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Abstract. We consider the connectivity of fiber graphs with respect to Gröbner basis and Graver

basis moves. First, we present a sequence of fiber graphs using moves from a Gröbner basis and

prove that their edge-connectivity is lowest possible and can have an arbitrarily large distance from

the minimal degree. We then show that graph-theoretic properties of fiber graphs do not depend

on the size of the right-hand side. This provides a counterexample to a conjecture of Engström on

the node-connectivity of fiber graphs. Our main result shows that the edge-connectivity in all fiber

graphs of this counterexample is best possible if we use moves from Graver basis instead.
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1. Introduction

Many applications in statistics require a deeper analysis of the structure of a fiber of an

integer matrix A ∈ Zd×n with ker(A) ∩ Zn≥0 = {0n} and a vector b ∈ Zd defined as

FA,b := {u ∈ Zn≥0 : A · u = b}. (1.1)

Very often, one needs to sample elements of the set FA,b randomly, for example in hy-

pothesis testing for log-linear models [6, Chapter 1]. The assumption ker(A)∩Zn≥0 = {0n}
makes FA,b finite for all b ∈ Zd. A random sampling on FA,b can be realised by performing

a random walk on a fiber graph G (FA,b,M) which is defined for a set M ⊆ ker(A) ∩ Zd

as the graph on the nodes FA,b in which two nodes v,u ∈ FA,b are adjacent if either
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v − u ∈ M or u− v ∈ M. The set M can be seen as a set of directions or moves one is

allowed to choose from during the random walk. Since random walks on graphs are essen-

tially the same as Markov chains whose state space equals the node-set of the graph – in

the context of this paper FA,b – one can ask whether this Markov chain converges against a

stationary distribution. If G (FA,b,M) is connected and non-bipartite, the Markov chain

is irreducible and aperiodic and hence convergence towards a stationary distribution is

guaranteed [8, Theorem 4.9]. Thus, the study of the connectedness of fiber graphs is an

important question in statistics.

The idea of sampling from fiber graphs goes back to the seminal work [4] of Diaconis and

Sturmfels. They formulated the connectedness of fiber graphs equivalently in the language

of commutative algebra: a set of moves M ⊆ ker (A) ∩ Zn \ {0n} makes the fiber graphs

G (FA,b,M) connected for all b ∈ Zd simultaneously if and only if the set of polynomials

{xm+ − xm− : m ∈M} generates the toric ideal

IA := 〈xu+ − xu− : u ∈ ker(A) ∩ Zn〉.

The tools of commutative algebra provide a long list of moves which generate the toric

ideal finitely (see [10, Chapters 3 and 10]): every reduced Gröbner bases of A with respect

to a term ordering ≺ on Zn≥0, denoted byR≺ (A), the universal Gröbner basis of A, denoted

by U (A), and the Graver basis of A, denoted by G(A), are Markov bases of A. We call

a fiber graph using moves from a Gröbner basis a Gröbner fiber graph and a fiber graph

using moves from the Graver basis a Graver fiber graph.

When working with Markov chains, it is typical to ask: What can we say about the random

walk and the convergence of the corresponding Markov chain? How long do we have to

run the random walk until we have a sufficiently good approximation of its stationary

distribution? Is there a difference in using moves from R≺ (A) rather then from G(A) (see

Example 1.1)? In this paper we have a closer look at a more refined structural information

of fiber graphs from which we think an answer to these questions can eventually be derived.

Example 1.1. Figure 1 shows the fiber graphs for the matrix A = (1, 1, 2) ∈ Z1×3 and the

right-hand side b = 3 using different types of moves. Even if we see obvious differences

in those three fiber graphs, the only statement we can make so far is that they are all

connected. The mixing times of those fiber graphs with respect to the Metropolis-Hastings

chain as defined in Section 7 read from left to right as follows: 5.78807, 6.32917, and

2.24376. We see that the mixing time of the Graver fiber graph surpasses the mixing time

of the Gröbner fiber graphs by far.
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G (FA,b,R≺ (A)) G (FA,b,U (A)) G (FA,b,G(A))
Figure 1: Different fiber graphs of the same underlying fiber.

To measure mixing we have to go beyond mere connectedness. One possible measurement

could be the connectivity of the underlying fiber graph (see Section 2) which counts the

number of paths between two nodes. It can be argued that the connectivity of a graph

measures in some sense the possibility of ‘getting stuck’ in a node during a random walk

and hence a small connectivity cannot lead to a good mixing time of the related Markov

chain. In Section 7 we present our computational results confirming this hypothesis.

Based on the assumption that a high connectivity is a desirable property of fiber graphs,

Engström conjectured in a talk at IST Austria in 2012 that the node-connectivity is best

possible for Gröbner fiber graphs.

Conjecture 1 (Engström; 2012). Let A ∈ Zd×n be a matrix with ker(A)∩Zn = {0n} and

≺ be a term ordering on Zn. Then for all b ∈ Zd, the node-connectivity of G (FA,b,R≺ (A))

equals its minimal degree.

A recent result of Potka supports Conjecture 1. He proved in [11] that the node-connectivity

of certain Gröbner fiber graphs of the n×n independence-model is best possible. However,

we show in Section 5 that Conjecture 1 is false in general. Let Ik be the identity matrix

in Zk×k and let 1k be the k-dimensional vector having all entries equal to 1. For

Ak :=

Ik Ik 0 0 −1k 0

0 0 Ik Ik 0 −1k

0 0 0 0 1 1

 ∈ Z(2k+1)×(4k+2) (1.2)

the underlying fiber graph of FAk,e2k+1
has node-connectivity 1 and minimal degree k

when using moves from the reduced lexicographic Gröbner basis of Ak (see Corollary 5.1).

Hence, we cannot expect to have a best possible connectivity in all Gröbner fiber graphs.

