

5
}  

𝐵̃ = {
0.5

2
+

0.7

3
+

0.2

4
+

0.4

5
}. 

Several of the operations just outlined can now be calculated (membership for element 1 in each 𝐴̃ and 𝐵̃ is implicitly 0):  

Complement 

A෩ ̅ = {
1

1
+

0

2
+

0.5

3
+

0.7

4
+

0.8

5
} 

B෩ ̅ = {
1

1
+

0.5

2
+

0.3

3
+

0.8

4
+

0.6

5
} 

Union 

A෩∨B෩ = {
1

2
+

0.7

3
+

0.3

4
+

0.4

5
}. 

Intersection 

A෩ ∧ B෩ = {
0.5

2
+

0.5

3
+

0.2

4
+

0.2

5
}. 

Difference 

A෩ ̅|B෩ ̅ = {
0.5

2
+

0.3

3
+

0.3

4
+

0.2

5
}. 

B෩ ̅|A෩ ̅ = {
0

2
+

0.5

3
+

0.2

4
+

0.4

5
}. 

De Morgan’s principles 

𝐴̃ ∨ 𝐵̃ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̃ ̅ ∧ 𝐵̃ ̅ = {
1

1
+

0

2
+

0.3

3
+

0.7

4
+

0.6

5
}. 
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𝐴̃ ∧ 𝐵̃ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̃ ̅ ∨ 𝐵̃ ̅ = {
1

1
+

0.5

2
+

0.5

3
+

0.8

4
+

0.8

5
}. 

VI. CONCLUSION 

Most of the other operational activities described here are applicable to fuzzy sets as well as crisp sets; however, a few of 

the operations permitted in fuzzy sets, such as accumulation and averaging, have no analogues in classical set concept 

(Ross, 2010). As a result of the excluded middle axioms, thinking in any scenario is restricted. Non-equivalent to binary, 

set membership is a concept that can have an infinite range of values. Fuzzy sets are managed and mathematically processed 

in the same way that crisp sets are. Sets are said to be non-interactive, which is equivalent to the assumption of isolation in 

probability models. When inputs from several universes are merged in fuzzy systems modelling, noninteractive fuzzy sets 

become necessary. 
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