Volume 13, No. 2, 2022, p. 1058 - 1062 https://publishoa.com ISSN: 1309-3452

# **DOM-CHRO** Number In Operations On Intuitionistic Fuzzy Graphs

# Ambika P<sup>1</sup>. Vinoth Kumar N<sup>2</sup> & Hellan Priya J<sup>3</sup>

<sup>1</sup>Assistant Professor, PG and Research Department of Mathematics, Bishop Heber College, Trichy, India Email: <u>ambika.ma@bhc.edu.in</u>
<sup>2</sup>Assistant Professor, Department of Mathematics, Bannari Amman Institute of Technology,Erode, India. Email: <u>vinoth@bitsathy.ac.in</u>.
<sup>3</sup>Assistant Professor, Department of Mathematics, M.Kumarasamy College of Engineering, Karur, India. Email: <u>helanje14@gmail.com</u>

## ABSTRACT

The concept of Domination-Chromatic set (Dom-Chro) and Dom-Chro number of an IFG is introduced in this paper. In Addition to study the Dom-Chro number of a complete IFG and complete bipartite IFG and identify some more bounds of Dom-Chro number are studied. Finally he Dom-Chro number of a join IFG's and a Cartesian product of IFG's are examined.

#### Keywords: Intuitionistic fuzzy graphs,

#### 1. Introduction

For a given  $\chi$ -coloring of an IFG G, a dominating set  $S \subseteq V(G)$  is named to be Dom-Chro set if it covers at least single vertex from each colour of G. The Dom-chro number  $\chi_{ifd}(G)$  is the minimum cardinality taken among the Dom-

Chro sets of IFG G.

The concept of Dom-Chro set and Dom-Chro number of an IFG is introduced in this paper. In Addition to study the Dom-Chro number of a complete IFG and complete bipartite IFG and identify some more bounds of Dom-Chro number are studied. Finally he Dom-Chro number of a join IFG's and a Cartesian product of IFG's are examined.

#### 2. Domination chromatic number of IFG

In this section we develop the concept of domination chromatic (Dom-Chro) number in IFG and investigate the bounds of Dom-Chro number in different IFG

**Theorem 2.1:** In a complete IFG G(V, E), then the Dom-Chro number  $\chi_{ifd}(G) = O(G)$ .

**Proof:** Assume G(V, E) remain a complete IFG. Therefore there exist an effective edge among all couple of vertices in V clearly G(V, E) n-color IFG. Assume D be a  $\gamma_{if}$  set of complete IFG G(V, E). Clearly  $D = \{v_1 | v_1 = \Delta_N(G)\}$  this implies D did not cover all color in G(V, E). This implies the set V is a Dom-Chro set and it cover all the colours in complete IFG G(V, E). Hence  $\chi_{ifd}(G) = |V| \Rightarrow \chi_{ifd}(G) = O(G)$ .

Example 2.1:



Fig 2.1: Complete IFG G(V, E)

Volume 13, No. 2, 2022, p. 1058 - 1062

https://publishoa.com ISSN: 1309-3452

In figure 2.1, the Dom-Chro set and Dom-Chro number of the complete bipartite IFG G(V,E) are  $\{a,b,c,d\} = V \& \chi_{ifd}(G) = 1.8 = O(G)$  respectively.

**Theorem 2.2:** In a complete bipartite IFG G(V, E), then the Dom-Chro number  $\chi_{ifd}(G) = \gamma_{if}(G)$ .

**Proof:** Undertake G(V, E) remain a complete bipartite IFG. This implies the vertex set  $V_1 \& V_2$  are disjoint sets clearly G(V, E) 2-color IFG. Let D stands a  $\gamma_{if}$  set of complete bipartite IFG. Clearly  $D = \{v_1, v_2 | v_1 \in V_1 \& v_2 \in V_2\}$  this implies  $v_1 \& v_2$  having the different color, since  $v_1 \in V_1 \& v_2 \in V_2$ . Therefore the set D cover all the colors in complete bipartite IFG G(V, E). Hence  $\chi_{ifd}(G) = |D| \Rightarrow \chi_{ifd}(G) = \gamma_{if}(G)$ .