Thus, [11] poses a weaker follow-up conjecture which claims that the node-connectivity in

fiber graphs is best possible if the right-hand side is sufficently large.
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Conjecture 2 ([11]). Let A ∈ Zd×n be a matrix and ≺ be a term ordering. There exists

N ∈ Zd≥0 such that for all b ∈ Zd≥0 with bi ≥ Ni for all i ∈ [d], the node-connectivity of

the fiber graph G (FA,b,R≺ (A)) equals its minimal degree.

We prove in Section 2 that once we observe a bad connectivity in an arbitrary fiber of a

matrix, we can construct fibers of a related matrix whose right-hand side entries exceed

any given bound and whose connectivity remains bad. Thus, by modifying our original

counterexample (1.2), we show in Section 5 that this gives rise to a counterexample to

Conjecture 2.

Since these results diminish the hope for suitable connectivity in Gröbner fiber graphs,

we consider in Section 6 a possible way out. We show that in all Graver fiber graphs of

Ak, in particular even in those in which the Gröbner connectivity is lowest possible, the

edge-connectivity best possible.

2. Connectivity and Fiber Graphs

In this section we recall some basic definitions from graph theory and introduce the frame-

work of graph connectivity. We refer to [5] for a more general introduction to this field.

Let G = (V,E) be a simple graph in finitely many nodes V and edges E. In this notation,

a fiber graph G (FA,b,M) can be written as (FA,b, {{u,v} : u− v ∈ ±M}). We call

δ(G) := min{deg(v) : v ∈ V }

the minimal degree of G where deg(v) is the cardinality of the neighborhood of v in G. Let

k ∈ Z≥0, then G is k-node-connected if |V | > k and if for all X ⊆ V such that |X| < k, the

induced graph of G on the nodes V \ X is connected. In addition, the node-connectivity

of G is

κ(G) := max{k ∈ Z≥0 : G is k-node-connected}.

Similarly, G is k-edge-connected if |E| > k and if for all X ⊆ E such that |X| < k the

graph (V,E \X) is connected. The edge-connectivity of G is

λ(G) := max{k ∈ Z≥0 : G is k-edge-connected}.

For every graph G we have δ(G) ≥ λ(G) ≥ κ(G) [5, Chapter 1.4]. For example, we

obtain δ(G) ≥ λ(G) by removing all adjacent edges from a node with minimal degree in

G, which isolates this node and hence gives a disconnected graph. The edge-connectivity
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of G is best possible if δ(G) = λ(G) and similarly the node-connectivity is best possible if

δ(G) = κ(G). Even if these definitions look very convenient at a first glance, they are rather

unwieldy for proving general results about fiber graphs. For our purposes, an equivalent

property based on the number of paths between two nodes turns out to be more useful and

enables us to put hands on the connectivity of fiber graphs (see also Menger’s Theorem [5,

Chapter 3.3]). To obtain a lower bound on the node-connectivity of a graph, we only have

to determine the number of paths between nodes whose neighborhoods have a non-empty

intersection rather than between all nodes according to Liu’s criterion [9]. Since our main

result concerns edge-connectivity, we modify Liu’s original criterion and obtain a similar

statement involving edge-connectivity (see Lemma 2.1). A proof of Liu’s criterion can be

found in [1] and the idea behind the proof of Lemma 2.1 is similar, which is the reason

why we omit its proof here.

Lemma 2.1. Let k ∈ Z≥0 and let G = (V,E) be a connected graph with |E| > k. If for

all u, v ∈ V such that {u, v} ∈ E there are at least k edge-disjoint paths from u to v in G,

then we have λ(G) ≥ k.

Since δ(G) ≥ λ(G), replacing k with δ(G) in Lemma 2.1 gives a sufficient condition for

the edge-connectivity to be best possible. The next lemma is very useful in the proof of

Proposition 2.1.

Lemma 2.2. Let G = (V,E) be a graph and K ⊆ V with |K| ≤ λ(G) and v ∈ V \ K.

Then there are |K| edge-disjoint paths in G connecting all nodes of K with v.

Proof. We extend G to a new graph G∗ by adding a node u and by inserting edges between

u and all nodes of K. Since |K| ≤ λ(G), G∗ must have edge-connectivity at least |K| due

to the fact that removal of |K| − 1 edges does not disconnect G∗. The definition of edge-

connectivity gives |K| many edge-disjoint paths from u to v in G∗. Clearly, those paths

connect all nodes of K with v in G as well and by removing u from G∗ we obtain edge-

disjoint paths from all nodes of K to v in G. �

The following proposition helps us out in Section 6.

Proposition 2.1. Let G = (V1 ∪ V2, E) with V1 ∩ V2 = ∅ and such that the induced

subgraphs on V1 and V2 have both an edge-connectivity of at least n. Furthermore, assume

that every node in V1 has at least m ≥ n + 2 neighbors in V2. Let v1 ∈ V1 and v2 ∈ V2
be two adjacent nodes such that there are m node-disjoint paths in G connecting v1 and
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v2 which only use edges whose end-points are in V1 and V2, respectively. Then there are

m+ n edge-disjoint paths in G connecting v1 and v2.

Proof. By assumption, we obtain for every j ∈ [m] a path Pj connecting v1 and v2 which

only uses edges between V1 and V2 (the edge {v1, v2} is regarded as a path):

v1
Pj←−−→ v2. (2.1)

Moreover, all these paths are pairwise node-disjoint and hence pairwise edge-disjoint. De-

note by N(v) the neighborhood of a node v in G. Since, by assumption, the induced

subgraph on V1 is n-edge-connected, we have that v1 has at least n neighbors in V1, i.e.,

|N(v1) ∩ V1| ≥ n. Let w1, . . . , wn be n arbitrary nodes in the neighborhood of v1 in V1.

