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Abstract. Let G be a finite group, let CG be the complex group algebra of G, and let p ∈ CG. In
this paper, we show how to construct submodules S of CG of a fixed dimension with the property
that the orthogonal projection of p onto S has maximal length. We then provide an example of
how such submodules for the symmetric group Sn can be used to create new linear rank tests of
uniformity in statistics for survey data that arises when respondents are asked to give a complete
ranking of n items.
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1. Introduction

Several nonparametric tests exist to assess whether n items that have been fully ranked
m times are significantly different (see Chapter 3 of [5]). The data are the set ofm rankings,
where each ranking is a permutation of the n items. Testing for differences among the n
items amounts to testing whether the m rankings were sampled from a uniform distribution
over the symmetric group Sn. If a test rejects the null hypothesis of uniformity, then one
could say that the items are significantly different.

To explain in more detail, suppose m respondents in a survey have been asked to
rank a collection of n items, say from most preferred to least preferred. Each ranking
corresponds naturally to a permutation in the symmetric group Sn. Thus, if we let p
denote the resulting distribution on Sn, then we might say that some of the items seem
to be somehow different from each other if p appears to be generated by something other
than the uniform distribution on Sn.

With that in mind, let S be a subspace of CSn, the complex group algebra of Sn,
that is orthogonal to the one-dimensional subspace spanned by the uniform distribution
on Sn. Let pS denote the orthogonal projection of p onto S. If p had been generated by
the uniform distribution on Sn, then we would expect ‖pS‖ to be small. We may therefore
use the value ‖pS‖ to create a statistic for a test for uniformity. In particular, we will use
the statistic mn!‖pS‖2 because it has nice properties (see Theorem 3 in [5]). We call the
resulting test the linear rank test of uniformity associated with S. If the test statistic is
large, then the p-value associated with the test would be small and the test would reject
the null hypothesis of uniformity.

Of course, we do not want the value ‖pS‖ in our statistic to change under any relabelling
of the items. That is why we insist that the subspaces S are also submodules of CSn, and
that the action of Sn on CSn is unitary. After all, we do not want the outcome of a test
of uniformity to depend on how the collection of items have been labelled.

Fortunately, there are well-known choices for such submodules (see [1, 5]). While these
well-known choices are useful, we are interested in constructing new submodules S of a
fixed dimension that would maximize the values ‖pS‖ and therefore minimize the p-values
of the associated tests of uniformity. This would allow us to determine if uniformity should
be rejected for a fixed dimension. In other words, if we found that the minimum p-value
for a fixed dimension was greater than our predetermined significance level, then there
would be no way to reject the null. Knowing the submodules that maximize ‖pS‖ and
minimize the p-values would therefore provide us with extreme cases.

We can generalize the problem as follows. Let G be a finite group, and let CG be
the complex group algebra of G. View CG as a left module over itself (i.e., as the left
regular CG-module), and assume that CG comes equipped with the usual inner product
〈·, ·〉, where if p, q ∈ CG, then

〈p, q〉 =
∑
g∈G

p(g)q(g).

The associated norm of p is then ‖p‖ =
√
〈p, p〉.
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Let S be the set of all (left) submodules of CG, and letK denote the set {dimS | S ∈ S}
of all possible dimensions of submodules in S. Also, for each S ∈ S, let pS denote the
orthgonal projection of p onto S. In this paper, we give a positive answer to the following
question:

Given p ∈ CG and k ∈ K, is it possible to construct a k-dimensional submodule
S of CG such that ‖pS‖ ≥ ‖pS′‖ for all k-dimensional submodules S′ of CG?

In what follows, we show how such submodules may be constructed by first using the
Wedderburn decomposition of CG to convert the element p ∈ CG into a direct sum of
matrices. We then take advantage of the singular value decomposition of each of those
matrices to construct maximal length orthogonal projections of p and their associated
submodules. We then conclude with a concrete example when the group is the symmetric
group S3, and p is a data set encoding the results of a survey in which respondents have
been asked to rank three items in order of preference.

2. Wedderburn’s Theorem and Submodules

Our construction relies on a few well-known facts and theorems about complex group
algebras, most of which can be found in [2]. One such theorem is Wedderburn’s decom-
position theorem:

Theorem 2.1 (Wedderburn). The group algebra CG of a finite group G is isomorphic to
a direct sum of matrix algebras:

CG ∼= Cd1×d1 ⊕ · · · ⊕ Cdh×dh .

The number h of summands equals the number of conjugacy classes of G, and the dj are
determined by G up to permutation.

Let D =
⊕h

j=1Dj be any mapping that realizes the algebra isomorphism in Wedder-
burn’s decomposition theorem, where Dj is the part of D that maps CG onto the summand
corresponding to the complex algebra Cdj×dj of dj-by-dj matrices with complex entries.
For convenience, we will assume that each Dj(g) is a unitary matrix for all g ∈ G. Such
isomorphisms D exist for all G because every matrix representation of G is equivalent to
a unitary one.

