Properties of Polynomial Quasi Orthogonal of Type I Matrices

R. Gajalakshmi ${ }^{1}$, G. Ramesh ${ }^{2}$

${ }^{1}$ Research Scholar, Department of Mathematics, Govt Arts College (Autonomous), Kumbakonam, Tamil Nadu, India. Affiliated to Bharathidasan University, Tiruchirappalli620024.
${ }^{2}$ Associate Professor and Head, Department of Mathematics, Govt Arts College (Autonomous), Kumbakonam, Tamil Nadu, India. Affiliated to Bharathidasan University, Tiruchirappalli620024.

Abstract

:

This paper is concerned with a new type of polynomial matrix. The concept of polynomial quasi orthogonal of type I matrices are introduced. We define the index of quasi orthogonal of type Imatrices and we extended some results of quasi orthogonalof type I matrix to polynomial quasi orthogonal of type I matrices

Keywords:Quasi orthogonal matrix, orthogonal of type I matrix,quasi orthogonal of type I matrix, determinant, inverse, transpose.

1. Introduction

In linear algebra, a matrix A is orthogonal if its transpose is equal to its inverse, which entails $A A^{T}=A^{T} A=I$, where I is the identity matrix. The term orthogonal matrix was used in 1854 by Charles Hermite (1822-1901) in the Cambridge and Dublin mathematical journal, although it was not until 1878 that the formal definition of an orthogonal matrix was published by Frobenius [6]. The orthogonal Matrixwas defined by Sylvester in 1867 [5]. A polynomial matrix $A(\lambda)=\sum_{j=0}^{n} \lambda^{j} A_{j}$ is a polynomial orthogonal matrix whose coefficient matrix A_{i} 's are orthogonal matriceswhich was referred by [1] [2] [3][4].Polynomial matrices arise naturally as modeling tools in several areas of applied mathematics, systems theory, sciences and engineering.

2. Polynomial quasi orthogonal of type I matrices:

Definition:2.1

A square matrix A is called an orthogonal of type I matrix if $A^{k}\left(A^{T}\right)^{k}=I_{n}$ and $\left(A^{T}\right)^{k}(A)^{k}=I_{n}$, for some $k \in R$

Example:2.2

Let $A=\left[\begin{array}{ccc}-i & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -i\end{array}\right]$ is orthogonal of type I matrices.
Definition: 2.3

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 1259-1264
https://publishoa.com
ISSN: 1309-345
A real square matrix A of order n is called quasi orthogonal matrix if it satisfies $A A^{T}=A^{T} A=c I_{n} \quad$.Where, I_{n} is $n \times n$ identity matrix and c is a constant real number.

Example:2.4

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \text { is quasi orthogonal matrix. }
$$

Definition:2.5

Let A be an quasi orthogonal of type I matrix andthere exists positive integer k with $A^{k}\left(A^{T}\right)^{k}=c^{k} I_{n}$ is called the index of A. We say that A is quasi orthogonal of typeI of period k.

Example: 2.6

$$
A=\left[\begin{array}{cc}
5 i & 0 \\
0 & 5 i
\end{array}\right] \text { is quasi orthogonal of type I matrix. }
$$

Solution:

Given that $A=\left[\begin{array}{cc}5 i & 0 \\ 0 & 5 i\end{array}\right]$
If A is quasi orthogonal of type I matrix.
Thus, $A^{k}\left(A^{T}\right)^{k}=c^{k} I_{n}$
Put $k=1, A A^{T}=\left[\begin{array}{cc}5 i & 0 \\ 0 & 5 i\end{array}\right]\left[\begin{array}{cc}5 i & 0 \\ 0 & 5 i\end{array}\right]=5\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Put $k=2, A^{2}\left(A^{T}\right)^{2}=5^{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Put $k=3, A^{3}\left(A^{T}\right)^{3}=5^{3}\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$
Put $k=4, A^{4}\left(A^{T}\right)^{4}=5^{4}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\operatorname{Put}_{k=5,} A^{5}\left(A^{T}\right)^{5}=5^{5}\left[\begin{array}{rc}-1 & 0 \\ 0 & -1\end{array}\right]$
Put $k=6, A^{6}\left(A^{T}\right)^{6}=5^{6}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
The index of A is 2 , then $A^{k}\left(A^{T}\right)^{k}=I_{2}, \mathrm{k}=2,4,6, \ldots$. and A is of period 2.