Again by assumption, we know that |N(wi) ∩ V2| ≥ m for all i ∈ [n]. Our goal is to con-

struct additional edge-disjoint paths between v1 and v2. Since the paths Pj are pairwise

node-disjoint, every wi could have been used by at most one path Pj . Hence, for every

i ∈ [n], up to two edges going from wi to V2 could have been used by the paths Pj . In

particular, there are still m − 2 edges from wi into V2 which have not been used by any

of the paths Pj . Since we have m − 2 ≥ n by assumption, each wi has at least n unused

neighbors in V2 and thus we can choose for every i ∈ [n] a node ki ∈ N(wi) ∩ V2 such

that the edge {wi, ki} is not used by any of the paths Pj and such that ki 6= ki′ for all

i 6= i′. By construction, {v1, wi, ki}, i ∈ [n], give n pairwise node-disjoint paths from v1 to

ki. Since the induced subgraph on V2 is also n-edge-connected we can apply Lemma 2.2

on the set {ki : i ∈ [n]} and the node v2 in the induced subgraph on V2 and we obtain

for every i ∈ [n] a path Qi connecting ki with v2 such that all of those paths are pairwise

edge-disjoint (note that if there is an i′ ∈ [n] such that ki′ = v2 we set Qi′ = ∅ and we still

can apply the lemma on the smaller set consisting of the wi 6= wi′). All in all, we have for

all i ∈ [n] a path

v1
{v1,wi}←−−−→ wi

{wi,ki}←−−−→ ki
Qi←−−→ v2 (2.2)

and by construction these paths are pairwise edge-disjoint. Since for all i ∈ [n] the path

from v1 to wi stays completely in V1, the path from Qi only uses edges connecting nodes

in V2 and since the edges {wi, ki} had not been used by the paths Pj which on the other

hand only uses edges between V1 and V2, the paths given in (2.2) are pairwise edge-disjoint

to all paths Pj , j ∈ [m]. This gives m+ n pairwise edge-disjoint paths in G connecting v1

and v2. �

Our next result states that graph-theoretic properties of fiber graphs are independent of

the size of the right-hand side.
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Theorem 1 (Universality Theorem). Every Gröbner fiber graph of a matrix A ∈ Zd×n

is isomorphic to a Gröbner fiber graph of a matrix A′ ∈ Z2d×(n+d) with arbitrarily large

entries of its right-hand.

Proof. Let b ∈ Zd be the right-hand side of an arbitrary fiber of A and let R be a Gröbner

basis of A with respect to an arbitrary term ordering ≺ on Zn. Consider the following

matrix:

A′ :=

(
A Id

0 Id

)
∈ Z2d×(n+d).

Clearly, we have ker (A′) ∩ Zn+d =
{

(v,0)T : v ∈ ker (A) ∩ Zn
}

. Thus, we obtain that

R′ := {(v,0)ᵀ : v ∈ R} is a Gröbner basis of A′ with respect to an arbitrary extension

≺′ of ≺ on Zn+d. We define for every bound N ∈ Z≥0 the right-hand side b′(N) :=(
b + ñ · 1d
ñ · 1d

)
∈ Z2d where ñ := max{N,N −bi : i ∈ [d]} ∈ Z≥0. It is easy to see that have

the following correlation between fibers of A and A′:

FA′,b′(N) =

{(
v

ñ · 1d

)
: v ∈ FA,b

}
.

Thus, for every N ∈ Z≥0 the map FA,b → FA′,b′(N),v 7→

(
v

ñ · 1d

)
gives a bijection from

the nodes of FA′,b′(N) to the nodes of FA,b. Even more, from the relation between the

Gröbner bases R and R′, this map respects the set of edges and hence it gives rise to a

graph isomorphism between the graphs G
(
FA,b′(N),R′

)
and G (FA,b,R) for all N ∈ Z≥0.

Since we have b′(N) ≥ N · 12d we found a fiber graph which is isomorphic to G (FA,b,R)

such that the right-hand side components exceeds every given bound N ∈ Z≥0. �

It is not hard to see that Theorem 1 is true if we choose Universal Gröbner bases or

Graver bases as sets of allowed moves as well. With a view towards Conjecture 2: due

to the isomorphism, all properties of the underlying graph carry over and hence it is

enough to consider a Gröbner fiber graph of a matrix whose connectivity is strictly less

than its minimal degree in a low-sized right-hand side (see Section 5). Since there are no

general tools for determining the connectivity of fiber graphs available, we establish some

definitions and lemmas from which our connectivity results in Section 6 benefit from. First,

we slightly extend our definition of a fiber graph in Section 1 in the sense that we do not

only restrict on fibers as a set of nodes but rather on arbitrary sets of integer points. For
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two sets F ⊆ Zk≥0 andM⊆ Zk, G(F ,M) is the graph on F in which two nodes v,u ∈ F
are adjacent if either v−u ∈M or u−v ∈M. Given an integer vector w ∈ Zk≥0, the box

of w is

Bw := [w1]× [w2]× · · · × [wk] ⊆ Zk≥0

and the standard basis of Zk is Ek := {ei : i ∈ [k]} ⊆ Zk≥0. The next lemma states that

the node-connectivity is best possible in the graph G(Bw,Ek). We omit the proof since

it can easily archived as a consequence of the node-version of Lemma 2.1. Recall that for

w ∈ Zk the support supp(w) ⊆ [k] is the set of indices of all non-zero coordinates of w.

Lemma 2.3. For w ∈ Zk≥0, the minimal degree and node-connectivity of the graph

G(Bw,Ek) equals | supp(w)|.

