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Abstract: 

This paper is concerned with a new type of polynomial matrix. The concept of 

polynomial quasi orthogonal of type I matrices are introduced. We define the index of quasi 

orthogonal of type Imatrices and we extended some results of quasi orthogonalof type I matrix to 

polynomial quasi orthogonal of type I matrices 
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1. Introduction 

In linear algebra, a matrix A is orthogonal if its transpose is equal to its inverse, which entails 

AAT=ATA=I, where I is the identity matrix. The term orthogonal matrix was used in 1854 by 

Charles Hermite (1822-1901) in the Cambridge and Dublin mathematical journal, although it was 

not until 1878 that the formal definition of an orthogonal matrix was published by Frobenius [6]. 

The orthogonal Matrixwas defined by Sylvester in 1867 [5]. A polynomial matrix 
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=  is a polynomial orthogonal matrix whose coefficient matrix sAi '  are orthogonal 

matriceswhich was referred by [1] [2] [3][4].Polynomial matrices arise naturally as modeling 

tools in several areas of applied mathematics, systems theory, sciences and engineering.  

2. Polynomial quasi orthogonal of type I matrices: 

Definition:2.1  

A square matrix A is called an orthogonal of type I matrix if andIAA n

kTk =)(

n

kkT IAA =)()(  ,  for some 𝑘𝜖𝑅 

Example:2.2  
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 is orthogonal of type I matrices. 

Definition: 2.3  
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A real square matrix A of order n is called quasi orthogonal matrix if it satisfies 

n

TT cIAAAA == .Where, nI  is nn  identity matrix and c is a constant real number. 

Example:2.4 
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05
 is quasi orthogonal matrix. 

Definition:2.5 

Let Abe an quasi orthogonal of type I matrix andthere exists positive integer k with                                   

n

kkTk IcAA =)( is called the index of A. We say that A is quasi orthogonal of typeI of period k . 

Example: 2.6 
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Solution: 

Given that 
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If A is quasi orthogonal of type I matrix. 

Thus, 
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 Put k =2, 
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 Put k=3, 
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  Put k=4, 
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 Putk=5, 
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 Put k=6, 







=
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5)( 666 TAA  

 The index of A is 2, then Ak(AT)k=I2,k=2,4,6,….. and A is of period 2. 

Definition: 2.7 

Let 
n

nAAAAA  ++++= ...........)( 2

210  be polynomial quasi orthogonal of type I 

matrix. Here coefficient matrices sAi '  are quasi orthogonal of type I matrices andthere exists 

positive integer k with n

kkT

i

k

i IcAA =)( is called the index of sAi ' . We say that sAi '  is quasi 

orthogonal of typeI of period k. 

Theorem:2.8 
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 If ( )A  is an polynomial quasiorthogonal of type I matrix is a polynomial 

quasiorthogonal of type I matrix whose coefficient matrices arequasi orthogonal of type I 

matrices. Then 
2)det( knk

i cA =  

Example:2.9 

Let 
n

nAAAAA  ++++= ...........)( 2

210  be polynomial quasi orthogonal of type I 

matrix. Here coefficient matrices sAi '  are quasi orthogonal of type I matrices. Where i = 1, 2, 

3,........n. If 
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Solution: 

Given that Ais  quasi orthogonal of type I matrix  
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ie)   n

T
IAA 411 = . Hence n

TT
IAAAA 41111 ==  

So that , n

T
IAA 411 =  

Taking determinant on both sides  

)4det()det( 11 n

T
IAA = ))det()det(( IaaI n=  

)det(4det.det 11 n

nT
IAA = )1)det(( =I  

Since, 
T

AA 11 detdet =  

)4det(detdet 11 nIAAisThat =  

nA 4)(det 2

1 =  

2

1 4det nA =  

Hence  
2

1 4det nA =  
Theorem:2.10 

 If
n

nAAAAA  ++++= ...........)( 2

210  be polynomial quasiorthogonal of type I 

matrix. Here coefficient matrices sAi '  are quasiorthogonal of type I matrices. 

The following statements are equivalent. 

(i) )(A  is an polynomial quasi orthogonal of type I matrix. 

(ii) 
1)( −A is an  polynomialquasiorthogonal of type I matrix. 
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(iii) 
TA )( is an polynomial  quasiorthogonal of type I matrix. 

(iv) 
_____

)(A   is an polynomial quasiorthogonal of type I matrix. 

(v) 
)(A  is an polynomial  quasiorthogonal of type I matrix. 

Proof: 

Let 
n

nAAAAA  ++++= ...........)( 2

210  be polynomial quasiorthogonal of type I matrix. 

Here coefficient matrices sAi '  are quasiorthogonal of type I matrices. Where i = 1, 2, 3,........n. 

To prove  (i) ⇒ (ii) 

Suppose that sAi '  is an quasi orthogonal of type I matrix. 

  To prove  1−

iA is an quasi orthogonal of type I matrix. 

  Since  , n

kkT

i

k

i IcAA =)(  , for some 𝑘𝜖𝑁 

Taking inverse on both side  

 11 )())(( −− = n

kkTk IcAA
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i IcAA 111 )())(()( −−− =  
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kkT
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i IcAA )())(()( 111 −−−
=

 

Hence  1−

iA is an quasi orthogonal of type I matrix. 

Hence all the coefficients of 
1)( −A are quasi orthogonal of type I matrices. Therefore

1)( −A

is a polynomial quasi orthogonal of type I matrix. 

To prove (ii) ⇒ (iii). 

Suppose 1−

iA is aquasi orthogonal of type I matrix. 

To prove  
T

iA  is an quasi orthogonal of type I matrix. 

Since , n

kkT

i

k

i IcAA )())(()( 111 −−−
= ,  for some 𝑘𝜖𝑁 

Taking inverse on both side
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Taking  transpose on both side  

T

n

kTk

i

kT

i IcAA )())(( =  

n

kTkTT

i

kT

i IcAA )())(()( =  

Hence 
T

iA is an quasi  orthogonal of type I matrix. 

⇒
TA )( is an polynomial  quasi orthogonal of type I matrix. 
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To prove (iii) ⇒ (iv) 

 Suppose
T

iA is an  quasi orthogonal of type I matrix. 

To prove 
iA   is an quasi orthogonal of type I matrix. 

Since,   n

kTkTT

i

kT

i IcAA )())(()( = ,  for some 𝑘𝜖𝑁 

ie)   n

kkT

i
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i IcAA =)()(  

Taking conjugate on both side                         
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Hence  
iA  is aquasi orthogonal of type I matrix. 

⇒
_____

)(A is an polynomial  quasi orthogonal of type I matrix. 

To prove (iv) ⇒ (v) 

 Suppose 
iA   is an quasi orthogonal of type I matrix. 

To prove


iA  is an quasi orthogonal of type I matrix. 

Since,   
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i IcAA )())(()( =  ,for some 𝑘𝜖𝑁 

Taking  transpose on both side  
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Hence 


iA  is an quasi orthogonal of type I matrix . 

⇒
)(A  is an polynomial quasi orthogonal of type I matrix. 

To prove (v) ⇒ (i) 

Suppose


iA  is an quasi orthogonal of type I matrix. 

 To prove A is an quasi orthogonal of type I matrix . 

Since,   n
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So that,  n
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Hence iA is aquasi orthogonal of type I matrix. 

⇒ )(A  is an polynomial quasi orthogonal of type I matrix. 

3.Conclusion 

In this paper some properties of polynomial quasi orthogonal of type I matrices are 

derived and also we extended to some results of polynomial quasi orthogonal of type I matrices.  
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