Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-3452

Properties of Polynomial Quasi Orthogonal of Type I Matrices

R. Gajalakshmi¹, G. Ramesh²

¹Research Scholar, Department of Mathematics, Govt Arts College (Autonomous), Kumbakonam, Tamil Nadu, India. Affiliated to Bharathidasan University, Tiruchirappalli-620024.
²Associate Professor and Head, Department of Mathematics, Govt Arts College (Autonomous), Kumbakonam, Tamil Nadu, India. Affiliated to Bharathidasan University, Tiruchirappalli-620024.

Abstract:

This paper is concerned with a new type of polynomial matrix. The concept of polynomial quasi orthogonal of type I matrices are introduced. We define the index of quasi orthogonal of type I matrices and we extended some results of quasi orthogonal of type I matrix to polynomial quasi orthogonal of type I matrices

Keywords:Quasi orthogonal matrix, orthogonal of type I matrix, quasi orthogonal of type I matrix, determinant, inverse, transpose.

1. Introduction

In linear algebra, a matrix A is orthogonal if its transpose is equal to its inverse, which entails $AA^{T}=A^{T}A=I$, where I is the identity matrix. The term orthogonal matrix was used in 1854 by Charles Hermite (1822-1901) in the Cambridge and Dublin mathematical journal, although it was not until 1878 that the formal definition of an orthogonal matrix was published by Frobenius [6]. The orthogonal Matrixwas defined by Sylvester in 1867 [5]. A polynomial matrix

 $A(\lambda) = \sum_{j=0}^{n} \lambda^{j} A_{j}$ is a polynomial orthogonal matrix whose coefficient matrix A_{i} 's are orthogonal

matrices which was referred by [1] [2] [3][4]. Polynomial matrices arise naturally as modeling tools in several areas of applied mathematics, systems theory, sciences and engineering.

2. Polynomial quasi orthogonal of type I matrices:

Definition:2.1

A square matrix A is called an orthogonal of type I matrix if $A^k (A^T)^k = I_n$ and $(A^T)^k (A)^k = I_n$, for some $k \in R$

Example:2.2

Let $A = \begin{bmatrix} -i & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -i \end{bmatrix}$ is orthogonal of type I matrices.

Definition: 2.3

Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-345

A real square matrix A of order n is called quasi orthogonal matrix if it satisfies $AA^{T} = A^{T}A = cI_{n}$. Where, I_{n} is $n \times n$ identity matrix and c is a constant real number.

Example:2.4

 $\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ is quasi orthogonal matrix.

Definition:2.5

Let Abe an quasi orthogonal of type I matrix and there exists positive integer k with $A^k (A^T)^k = c^k I_n$ is called the index of A. We say that A is quasi orthogonal of type I of period k.

Example: 2.6

 $A = \begin{bmatrix} 5i & 0\\ 0 & 5i \end{bmatrix}$ is quasi orthogonal of type I matrix.

Solution:

Given that
$$A = \begin{bmatrix} 5i & 0\\ 0 & 5i \end{bmatrix}$$

$$\begin{bmatrix} 0 & -5I \end{bmatrix}$$

If *A* is quasi orthogonal of type I matrix
Thus, $A^{k}(A^{T})^{k} = c^{k}I_{n}$
Put $k=1, AA^{T} = \begin{bmatrix} 5i & 0 \\ 0 & 5i \end{bmatrix} \begin{bmatrix} 5i & 0 \\ 0 & 5i \end{bmatrix} = 5 \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
Put $k=2, A^{2}(A^{T})^{2} = 5^{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Put $k=3, A^{3}(A^{T})^{3} = 5^{3} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
Put $k=4, A^{4}(A^{T})^{4} = 5^{4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Put $k=5, A^{5}(A^{T})^{5} = 5^{5} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Put
$$k=6$$
, $A^{6}(A^{T})^{6} = 5^{6} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The index of *A* is 2, then $A^k(A^T)^k = I_2, k=2,4,6,...$ and *A* is of period 2. **Definition: 2.7**

Let $A(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \dots + A_n\lambda^n$ be polynomial quasi orthogonal of type I matrix. Here coefficient matrices A_i 's are quasi orthogonal of type I matrices and there exists positive integer k with $A_i^k (A_i^T)^k = c^k I_n$ is called the index of A_i 's. We say that A_i 's is quasi orthogonal of type I of period k.