In order to exploit a more refined structure of fiber graphs of Ak (see Section 4), we first

have a look at sets of the following type: for a given set F ⊆ Zk and a vector b ∈ Zk the

b-slack of F is

SL (F ,b) :=

{(
x

b− x

)
: x ∈ F

}
⊆ Z2k (2.3)

and the 0k-slack of F is abbreviated as SL (F) := SL (F ,0k). We need in Section 3 and 4

the special case that F = Bw and we denote its slack short by Bsl
w := SL (Bw,w). In the

next lemma we show that the connectivity of a graph does not change by adding slacks

to the set of nodes if we slack the set of moves by 0k, too.

Lemma 2.4. For b ∈ Zk≥0, F ⊆ Bb, and a set of moves M⊆ Zk we have

G(F ,M) ∼= G(SL (F ,b) ,SL (M)). (2.4)

Proof. Since F ⊆ Bb, we have SL (F ,b) ⊆ Z2k
≥0 and hence the graph on the right-hand

side of (2.4) is well-defined in the sense our definition given above. The map

F → SL (F ,b) ,v 7→

(
v

b− v

)

gives a bijection between the nodes of the two graphs in (2.4) which does not only respect

the set of edges, but even more induces a bijection between them, too. �



R. Hemmecke, T. Windisch / J. Alg. Stat., 6 (2015), 24-45 32

3. Graver and Gröbner bases of Ak

In this section, we construct both the Graver basis and the reduced Gröbner basis with

respect to a lexicographic term ordering of Ak as defined in (1.2). For this, it is necessary

to recall the definition of the Graver basis of a matrix first. Let v be the partial ordering

on Zn such that for two integer vectors u,v ∈ Zn we have u v v if ui ·vi ≥ 0 and |ui| ≤ |vi|
for all i ∈ [n]. The Graver basis G(A) of a matrix A ∈ Zd×n is the set of all v-minimal

elements in ker (A) ∩ Zn \ {0n}. Note that G(A) is always a finite set [10, Chapter 3].

When it comes to calculations of Graver bases, the following definition is very helpful: for

a non-negative vector v ∈ Zk≥0, let χ(v) ∈ {0, 1}k be such that we have for all i ∈ [k]

χ(v)i =

0, if vi = 0

1, if vi 6= 0
.

Theorem 2. For k > 0, the Graver basis of Ak is the (disjoint) union of

±Bsl
−1k ×Bsl

1k
× {−1} × {1} (3.1)

and the sets

± SL (Ek)× {02k} × {0} × {0} and

± {02k} × SL (Ek)× {0} × {0}.
(3.2)

Proof. Denote the union of the sets given in (3.1) and (3.2) by G. We show that for every

u ∈ Z4k+2 with u 6= 04k+2 and Aku = 02k+1 there exists g ∈ G such that g v u. We write

u = (x1,x2,y1,y2, s, t)
ᵀ for vectors x1,x2,y1,y2 ∈ Zk and integers s, t ∈ Z. The block

structure of Ak yields the following equations:

x1 + x2 = s · 1k
y1 + y2 = t · 1k
s+ t = 0.

(3.3)

We distinguish the following two cases.

Case 1: s = −t = 0. Clearly, we have x1 = −x2 and y1 = −y2. As u 6= 04k+2 we can

assume without loss of generality that x1 6= 0k. Thus, there is i ∈ [k] and λ ∈ {−1, 1}
such that
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λ ·

(
ei

−ei

)
v

(
x1

x2

)
which gives rise to an element in SL (Ek) × {02k} × {0} × {0} which is less than u with

respect to v.

Case 2: s = −t 6= 0. Without restricting generality (since G is symmetric we can multiply

u by −1 if necessary) we can assume that t > 0 and as t is an integer we have t ≥ 1

and thus s = −t ≤ −1. Clearly, we have −x−1 v x1 and x+
1 v x1 and hence we have

−χ(x−1 ) v x1. As s ≤ −1, equation (3.3) gives −1k + χ(x−1 ) v x2 which implies(
−χ(x−1 )

−1k + χ(x−1 )

)
v

(
x1

x2

)
.

Similarly, one can show that (
χ(y+

1 )

1k − χ(y+
1 )

)
v

(
y1

y2

)
.

Since −χ(x−i ) ∈ B−1k and χ(y+
1 ) ∈ B1k and due to s ≤ −1 and t ≥ 1 we found an

element in Bsl
−1k ×Bsl

1k
×{−1}× {1} ⊆ G which is less than u with respect to the partial

ordering v. �

In the following, we consider a Gröbner basis with respect to the lexicographic ordering

≺lex on Zn≥0 where for two integer vectors u,v ∈ Zn≥0 with u 6= v we have u ≺lex v if

ui < vi for the smallest i ∈ [n] such that ui 6= vi. The next theorem extracts the reduced

Gröbner basis of Ak with respect to ≺lex from its Graver basis.

Theorem 3. For k > 0, the reduced Gröbner basis of Ak with respect to ≺lex consists of

the vector

(0k,1k,0k,−1k, 1,−1)ᵀ

and the vectors of the sets

SL (Ek)× {02k} × {0} × {0} and

{02k} × SL (Ek)× {0} × {0}.
(3.4)

Proof. As any reduced Gröbner basis of Ak is contained in the Graver basis of Ak [12,

Proposition 4.11], the result follows immediately by extracting those elements from the

Graver basis G(Ak), given in Theorem 2, that cannot be reduced by other elements of

G(Ak) with respect to ≺lex. �
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4. The Fiber-Structure of Ak

Equipped with explicit descriptions of both the Graver basis and the reduced≺lex-Gröbner

basis of Ak, we discover in this section the structure of FAk,b for any given right-hand side

vector b ∈ Z2k+1. We write b = (w1,w2, c)
ᵀ ∈ Z2k+1 with vectors w1,w2 ∈ Zk and c ∈ Z.