Definition: 2.7

Let $A(\lambda)=A_{0}+A_{1} \lambda+A_{2} \lambda^{2}+\ldots \ldots \ldots .+A_{n} \lambda^{n}$ be polynomial quasi orthogonal of type I matrix. Here coefficient matrices $A_{i}{ }^{\prime} s$ are quasi orthogonal of type I matrices andthere exists positive integer k with $A_{i}{ }^{k}\left(A_{i}^{T}\right)^{k}=c^{k} I_{n}$ is called the index of $A_{i}{ }^{\prime} s$. We say that $A_{i}{ }^{\prime} s$ is quasi orthogonal of typeI of period k.

Theorem:2.8

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 1259-1264
https://publishoa.com
ISSN: 1309-345
If $A(\lambda)$ is an polynomial quasiorthogonal of type I matrix is a polynomial quasiorthogonal of type I matrix whose coefficient matrices arequasi orthogonal of type I matrices. Then $\operatorname{det}\left(A_{i}{ }^{k}\right)= \pm c^{k n / 2}$

Example:2.9

Let $A(\lambda)=A_{0}+A_{1} \lambda+A_{2} \lambda^{2}+\ldots \ldots \ldots .+A_{n} \lambda^{n}$ be polynomial quasi orthogonal of type I matrix. Here coefficient matrices $A_{i}{ }^{\prime} s$ are quasi orthogonal of type I matrices. Where $\mathrm{i}=1,2$,
$3, \ldots$. n. If $A_{1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ is quasi orthogonal of type I matrix , then $\operatorname{det} A_{1}= \pm 4^{n / 2}$.

Solution:

Given that A is quasi orthogonal of type I matrix
$A_{1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
Since $A_{1} A_{1}{ }^{T}=A_{1}^{T} A_{1}=c I_{n}$
Thus, $A_{1} A_{1}^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]=4 I_{n}$
ie) $A_{1} A_{1}{ }^{T}=4 I_{n}$
$A_{1} A_{1}^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]=4 I_{n}$
ie) $A_{1}^{T} A_{1}=4 I_{n}$. Hence $A_{1} A_{1}^{T}=A_{1}{ }^{T} A_{1}=4 I_{n}$
So that, $A_{1} A_{1}^{T}=4 I_{n}$
Taking determinant on both sides
$\operatorname{det}\left(A_{1} A_{1}^{T}\right)=\operatorname{det}\left(4 I_{n}\right)\left(\because \operatorname{det}(a I)=a^{n} \operatorname{det}(I)\right)$
$\operatorname{det} A_{1} \cdot \operatorname{det} A_{1}^{T}=4^{n} \operatorname{det}\left(I_{n}\right)(\because \operatorname{det}(I)=1)$
Since, $\operatorname{det} A_{1}=\operatorname{det} A_{1}^{T}$
That is $\operatorname{det} A_{1} \operatorname{det} A_{1}=\operatorname{det}\left(4 I_{n}\right)$
$\left(\operatorname{det} A_{1}\right)^{2}=4^{n}$
$\operatorname{det} A_{1}= \pm 4^{n / 2}$
Hence $\operatorname{det} A_{1}= \pm 4^{n / 2}$

Theorem:2.10

If $A(\lambda)=A_{0}+A_{1} \lambda+A_{2} \lambda^{2}+\ldots \ldots+A_{n} \lambda^{n}$ be polynomial quasiorthogonal of type I matrix. Here coefficient matrices $A_{i}{ }^{\prime} s$ are quasiorthogonal of type I matrices.

The following statements are equivalent.
(i) $\quad A(\lambda)$ is an polynomial quasi orthogonal of type I matrix.
(ii) $A(\lambda)^{-1}$ is an polynomialquasiorthogonal of type I matrix.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 1259-1264
https://publishoa.com
ISSN: 1309-345
(iii) $A(\lambda)^{T}$ is an polynomial quasiorthogonal of type I matrix.
(iv) $\overline{A(\lambda)}$ is an polynomial quasiorthogonal of type I matrix.
(v) $A(\lambda)^{*}$ is an polynomial quasiorthogonal of type I matrix.

Proof:

Let $A(\lambda)=A_{0}+A_{1} \lambda+A_{2} \lambda^{2}+\ldots \ldots \ldots .+A_{n} \lambda^{n}$ be polynomial quasiorthogonal of type I matrix. Here coefficient matrices $A_{i}{ }^{\prime} s$ are quasiorthogonal of type I matrices. Where $\mathrm{i}=1,2,3, \ldots \mathrm{n}$.