If S is a submodule of CG, then D(S) = D1(S)⊕ · · · ⊕Dh(S), where Dj(S) is a sub-

module of Cdj×dj , and thus dimS =
∑h

j=1 dimDj(S). By the Wedderburn decomposition
theorem, we may manipulate the submodules of CG by manipulating the submodules of
the Cdj×dj , viewed as left modules over themselves. Fortunately, the submodules of the
Cdj×dj are straightforward to describe.

First, note that if B ∈ Cd×d, and B is a rank-1 matrix, then there exist nonzero vectors
u,v ∈ Cd such that B = uv∗ where v∗ is the conjugate transpose of v. Furthermore, if
A ∈ Cd×d, then AB = A(uv∗) = (Au)v∗. It follows that the submodule of Cd×d that is
generated by B is the d-dimensional subspace {wv∗ | w ∈ Cd}.
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In general, if W is a submodule of Cd×d, then dimW = cd for some c such that
0 ≤ c ≤ d. Furthermore, if c is nonzero, then there exist nonzero and linearly independent
vectors v1, . . . ,vc ∈ Cd such that W is the collection of all matrices of the form

w1v
∗
1 + · · ·+ wcv

∗
c

where w1, . . . ,wc ∈ Cd. In this case, we will slightly abuse the standard terminology and
say that v1, . . . ,vc generate the submodule W .

3. Frobenius Inner Products and Plancherel’s Formula

We now turn our attention to relating the norm of a vector p ∈ CG to the matrices
D1(p), . . . , Dh(p). Let A,B ∈ Cd×d. The Frobenius inner product of A and B is given by

〈A,B〉F = Tr(AB∗) =
∑
i,j

aijbij

where aij and bij are the ijth entries of A and B, respectively. The Frobenius norm ‖A‖F
of A ∈ Cd×d is then defined to be

√
〈A,A〉F .

Let p, q ∈ CG. Because the Dj(g) are unitary matrices for all g ∈ G, the Plancherel
formula (see, for example, Theorem 6.8 in [2]) gives us that

〈p, q〉 =
1

|G|

h∑
j=1

dj〈Dj(p), Dj(q)〉F .

Thus, for all p ∈ CG,

‖p‖2 =
1

|G|

h∑
j=1

dj‖Dj(p)‖2F .

To work more easily with each of the ‖Dj(p)‖F , we next focus on the singular value
decompositions of the Dj(p). Doing so will lead to the submodules of CG for which we
are searching.

4. Singular Value Decompositions and Our Construction

Let A ∈ Cd×d. A singular value decomposition of A is a factorization A = UΣV ∗

where U and V are d-by-d unitary matrices, and Σ is a diagonal matrix whose entries are
nonnegative real numbers, and where, by convention, if the ith entry on the diagonal of Σ
is denoted by σi, then σ1 ≥ · · · ≥ σd. A singular value decomposition of A always exists,
and the resulting singular values σ1, . . . , σd of A are unique.

Let UΣV ∗ be a singular value decomposition of A, and denote the ith columns of U
and V by ui and vi, respectively. We may then use the outer product form of the singular
value decomposition to express A as

A = σ1u1v
∗
1 + · · ·+ σnudv

∗
d.
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Doing so is useful in practice because, if c is such that 1 ≤ c ≤ d, then a rank-c approxi-
mation Ac of A that minimizes ‖A−Ac‖F is given by

Ac = σ1u1v
∗
1 + · · ·+ σcucv

∗
c .

See [6] for a discussion of this and other facts about the singular value decomposition. It
follows that if we want a cd-dimensional submodule W of Cd×d such that the orthogonal
projection (using the Frobenius inner product) of A onto W has maximal length (with
respect to the Frobenius norm), then a possible choice for W is the submodule of Cd×d

generated by v1, . . . ,vc. In this case, the orthogonal projection of A onto W is precisely
Ac. Furthermore, because the vi form an orthonormal basis of Cd, we have that

‖Ac‖2F = σ21 + · · ·+ σ2c .