We assume that FAk,b 6= ∅ and hence we can choose an arbitrary element u ∈ FAk,b and

write u = (x1,x2,y1,y2, s, t)
ᵀ ∈ Z4k+2

≥0 with vectors x1,x2,y1,y2 ∈ Zk≥0 and s, t ∈ Z≥0.
Since we have Aku = b, we obtain the following relations:

x1 + x2 = w1 + s · 1k
y1 + y2 = w2 + t · 1k
s+ t = c.

(4.1)

We see immediately that we must have w1 + s · 1k ≥ 0k, w2 + t · 1k ≥ 0k and c ≥ 0, since

otherwise FAk,b = ∅. As t is uniquely determined by t = c− s, those inequalities give

max{(w−1 )i : i ∈ [k]}︸ ︷︷ ︸
=‖w−1 ‖∞

≤ s ≤ c−max{(w−2 )i : i ∈ [k]}︸ ︷︷ ︸
=‖w−2 ‖∞

. (4.2)

So we can define both a lower and an upper bound on s by

l(b) := ‖w−1 ‖∞ and u(b) := c− ‖w−2 ‖∞.

If l(b) > u(b), we certainly have FAk,b = ∅ and hence we can assume that l(b) ≤ u(b).

The equations in (4.1) suggest that we can regard x2 and y2 as slack variables since they

are already uniquely determined by the choices of x1 ∈ Bw1+s·1k and y1 ∈ Bw2+(c−s)·1k .

Hence, any element of the fiber looks like

vb (x,y, s) :=



x

w1 + s · 1k − x

y

w2 + (c− s) · 1k − y

s

c− s


(4.3)

for x ∈ Bw1+s·1k and y ∈ Bw2+(c−s)·1k . Using our definition of slacked boxes as defined

in (2.3), we obtain an explicit description of elements in FAk,b which have their (4k+ 1)th

coordinate equal to s:

Bb (s) := Bsl
w1+s·1k ×Bsl

w2+(c−s)·1k × {s} × {c− s} ⊆ Z2k+2k+2
≥0 . (4.4)
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This gives us a very convenient partition of the fiber into u(b)− l(b) + 1 disjoint sets:

FAk,b =

u(b)⋃
s=l(b)

Bb (s) . (4.5)

We see that the Graver moves from the sets defined in (3.1) connect nodes from two

adjacent boxes Bb (s1) and Bb (s2) with |s1 − s2| = 1, whereas Graver moves from (3.2)

connect nodes within the same box Bb (s) (see Figure 2).

Figure 2: Different types of Graver moves of Ak.

Even more, since the (4k + 1)th and (4k + 2)th coordinates coincide for all elements in

Bb (s), the next lemma follows immediately.

Lemma 4.1. For b ∈ Z2k+1 and s ∈ [l(b), u(b)], the following equality holds:

G(Bb (s) ,G(Ak)) = G(Bb (s) ,R≺lex(Ak)).

Based on our observations in Section 2, we know that the node-connectivity in those

induced subgraphs is best possible as the next lemma shows.

Lemma 4.2. Let b ∈ Z2k+1 such that FAk,b 6= ∅. For all s ∈ [l(b), u(b)], the minimal

degree and the node-connectivity of the graph G(Bs (b) ,G(Ak)) equal

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|.

Proof. Using the representation of Bb (s) in (4.4) and a projection onto the first 4k coor-

dinates, we obtain that the induced subgraph of G (FAk,b,G(Ak)) on the nodes Bb (s) is

isomorphic to the graph

G(Bsl
w1+s·1k ×Bsl

w2+(c−s)·1k ,SL (Ek)× {02k} ∪ {02k} × SL (Ek)). (4.6)

Graphs of this particular structure can be interpreted as the Cartesian product of two

related graphs, in our case here, G(Bsl
w1+s·1k , SL (Ek)) and G(Bsl

w2+(c−s)·1k ,SL (Ek)) (we

refer to [3] for a definition). This gives that the minimal degree of this graph is the sum

of the minimal degrees of G(Bsl
w1+s·1k , SL (Ek)) and of G(Bsl

w2+(c−s)·1k , SL (Ek)). Using
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the isomorphism given in Lemma 2.4, their minimal degrees coincide with the minimal

degrees of the graphs G(Bw1+s·1k ,Ek) and G(Bw2+(c−s)·1k ,Ek), respectively. Applying

the formula of Lemma 2.3, the minimal degree of the graph given in (4.6) equals

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|.

as claimed. �

Whereas Lemma 4.1 states that the Gröbner and Graver fiber graphs coincide on the

subgraph induced by Bb (s), Lemma 4.2 says that the node-connectivity in those subgraphs

is best possible. But what about moves between two neighbouring boxes of FAk,b? Let us

now determine under which conditions nodes of neighboring boxes are adjacent to each

other. For that it is necessary that FAk,b has at least two boxes, which is precisely the case

if l(b) < u(b). To simplify our proofs it is reasonable to define for all choices v1,v2 ∈ B1k

the following move from the Graver basis of Ak:

gk (v1,v2) :=



−v1

−1k + v1

v2

1k − v2

−1

1


∈ Bsl

−1k ×Bsl
1k
× {−1} × {1}.

Choose s ∈ [l(b), u(b)] and let (x,y)ᵀ ∈ Bw1+1k·s ×Bw2+(c−s)·1k and v1,v2 ∈ B1k . The

following conditions on v1 and v2

supp(v1) ⊆ supp(x) and [k] \ supp(v1) ⊆ supp(w1 + s · 1k − x) (4.7a)

supp(v2) ⊆ supp(y) and [k] \ supp(v2) ⊆ supp(w2 + (c− s) · 1k − y) (4.7b)

lead to a technical characterization for a Graver move to be applicable at vb (x,y, s):

vb (x,y, s)
gk(v1,v2)←−−−−−→ vb (x− v1,y + v2, s− 1) ⇐⇒ (4.7a) and s > l(b)

vb (x,y, s)
−gk(v1,v2)←−−−−−−→ vb (x + v1,y − v2, s+ 1) ⇐⇒ (4.7b) and s < u(b).