Theorem:2.8

Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-345

If $A(\lambda)$ is an polynomial quasiorthogonal of type I matrix is a polynomial quasiorthogonal of type I matrix whose coefficient matrices are quasi orthogonal of type I matrices. Then det $(A_i^k) = \pm c^{kn/2}$

Example:2.9

Let $A(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \dots + A_n\lambda^n$ be polynomial quasi orthogonal of type I matrix. Here coefficient matrices A_i 's are quasi orthogonal of type I matrices. Where i = 1, 2,

3,.....n. If $A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ is quasi orthogonal of type I matrix, then det $A_1 = \pm 4^{n/2}$.

Solution:

Given that Ais quasi orthogonal of type I matrix

 $A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ Since $A_1 A_1^T = A_1^T A_1 = c I_n$ Thus, $A_1 A_1^T = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = 4I_n$ ie) $A_1 A_1^T = 4I_n$ $A_1 A_1^T = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = 4I_n$ ie) $A_1^T A_1 = 4I_n$. Hence $A_1 A_1^T = A_1^T A_1 = 4I_n$ So that, $A_1 A_1^T = 4I_n$ Taking determinant on both sides $\det(A_1A_1^T) = \det(4I_n) (\because \det(aI) = a^n \det(I))$ $\det A_1 \cdot \det A_1^T = 4^n \det(I_n) (\because \det(I) = 1)$ Since, det $A_1 = \det A_1^T$ That is $\det A_1 \det A_1 = \det(4I_n)$ $(\det A_1)^2 = 4^n$ $\det A_1 = \pm 4^{n/2}$ Hence det $A_1 = \pm 4^{n/2}$ Theorem:2.10

If $A(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \dots + A_n\lambda^n$ be polynomial quasiorthogonal of type I matrix. Here coefficient matrices A_i 's are quasiorthogonal of type I matrices.

The following statements are equivalent.

- (i) $A(\lambda)$ is an polynomial quasi orthogonal of type I matrix.
- (ii) $A(\lambda)^{-1}$ is an polynomial quasi orthogonal of type I matrix.

Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-345

- (iii) $A(\lambda)^T$ is an polynomial quasiorthogonal of type I matrix.
- (iv) $\overline{A(\lambda)}$ is an polynomial quasiorthogonal of type I matrix.
- (v) $A(\lambda)^*$ is an polynomial quasiorthogonal of type I matrix.

Proof:

Let $A(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \dots + A_n\lambda^n$ be polynomial quasiorthogonal of type I matrix. Here coefficient matrices A_i 's are quasiorthogonal of type I matrices. Where i = 1, 2, 3,n.

To prove (i) \Rightarrow (ii)

Suppose that A_i 's is an quasi orthogonal of type I matrix.

To prove A_i^{-1} is an quasi orthogonal of type I matrix.

Since $A_i^k (A_i^T)^k = c^k I_n$, for some $k \in N$

Taking inverse on both side

$$(A^{k} (A^{T})^{k})^{-1} = (c^{k} I_{n})^{-1}$$
$$(A^{k}_{i})^{-1} ((A^{T}_{i})^{k})^{-1} = (c^{k})^{-1} I_{n}$$
$$(A^{-1}_{i})^{k} ((A^{-1}_{i})^{T})^{k} = (c^{-1})^{k} I_{n}$$

Hence A_i^{-1} is an quasi orthogonal of type I matrix.

Hence all the coefficients of $A(\lambda)^{-1}$ are quasi orthogonal of type I matrices. Therefore $A(\lambda)^{-1}$ is a polynomial quasi orthogonal of type I matrix.

To prove (ii) \Rightarrow (iii).

Suppose A_i^{-1} is aquasi orthogonal of type I matrix.

To prove A_i^T is an quasi orthogonal of type I matrix. Since $(A_i^{-1})^k ((A_i^{-1})^T)^k = (c^{-1})^k I_n$, for some $k \in N$ Taking inverse on both side

$$((A_i^{-1})^k ((A_i^{-1})^T)^k)^{-1} = ((c^{-1})^k I_n)^{-1}$$
$$(((A_i^{-1})^T)^k)^{-1} ((A_i^{-1})^k)^{-1} = ((c^{-1})^k)^{-1} I_n^{-1}$$
$$(((A_i^{-1})^{-1})^T)^k ((A_i^{-1})^{-1})^k = ((c^{-1})^{-1})^k I_n$$
$$(A_i^T)^k A_i^k = c^k I_n$$

Taking transpose on both side

 $((A_i^T)^k A_i^k)^T = (c^k I_n)^T$ $(A_i^T)^k ((A_i^T)^T)^k = (c^T)^k I_n$

Hence A_i^T is an quasi orthogonal of type I matrix.