Example 2.2:



**Fig 2.2:** Complete bipartite IFG G(V, E)

In figure 2.2, the Dom-Chro set and number of the complete bipartite IFG G(V, E) are  $\{u_1, v_2\} \& \chi_{ifd}(G) = 0.75 = \gamma_{if}(G)$  respectively.

**Theorem 2.3:** In an IFG's  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$ , then the Dom-Chro number  $\chi_{ifd}(G_1 \cup G_2) = \chi_{ifd}(G_1) + \chi_{ifd}(G_2)$ .

**Proof:** Let  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$  be an IFG with Dom-Chro number  $\chi_{ifd}(G_1)$  and  $\chi_{ifd}(G_2)$  respectively. Let  $D_C \subseteq V(G)$  be a minimal Dom-Chro number of an IFG  $G_1 + G_2$ . In  $G_1 + G_2$  edges are in the following form (i).  $xy \in G_1$ 

(ii). 
$$xy \in G_2$$

This implies there is an effective edge among vertices in  $G_1 and G_2$ . This indicates minimal Dom-Chro sets  $D_{C_1} and D_{C_2}$  of  $G_1 and G_2$  are dominating set of  $G_1 + G_2$ . Therefore the different set of colours used in  $G_1 and G_2$ . Clearly  $D_{C_1} and D_{C_2}$  are not a Dom-Chro set of  $G_1 \cup G_2$ . Since some of the vertex color in  $G_1 \cup G_2$  are not covered by  $D_{C_1} and D_{C_2}$ . The set  $D_{C_1} \cup D_{C_2}$  cover all the colors in  $G_1 \cup G_2$ . Hence the set  $D_C = (D_{C_1} \cup D_{C_2})$  is a dom-chro set of  $G_1 \cup G_2$ .

 $D_{C} = (D_{C1} \cup D_{C_{2}})$  $|D_{C}| = |D_{C1}| + |D_{C_{2}}|$  $\chi_{ifd} (G_{1} \cup G_{2}) = \chi_{ifd} (G_{1}) + \chi_{ifd} (G_{2})$ 

Example 2.3:

Volume 13, No. 2, 2022, p. 1058 - 1062 https://publishoa.com ISSN: 1309-3452



**Fig 2.3:**  $G_1 \cup G_2$ 

In figure 2.3, the dom- chro sets of an IFG's  $G_1$  and  $G_2$  are  $\{a,c\}$  &  $\{e,g\}$  respectively. Note the dom- chro number of the IFG's  $G_1$  and  $G_2$  are  $\chi_{ifd}(G_1) = 1.1$  &  $\chi_{ifd}(G_2) = .75$ . The dom- chro set and number of the IFG  $G_1 \cup G_2$  are  $\{a,c,e,g\}$  &  $\chi_{ifd}(G_1 \cup G_2) = 1.85$  respectively.

**Theorem 2.4:** In an IFG  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$ , then the Dom-Chro number  $\chi_{ifd}(G_1 + G_2) = \chi_{ifd}(G_1) + \chi_{ifd}(G_2)$ .

**Proof:** Assume  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$  be an IFG with Dom-Chro number  $\chi_{ifd}(G_1)$  and  $\chi_{ifd}(G_2)$  respectively. Let  $D_C \subseteq V(G)$  be a minimal Dom-Chro number of an IFG  $G_1 + G_2$ . In  $G_1 + G_2$  edges are in the following form

(i).  $xy \in G_1$ 

(ii).  $xy \in G_2$ 

(iii).  $xy \in (G_1 + G_2)$ 

This implies there exist a strong edge among vertices in  $G_1 and G_2$ . This indicates minimal Dom-Chro sets  $D_{C_1} and D_{C_2}$  of  $G_1 and G_2$  are dominating set of  $G_1 + G_2$ . Therefore the different set of colours used in  $G_1 and G_2$ . Clearly  $D_{C_1} and D_{C_2}$  are not a Dom-Chro set of  $(G_1 + G_2)$ . Since some of the vertex colour in  $(G_1 + G_2)$  are not covered by  $D_{C_1} and D_{C_2}$ . The set  $D_{C_1} \cup D_{C_2}$  cover all the colours in  $(G_1 + G_2)$ . Hence the set  $D_C = (D_{C_1} \cup D_{C_2})$  is a Dom-Chro set of  $(G_1 + G_2)$ .  $D_C = (D_{C_1} \cup D_{C_2})$ 