In particular, we see that only a fraction of moves between two adjacent boxes of FAk,b
are actually moves from the lexicographic Gröbner basis of Ak. So the main difference of

the fiber graphs of Ak with respect to Graver and Gröbner moves results from how the
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boxes Bb (s) are connected among each other. From our observations in this section, we

obtain that there is a large number of Graver moves between two neighboring boxes and

we summarize this results in the following proposition.

Proposition 4.1. Let b = (w1,w2, c)
ᵀ ∈ Z2k+1 with w1,w2 ∈ Zk and c ∈ Z such that

FAk,b 6= ∅ and consider the fiber graph G (FAk,b,G(Ak)). For s ∈ [l(b), u(b)], a node

v ∈ Bb (s) has neighbors in Bb (s− 1) if and only if s > l(b) and in this case that are at

least 2k many. In the same way, v has neighbors in Bb (s+ 1) if and only if s < u(b) and

that are at least 2k many in this case.

Proof. The statement of the proposition follows immediately from the fact that moves of

the form gk (χ(x),v2) are applicable at vb (x,y, s) for all v2 ∈ B1k if s > l(b) and in

the same way we see that moves of the form −gk (v1, χ(y)) are applicable at vb (x,y, s)

if s < u(b) for all v1 ∈ B1k . �

5. Gröbner Fiber Graphs of Ak

As mentioned in the previous section, the number of edges between two boxes of a fiber is

significantly higher under the Graver basis than the reduced lexicographic Gröbner basis

and our hope is that this affects the connectivity of the fiber graphs. Indeed, considering

the fiber of e2k+1 ∈ Z2k+1, we have that l(e2k+1) = 0 and u(e2k+1) = 1. Thus, (4.5) gives

FAk,e2k+1
= Be2k+1

(0) ∪ Be2k+1
(1)

= Bsl
0k
×Bsl

1k
× {0} × {1} ∪Bsl

1k
×Bsl

0k
× {1} × {0}

= {0k} ×Bsl
1k
× {0} × {1} ∪Bsl

1k
× {0k} × {1} × {0}.

This combined with Lemma 4.2 implies that the minimal degree of G
(
FAk,e2k+1

,R≺lex(Ak)
)

is at least k. Due to the connection to slacked boxes, Lemma 4.2 explains the structure of

the fiber within a box very well. But what about edges between two boxes with respect

to Gröbner moves? According to Theorem 3, the only move available is

gk (0k,0k) = (0k,−1k,0k,1k,0k,−1, 1)ᵀ

and according to Section 4, this move can be applied only once in the fiber FAK ,e2k+1
,

namely as move between the following nodes:

(0k,0k,0k,1k, 0, 1)ᵀ
gk(0k,0k)←−−−−−→ (0k,1k,0k,0k, 1, 0)ᵀ.
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This means there is only a single edge connecting Bb (0) and Bb (1) (see Figure 3) and

hence the minimal degree of G
(
FAk,e2k+1

,R≺lex(Ak)
)

equals k. Thus, removing this edge

Figure 3: A sketch of Be2k+1 (0) and Be2k+1 (1) for k = 2 and k = 3 with respect to Gröbner moves.

gives a non-connected graph, i.e., the edge-connectivity of the fiber graph equals 1. Since

in all graphs the node-connectivity is always less than the edge-connectivity, we obtain

the following corollary.

Corollary 5.1. For k > 0, the edge-connectivity of the fiber graph

G
(
FAk,e2k+1

,R≺lex(Ak)
)

equals 1, whereas its minimal degree equals k. In particular, Ak gives a counterexample to

Conjecture 1 for k ≥ 2.

However, a priori Ak does not provide evidence against Conjecture 2 since the conjecture

claims that the node-connectivity equals the minimal degree only for sufficiently large

right-hand sides. But Theorem 1 gives us an instruction how to modify Ak such that it

becomes a counterexample to Conjecture 2 as well:

Bk :=

(
Ak+1 I2k+1

0 I2k+1

)
∈ Z(6k+3)×(4k+2).

Corollary 5.2. For k > 0, there exists a term ordering ≺k on Z6k+3
≥0 such that for all

N ∈ Z≥0 there exists b ∈ Z4k+2 with b ≥ N · 14k+2 such that the edge-connectivity of

G (FBk,b,R≺k(Bk)) equals 1 whereas its minimal degree equals k. In particular, Bk gives

a counterexample to Conjecture 2 for k ≥ 2.

6. Graver Fiber Graphs of Ak

As shown in the last section, node-connectivity and even edge-connectivity fail to be best

possible in general in Gröbner fiber graphs. As the number of moves in the Graver basis

enlarge the number of moves in a Gröbner basis by far, we hope that this circumstance
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reflects positively onto the connectivity of those fiber graphs. So let us now investigate

how the situation looks like if we replace Gröbner moves with Graver moves. We prove

that even if the edge-connectivity of some Gröbner fiber graphs of Ak is rather bad, the

edge-connectivity of its Graver fiber graphs is best possible. With Proposition 4.1 in mind,

let us first determine the minimal degree of the Graver fiber graphs.