To prove (i) \Rightarrow (ii)

Suppose that $A_{i}{ }^{\prime} s$ is an quasi orthogonal of type I matrix.
To prove A_{i}^{-1} is an quasi orthogonal of type I matrix.
Since, $A_{i}{ }^{k}\left(A_{i}^{T}\right)^{k}=c^{k} I_{n}$, for some $k \in N$
Taking inverse on both side

$$
\begin{aligned}
& \quad\left(A^{k}\left(A^{T}\right)^{k}\right)^{-1}=\left(c^{k} I_{n}\right)^{-1} \\
& \left(A_{i}^{k}\right)^{-1}\left(\left(A_{i}^{T}\right)^{k}\right)^{-1}=\left(c^{k}\right)^{-1} I_{n} \\
& \left(A_{i}^{-1}\right)^{k}\left(\left(A_{i}^{-1}\right)^{T}\right)^{k}=\left(c^{-1}\right)^{k} I_{n}
\end{aligned}
$$

Hence A_{i}^{-1} is an quasi orthogonal of type I matrix.
Hence all the coefficients of $A(\lambda)^{-1}$ are quasi orthogonal of type I matrices. Therefore $A(\lambda)^{-1}$ is a polynomial quasi orthogonal of type I matrix.

To prove (ii) \Rightarrow (iii).
Suppose A_{i}^{-1} is aquasi orthogonal of type I matrix.
To prove $A_{i}{ }^{T}$ is an quasi orthogonal of type I matrix.
Since, $\left(A_{i}^{-1}\right)^{k}\left(\left(A_{i}^{-1}\right)^{T}\right)^{k}=\left(c^{-1}\right)^{k} I_{n}$, for some $k \in N$
Taking inverse on both side

$$
\begin{aligned}
& \left(\left(A_{i}^{-1}\right)^{k}\left(\left(A_{i}^{-1}\right)^{T}\right)^{k}\right)^{-1}=\left(\left(c^{-1}\right)^{k} I_{n}\right)^{-1} \\
& \left(\left(\left(A_{i}^{-1}\right)^{T}\right)^{k}\right)^{-1}\left(\left(A_{i}^{-1}\right)^{k}\right)^{-1}=\left(\left(c^{-1}\right)^{k}\right)^{-1} I_{n}^{-1} \\
& \left(\left(\left(A_{i}^{-1}\right)^{-1}\right)^{T}\right)^{k}\left(\left(A_{i}^{-1}\right)^{-1}\right)^{k}=\left(\left(c^{-1}\right)^{-1}\right)^{k} I_{n} \\
& \left(A_{i}^{T}\right)^{k} A_{i}^{k}=c^{k} I_{n}
\end{aligned}
$$

Taking transpose on both side

$$
\begin{gathered}
\left(\left(A_{i}^{T}\right)^{k} A_{i}^{k}\right)^{T}=\left(c^{k} I_{n}\right)^{T} \\
\left(A_{i}^{T}\right)^{k}\left(\left(A_{i}^{T}\right)^{T}\right)^{k}=\left(c^{T}\right)^{k} I_{n}
\end{gathered}
$$

Hence $A_{i}{ }^{T}$ is an quasi orthogonal of type I matrix.
$\Rightarrow A(\lambda)^{T}$ is an polynomial quasi orthogonal of type I matrix.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 1259-1264
https://publishoa.com
ISSN: 1309-345

To prove (iii) \Rightarrow (iv)

Suppose $A_{i}{ }^{T}$ is an quasi orthogonal of type I matrix.
To prove \bar{A}_{i} is an quasi orthogonal of type I matrix.
Since, $\quad\left(A_{i}^{T}\right)^{k}\left(\left(A_{i}^{T}\right)^{T}\right)^{k}=\left(c^{T}\right)^{k} I_{n}$, for some $k \in N$
ie) $\left(A_{i}\right)^{k}\left(A_{i}^{T}\right)^{k}=c^{k} I_{n}$
Taking conjugate on both side
$\overline{A_{i}^{k}\left(A_{i}^{T}\right)^{k}}=\overline{c^{k} I_{n}}$ $\left(\bar{A}_{i}\right)^{k}\left(\overline{A_{i}^{T}}\right)^{k}=(\bar{c})^{k} I_{n}$
$\left(\bar{A}_{i}\right)^{k}\left(\left(\bar{A}_{i}\right)^{T}\right)^{k}=(\bar{c})^{k} I_{n}$
Hence \bar{A}_{i} is aquasi orthogonal of type I matrix.
$\Rightarrow \overline{A(\bar{\lambda})}$ is an polynomial quasi orthogonal of type I matrix.
To prove (iv) \Rightarrow (v)
Suppose \bar{A}_{i} is an quasi orthogonal of type I matrix.
To prove A_{i}^{*} is an quasi orthogonal of type I matrix.
Since, $\left(\overline{A_{i}}\right)^{k}\left(\left(\overline{A_{i}}\right)^{T}\right)^{k}=(\bar{c})^{k} I_{n}$, for some $k \in N$
Taking transpose on both side