 $\Rightarrow A(\lambda)^{T}$ is an polynomial quasi orthogonal of type I matrix.

Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-345

To prove (iii) \Rightarrow (iv)

Suppose A_i^T is an quasi orthogonal of type I matrix. To prove \overline{A}_i is an quasi orthogonal of type I matrix.

Since, $(A_i^T)^k ((A_i^T)^T)^k = (c^T)^k I_n$, for some $k \in N$ ie) $(A_i)^k (A_i^T)^k = c^k I_n$ Taking conjugate on both side $\overline{A_i^k (A_i^T)^k} = \overline{c^k I_n}$ $(\overline{A_i})^k (\overline{A_i^T})^k = (\overline{c})^k I_n$ $(\overline{A_i})^k ((\overline{A_i})^T)^k = (\overline{c})^k I_n$ Hence $\overline{A_i}$ is aquasi orthogonal of type I matrix.

 $\Rightarrow \overline{A(\lambda)}$ is an polynomial quasi orthogonal of type I matrix. To prove (iv) \Rightarrow (v)

Suppose $\overline{A_i}$ is an quasi orthogonal of type I matrix. To prove A_i^* is an quasi orthogonal of type I matrix. Since, $(\overline{A_i})^k ((\overline{A_i})^T)^k = (\overline{c})^k I_n$, for some $k \in N$ Taking transpose on both side

$$((\overline{A_{i}})^{k}((\overline{A_{i}})^{T})^{k})^{T} = ((\overline{c})^{k}I_{n})^{T}$$
$$(((\overline{A_{i}})^{T})^{k})^{T}((\overline{A_{i}})^{k})^{T} = ((\overline{c})^{k})^{T}I_{n}$$
$$(((\overline{A_{i}})^{T})^{T})^{k}(A_{i}^{*})^{k} = (c^{*})^{k}I_{n} \because ((\overline{A_{i}}))^{T} = A_{i}^{*})$$
$$((A_{i}^{*})^{T})^{k}(A_{i}^{*})^{k} = (c^{*})^{k}I_{n}$$

Hence A_i^* is an quasi orthogonal of type I matrix.

 $\Rightarrow A(\lambda)^*$ is an polynomial quasi orthogonal of type I matrix. **To prove (v)** \Rightarrow (i)

Suppose A_i^* is an quasi orthogonal of type I matrix.

To prove A is an quasi orthogonal of type I matrix .

Since, $((A_i^*)^T)^k (A_i^*)^k = (c^*)^k I_n$, for some $k \in N$ So that, $((A_i^*)^T)^k (A_i^*)^k = (c^*)^k I_n$. Taking * on both side $(((A_i^*)^T)^k (A_i^*)^k)^* = ((c^*)^k I_n)^*$ $(((A_i^*)^T)^k)^* ((A_i^*)^k)^* = ((c^*)^k)^* I_n$ $(((A_i^*)^*)^T)^k A_i^k = c^k I_n$ $((A_i^T)^k A_i^k = c^k I_n$

Volume 13, No. 2, 2022, p. 1259 - 1264 https://publishoa.com ISSN: 1309-345

Hence A_i is aquasi orthogonal of type I matrix.

 $\Rightarrow A(\lambda)$ is an polynomial quasi orthogonal of type I matrix.

3.Conclusion

In this paper some properties of polynomial quasi orthogonal of type I matrices are derived and also we extended to some results of polynomial quasi orthogonal of type I matrices.

Reference:

- 1. Abedal-Hamza Mahdi Hamza and Baneen Khalid Imran, Orthogonal of type I Matrices with Application, Applied Mathematical Sciences, Vol. 11, Issue 40, pp. 1983-1994, 2017.
- Gajalakshmi. R and Ramesh. G, Properties of Polynomial Orthogonal of Type I Matrices, VidyabharathiInternational Interdisciplinary Research Journal(Special Issue), ISSN 2319 – 4979.
- 3. Jaikumar1. K, S. Aarthy1, On χ_s Orthogonal of type I Matrices, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.2, pp.140-143, April (2019) E-ISSN: 2348-4519.
- 4. Gohberg I., Lancaster P., and Rodman L., Invariant Subspaces of Matrices
- 5. Hammer.J, Sarvate.D.G, and seberry.J. A note on orthogonal design. Are combinations.24:93-100,1987.
- 6. Hoffman. K, linear algebra,2nd ed., Prentce-Hall,1971.