Proposition 6.1 (Minimal degree). Let b = (w1,w2, c)
ᵀ ∈ Z2k+1 with w1,w2 ∈ Zk and

c ∈ Z. If l(b) = u(b), then we have

δ(G (FAk,b,G(Ak))) = | supp(w1 + ‖w−1 ‖∞ · 1k)|+ | supp(w2 + ‖w−2 ‖∞ · 1k)|. (6.1)

Otherwise, if l(b) < u(b), then we have

δ(G (FAk,b,G(Ak))) = min
j∈{1,2}

{| supp(wj + ‖w−j ‖∞ · 1k)|}+ k + 2k. (6.2)

Proof. If l(b) = s = u(b), the first statement is a reformulation of Lemma 4.2 due to

FAk,b = Bb (s). So assume that we have l(b) < u(b). Since s ∈ [l(b), u(b)], we must have

either s > l(b) or s < u(b) and hence we have either s > ‖w−1 ‖∞ of c − s > ‖w−2 ‖∞.

Putting those inequalities into the equation for the minimal degree in Lemma 4.2, we

obtain that a node in Bb (s) has at least

min
j∈{1,2}

{| supp(wj + ‖w−j ‖∞ · 1k)|}+ k

neighbors in his own box Bb (s). Furthermore, due to Proposition 4.1 and since either

s > l(b) or s < u(b), a node in Bb (s) has either at least 2k neighbors in Bb (s− 1) or at

least 2k neighbors in Bb (s+ 1). This shows that the minimal degree of G (FAk,b,G(Ak))

is greater or equal than the right-hand side of the term given in (6.2). Clearly, the node

with minimal degree has to be either in Bb (l(b)) or in Bb (u(b)). Thus, either

w1 + l(b) · 1k
0k

w2 + (c− l(b)) · 1k
0k

l(b)

c− l(b)


∈ Bb (l(b)) or



w1 + u(b) · 1k
0k

w2 + (c− u(b)) · 1k
0k

u(b)

c− u(b)


∈ Bb (u(b))

has the smallest degree in G (FAk,b,G(Ak)). �
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With an explicit formula for the minimal degree of G (FAk,b,G(Ak)) in mind we can

determine the edge-connectivity of those fiber graphs explicitly. First, we consider edges

between two neighboring boxes and we show that we find a suitable number of disjoint

paths connecting their end-points. Please note that we make these paths even node-disjoint

in this case.

Lemma 6.1 (Edges within Box). Let b ∈ Z2k+1 and s ∈ [l(b), u(b)]. Then for any

two adjacent nodes in Bb (s) there exist δ(G (FAk,b,G(Ak))) many node-disjoint paths in

G (FAk,b,G(Ak)) connecting them.

Proof. We write b = (w1,w2, c)
ᵀ ∈ Z2k+1 with w1,w2 ∈ Zk and c ∈ Z. Since we have

FAk,b 6= ∅ by assumption, we must have l(b) ≤ u(b). Due to Lemma 4.2 and Proposi-

tion 6.1 there is nothing to show for l(b) = u(b) and hence we assume that l(b) < u(b).

Without restricting generality, the two adjacent nodes we need to connect with a sufficient

number of node-disjoint paths look like

vb (x,y, s)←→ vb (x + ej ,y, s) (6.3)

with j ∈ [n], s ∈ [l(b), u(b)], x ∈ Bw1+s·1k , and y ∈ Bw2+(c−s)·1k . By Lemma 4.2 we find

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)| node-disjoint paths connecting vb (x,y, s)

and vb (x + ej ,y, s) which only use nodes in Bb (s). If we have s > l(b), we define

v1 :=

χ(x)− ej , if xj > 0

χ(x), if xj = 0
and v′1 :=

χ(x), if xj > 0

χ(x) + ej , if xj = 0
.

Then we have v1 ∈ B1k and v′1 ∈ B1k . Since we have by (6.3) that x + ej ≤ w1 + s · 1k,
it is easy to see that v1 fulfills (4.7a) and hence the Graver move gk (v1,v) is applicable

at vb (x,y, s) for every v ∈ B1k . As x− v1 + v′1 = x + ej by construction, this gives for

every v ∈ B1k a path

vb (x,y, s)

←→vb (x− v1,y + v, s− 1) ∈ Bb (s− 1)

←→vb

(
x− v1 + v′1,y + v2 − v, s− 1 + 1

)
= vb (x + ej ,y, s)

which only uses edges with end-points Bb (s) and Bb (s− 1). On the other hand, if we
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have s < u(b), we have for every v ∈ B1k a path

vb (x,y, s)

←→vb (x + v,y − χ(y), s+ 1) ∈ Bb (s+ 1)

←→vb (x + v + ej ,y − χ(y), s+ 1) ∈ Bb (s+ 1)

←→vb (x + v + ej − v,y − χ(y) + χ(y), s+ 1− 1) = vb (x + ej ,y, s) .

Here, the second edge is feasible since j ∈ supp(w1 + s · 1k − x) by assumption (6.3) and

hence we have for the slack variable of x + v that

j ∈ supp (w1 + (s+ 1) · 1k − (x + v)) .

All in all, we get in any case 2k many edge-disjoint paths which only use edges outside of

Bb (s) and hence these paths are node-disjoint to those walking within Bb (s). Thus, there

are

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|+ 2k ≥ δ(G (FAk,b,G(Ak)))

node-disjoint paths between the end-points of the edge given in (6.3). �

In the next lemma we prove that we can find a suitable number of paths even for end-

points of edges in neighbouring boxes of FAk,b as well. Here, Proposition 2.1 plays an

important role and hence we shortly recall its statement: given two subgraphs with a

certain connectivity yield a lower bound on the connectivity of the induced graph on the

union of those subgraphs if we can prove the existence of a suitable number of paths walking

between them. In the situation of Proposition 6.2, the subgraphs whose connectivity is

already known are the induced subgraphs on the boxes Bb (s). So the idea behind the

proof of Lemma 6.2 is to find a sufficient number of edges between two neighbouring

boxes.