$$
\begin{aligned}
& \left(\left(\overline{A_{i}}\right)^{k}\left(\left(\overline{A_{i}}\right)^{T}\right)^{k}\right)^{T}=\left((\bar{c})^{k} I_{n}\right)^{T} \\
& \left(\left(\left(\overline{A_{i}}\right)^{T}\right)^{k}\right)^{T}\left(\left(\overline{A_{i}}\right)^{k}\right)^{T}=\left(\left((\bar{c})^{k}\right)^{T} I_{n}\right. \\
& \left.\left(\left(\left(\bar{A}_{i}\right)^{T}\right)^{T}\right)^{k}\left(A_{i}^{*}\right)^{k}=\left(c^{*}\right)^{k} I_{n} \because\left(\left(\overline{A_{i}}\right)\right)^{T}=A_{i}^{*}\right) \\
& \left(\left(A_{i}^{*}\right)^{T}\right)^{k}\left(A_{i}^{*}\right)^{k}=\left(c^{*}\right)^{k} I_{n}
\end{aligned}
$$

Hence $A_{i}{ }^{*}$ is an quasi orthogonal of type I matrix .
$\Rightarrow A(\lambda)^{*}$ is an polynomial quasi orthogonal of type I matrix.
To prove (v) \Rightarrow (i)

Suppose $A_{i}{ }^{*}$ is an quasi orthogonal of type I matrix.

To prove A is an quasi orthogonal of type I matrix .
Since, $\left(\left(A_{i}^{*}\right)^{T}\right)^{k}\left(A_{i}^{*}\right)^{k}=\left(c^{*}\right)^{k} I_{n}$, for some $k \in N$
So that, $\left(\left(A_{i}^{*}\right)^{T}\right)^{k}\left(A_{i}^{*}\right)^{k}=\left(c^{*}\right)^{k} I_{n}$. Taking * on both side
$\left(\left(\left(A_{i}^{*}\right)^{T}\right)^{k}\left(A_{i}^{*}\right)^{k}\right)^{*}=\left(\left(c^{*}\right)^{k} I_{n}\right)^{*}$
$\left(\left(\left(A_{i}^{*}\right)^{T}\right)^{k}\right)^{*}\left(\left(A_{i}^{*}\right)^{k}\right)^{*}=\left(\left(c^{*}\right)^{k}\right)^{*} I_{n}$
$\left(\left(\left(A_{i}^{*}\right)^{*}\right)^{T}\right)^{k} A_{i}^{k}=c^{k} I_{n} \mathrm{~S}$
$\left(A_{i}{ }^{T}\right)^{k} A_{i}^{k}=c^{k} I_{n}$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 2, 2022, p. 1259-1264
https://publishoa.com
ISSN: 1309-345
Hence A_{i} is aquasi orthogonal of type I matrix.
$\Rightarrow A(\lambda)$ is an polynomial quasi orthogonal of type I matrix.

3.Conclusion

In this paper some properties of polynomial quasi orthogonal of type I matrices are derived and also we extended to some results of polynomial quasi orthogonal of type I matrices.

Reference:

1. Abedal-Hamza Mahdi Hamza and Baneen Khalid Imran, Orthogonal of type I Matrices with Application, Applied Mathematical Sciences, Vol. 11, Issue 40, pp. 1983-1994, 2017.
2. Gajalakshmi. R and Ramesh. G, Properties of Polynomial Orthogonal of Type I Matrices, VidyabharathiInternational Interdisciplinary Research Journal(Special Issue), ISSN 2319-4979.
3. Jaikumar1. K, S. Aarthy1, On χ_{s} Orthogonal of type I Matrices, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.2, pp.140143, April (2019) E-ISSN: 2348-4519.
4. Gohberg I., Lancaster P., and Rodman L., Invariant Subspaces of Matrices
5. Hammer.J, Sarvate.D.G, and seberry.J. A note on orthogonal design. Are combinations.24:93-100,1987.
6. Hoffman. K, linear algebra, $2^{\text {nd }}$ ed., Prentce-Hall,1971.