 $\chi_{ifd}\left(G_{1}+G_{2}\right)=\chi_{ifd}\left(G_{1}\right)+\chi_{ifd}\left(G_{2}\right)$ 

Volume 13, No. 2, 2022, p. 1058 - 1062 https://publishoa.com ISSN: 1309-3452

#### Example 2.4



**Fig 2.4:**  $(G_1 + G_2)$ 

In figure 2.4, the Dom-Chro set of the IFG's  $G_1$  and  $G_2$  are  $\{a,c\}$  &  $\{e,g\}$  respectively. Note the Dom-Chro number of the IFG's  $G_1$  and  $G_2$  are  $\chi_{ifd}(G_1) = 1.1$  &  $\chi_{ifd}(G_2) = .75$ . The Dom-Chro set and number of the IFG  $G_1 + G_2$  are  $\{a,c,e,g\}$  &  $\chi_{ifd}(G_1 + G_2) = 1.85$  respectively.

**Theorem 2.5:** In an IFG's  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$ , then the Dom-Chro number  $\chi_{ifd}(G_1 \times G_2) = \gamma_{if}(G_1 \times G_2)$ **Proof:** Assume  $G_1(V_1, E_1)$  and  $G_2(V_2, E_2)$  be an IFG with  $\gamma_{if}$  set  $D_1$  and  $D_2$  individually. Let  $D_C \subseteq V(G)$  be a minimal Dom-Chro number of an IFG  $G_1 \times G_2$ . In  $G_1 \times G_2$  edges are in the following form

- (i).  $(x_1y_1)(x_1y_2) \in G_1 \times G_2$
- (ii).  $(x_1y_1)(x_2y_1) \in G_1 \times G_2$

Let D be a  $\gamma_{if}$  set of  $(G_1 \times G_2)$ . Assume D is not a minimal Dom-Chro set of  $(G_1 \times G_2)$ . There is a Colouring set of  $G_1 \times G_2$  are not covered by the set D. This implies there exist a vertex  $(x_1y_1)$  in  $(G_1 \times G_2)$  is not an dominated by D. This is contradict to our assumption D be a  $\gamma_{if}$  set of  $(G_1 \times G_2)$ . Henceforth D is a minimal Dom-Chro set of  $G_1 \times G_2$ . Therefore we get  $D_C = D \Rightarrow |D_C| = |D| \Rightarrow \chi_{ifd}(G_1 \times G_2) = \gamma_{if}(G_1 \times G_2)$ .

Example 2.5:



Fig 2.5:  $G_1 \times G_2$ 

Volume 13, No. 2, 2022, p. 1058 - 1062 https://publishoa.com ISSN: 1309-3452

In figure 2.5, the Dom-Chro set and number of the IFG  $G_1 \times G_2$  are  $\{ae, be, ce, de\}$  &  $\chi_{iid}(G_1 \times G_2) = 1.4 = \gamma_{if}(G_1 \times G_2)$  respectively.

#### 3. Conclusion

The concept of Dom-Chro set and Dom-Chro number of an IFG is introduced in this paper. In Addition to study the Dom-Chro number of a complete IFG and complete bipartite IFG and identify some more bounds of Dom-Chro number are studied. Finally he Dom-Chro number of a join IFG's and a Cartesian product of IFG's are examined. In future we will develop the domination chromatic (Dom-Chro) number for various Dominating set.

#### REFERENCES

- [1] K.Atanasson, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-verlag, New York (1999).
- [2] Mordeson, J.N., and Nair, P.S., Fuzzy graphs and Fuzzy Hyper graphs, Physica-Verlag, Heidelberg, 1998, second edition, 20011.
- [3] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.
- [4] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, 1998.
- [5] R. M. Gera, On dominator colorings in graphs, Graph Theory Notes N. Y. 52 (2007) 25–30.
- [6] Rosenfeld, A., 1975. Fuzzy graphs. In :Zadeh, L. A., Fu, K. S., Shimura, M. (Eds.), Fuzzy Sets and Their Applications. Academic Press, New York.
- [7] J. N. Mordeson and P. S. Nair, "Cycles and cocycles of fuzzy graphs", International Journal of Information Sciences, 90, 1996, pp. 39-49.