Lemma 6.2 (Edges between adjacent Boxes). Let k > 0 and b ∈ Z2k+1. Then for any

adjacent nodes in different boxes there are δ(G (FAk,b,G(Ak))) many edge-disjoint paths

connecting them.

Proof. By assumption, there exist at least two boxes in G (FAk,b,G(Ak)) and hence we must

have l(b) < u(b). Without restricting generality, we can assume that the edge between

the two adjacent nodes looks like:

u1 := vb (x,y, s)
gk(v1,v2)←−−−−−→ vb (x− v1,y + v2, s− 1) := u2 (6.4)
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with s > l(b) and v1,v2 ∈ B1k . Let us verify the assumptions of Proposition 2.1. As

already shown in Lemma 4.2, the edge-connectivity in the two graphs G(Bb (s− 1) ,G(Ak))

and G(Bb (s) ,G(Ak)) is at least

n := min
j∈{1,2}

{| supp(wj + ‖w−j ‖∞ · 1k)|}+ k.

Since we have m := 2k ≥ 2k − 2 ≥ n− 2 it is left to prove that there are 2k node-disjoint

paths connecting u1 with u2 and which only use edges between Bb (s− 1) and Bb (s). For

this, we define the sets

Ws := {vb (x− v1 + z,y, s) : z ∈ B1k} ⊆ Bb (s)

Ws−1 := {vb (x− v1,y + z, s− 1) : z ∈ B1k} ⊆ Bb (s− 1) .
(6.5)

It is easy to see that Ws is completely contained in the neighborhood of every node in Ws−1

and vice versa. This means that G (FAk,b,G(Ak)) has a complete bipartite graph on the

node sets Ws and Ws−1 as subgraph including our original edge (6.4). This gives 2k many

node-disjoint paths between u1 and u2 only using edges between Bb (s) and Bb (s− 1).

Applying Proposition 2.1, we obtain m+n = δ(G (FAk,b,G(Ak))) edge-disjoint connecting

paths connecting u1 and u2. �

Combining all the results of this section, we obtain our main theorem.

Theorem 4. For k > 0, the edge-connectivity in all Graver fiber graphs of Ak equals its

minimal degree.

Proof. From Lemma 2.1 we know that we only have to consider paths between adjacent

nodes. From the decomposition of the fiber FA,b given in (4.5) we obtain that there are

only two kinds of edges: edges within boxes and edges connecting two neighboring boxes.

Lemma 6.1 and Lemma 6.2 state that we found in both cases δ(G (FAk,b,G(Ak))) many

edge-disjoint paths connecting the adjacent nodes of that edge. �

Unfortunately, Theorem 4 says nothing about the node-connectivity of the fiber graphs

and we do not know whether it is best possible or not. Nevertheless, the results of this

section make us suggest that requiring the Graver basis as set of edges should suffice that

the edge-connectivity (not the node-connectivity!) equals the minimal degree in all fiber

graphs of arbitrary integer matrices.

Conjecture 3. Let A ∈ Zd×n be an integer matrix with ker(A)∩Zn≥0 = {0n}. Then in all

Graver fiber graphs of A, the edge-connectivity equals its minimal degree.
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7. Computational Results

In this section, we present how random walks on fiber graphs of Ak behave. Therefore,

let us first introduce briefly the framework. Let G = ({v1, . . . , vn}, E) be a simple graph.

Consider the random walk which has for i, j ∈ [n] the probability

pG(vi, vj) =


min{1/ deg(vi), 1/ deg(vj)}, if {vi, vj} ∈ E and i 6= j∑
{vi,vk}∈E max{0, 1/deg(vi)− 1/ deg(vk)}, if i = j

0, if {vi, vj} 6∈ E

to traverse from vi to vj . The matrix PG = (pG(vi, vj))i,j∈[n] is precisely the transition

probability matrix of the Metropolis-Hastings chain on G whose stationary distribution is

the uniform distribution on {v1, . . . , vn} [2, Section 1.2.2]. Given a vertex vi and a time

step t ∈ N, the jth-entry of the vector P tG ·ei ∈ [0, 1]n is the probability that a random walk

starting at vi is at vj in time step t. Let µ(PG) ∈ [0, 1] be the second largest eigenvalue

modulus (SLEM) of PG. Since (P tG · ei)t∈N converges to uniform 1
n · 1n asymptotically

with µ(PG)t [2, Section 1.1.2], µ(PG) is an indicator of how fast the convergence of the

corresponding Markov chain towards its stationary distribution is.

In our experiments with Macaulay2 [7] we considered this random walk on the fiber graphs

G
(
FAk,e2k+1

,G(Ak)
)

and G
(
FAk,e2k+1

,R≺lex(Ak)
)
, respectively. The left plot of Figure 4
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Figure 4: Plots of SLEM and mixing time of FAk,e2k+1 with respect to Graver and Gröbner moves.

shows how the SLEM of those chains behaves if k rises. It seems that both the SLEM of

the Gröbner chain and the SLEM of the Graver chain tend to 1 as k rises. The difference

of the convergence of those two graphs becomes even more visible by plotting their mixing
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times. Whereas the mixing time of FA10,e10 with Gröbner moves is around 7000, the mixing

time of the same fiber using Graver moves instead is approximately 50.
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Gröbner

1 2 3 4

0

20

40

60

λ

M
ix

in
g

T
im

e

Graver
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Figure 5: Plots of SLEM and mixing time of FA3,λ·e7 with respect to Graver and Gröbner moves.

In another experiment, we fixed k = 3 and we computed SLEM and mixing time of FA3,λ·e7
with respect to Graver and Gröbner moves for rising λ ∈ N. Even if we do not know the

connectivity of Gröbner fiber graphs of A3 for right-hand sides b 6= e7 in general, the

Graver moves lead in our tested cases to a substantial better mixing time.
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