Let p ∈ CG, and let k ∈ K. We are now ready to construct a k-dimensional submodule
S of CG such that ‖pS‖ ≥ ‖pS′‖ for all k-dimensional submodules S′ of CG. First, for
each j, let

σ
(j)
1 u

(j)
1 (v

(j)
1 )∗ + · · ·+ σ

(j)
dj

u
(j)
dj

(v
(j)
dj

)∗

be a singular value decomposition for Dj(p).
For each vector c = (c1, . . . , ch) ∈ Nh of nonnegative integers such that 0 ≤ cj ≤ dj ,

let σ2c = |G|−1
∑h

j=1 dj

(∑cj
i=1(σ

(j)
i )2

)
and let dc =

∑h
j=1 cjdj . Let Vcj be the invariant

subspace of Cdj×dj that is generated by the vectors v
(j)
1 , . . . ,v

(j)
cj , and let Vc = Vc1 ⊕ · · · ⊕

Vch . If we define Ṽc = D−1(Vc), then note that dim Ṽc = dimVc = dc and ‖pṼc‖2 = σ2c.
Let Ck denote the set of vectors c = (c1, . . . , ch) ∈ Nh of nonnegative integers such

that 0 ≤ cj ≤ dj and dc = k. By the above discussion, we have the following theorem:

Theorem 4.1. Let p ∈ CG, and let k ∈ K. If c ∈ Ck has the property that σ2c ≥ σ2c′ for

all c′ ∈ Ck and S = Ṽc, then ‖pS‖ ≥ ‖pS′‖ for all k-dimensional submodules S′ of CG.

Thus, given p ∈ CG and k ∈ K, we are able to use singular value decompositions of
the images of p under each of the Dj to construct a k-dimensional submodule S such that
‖pS‖ is maximal.

Note that in the process, we may also construct analogous spaces for the right regular

module of CG by using the associated u
(j)
i to generate right submodules instead. Further-

more, because we are using only the singular values of the Dj(p) to determine the lengths
of the resulting projections, we immediately have the following corollary, which is perhaps
somewhat surprising:

Corollary 4.2. Let p ∈ CG, and let k ∈ K. If S is a k-dimensional left submodule of
CG such that ‖pS‖ is maximal, and R is a k-dimensional right submodule of CG such that
‖pR‖ maximal, then ‖pS‖ = ‖pR‖.

Finally, as noted in the introduction, we are sometimes interested in maximizing the
value ‖pS‖ when S is a submodule of CG that is orthogonal to the one-dimensional sub-
module spanned by the uniform distribution on G. With that in mind and using the
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notation above, note that if D1 denotes the trivial representation of G, then S = Ṽc will
be orthogonal to the one-dimensional submodule spanned by the uniform distribution if
and only if c = (c1, . . . , ch) has the property that c1 = 0. Thus, if we let C0

k denote the
set of such vectors in Ck, and we let O denote the set of submodules in CG that are
orthogonal to the submodule spanned by the uniform distribution on G, then we arrive at
the following theorem:

Theorem 4.3. Let p ∈ CG, and let k ∈ K. If c ∈ C0
k has the property that σ2c ≥ σ2c′ for

all c′ ∈ C0
k and S = Ṽc, then ‖pS‖ ≥ ‖pS′‖ for all k-dimensional submodules S′ in O.

5. Example

In this section, we present an example of the construction described above when applied
to a function defined on the symmetric group S3. We then use our construction to create
a new linear rank test of uniformity for S3.

In Chapter 8 of [3], Diaconis provides the results of a survey in which respondents were
asked to rank where they want to live: in the city, in the suburbs, or in the country. We
will use the same setting for our example, but we will adjust the data slightly to better
highlight the usefulness of our construction. In particular, suppose we have 68 respondents
and that their rankings are

π city suburbs country p(π)
id 1 2 3 12

(12) 2 1 3 18
(23) 1 3 2 8
(13) 3 2 1 10
(123) 2 3 1 7
(132) 3 1 2 13

where p(π) is the number of people who have chosen π. For example, 18 people chose the
transposition (12), and 13 people chose the three-cycle (132).

We will use the Wedderburn decomposition of CS3 to convert p into a direct sum of
matrices. First, we will construct an algebra isomorphism from CS3 to C1×1⊕C2×2⊕C1×1.

Let D1 be the one-dimensional trivial representation of S3. Thus D1(π) is the one-by-
one identity matrix for all π ∈ S3.

Next, let D2 be the two-dimensional unitary representation of S3 defined by setting

D2((12)) =

[
−1 0
0 1

]
and D2((23)) =

1

2

[
1
√

3√
3 −1

]
.

This suffices to define D2(π) for all π ∈ S3 because S3 is generated by the transpositions
(12) and (23). Note that D2 is also used in Chapter 8 of [3].

Finally, let D3 be the one-dimensional sign representation of S3 where

D3(id) = D3((123)) = D3((132)) = [1]
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and
D3((12)) = D3((23)) = D3((13)) = [−1].

The representations D1, D2, and D3 form a complete set of irreducible unitary rep-
resentations of S3, and thus D1 ⊕ D2 ⊕ D3 is an algebra isomorphism from CS3 to
C1×1 ⊕ C2×2 ⊕ C1×1 (see, for example, Theorem 2.15 in [2]). Applying this isomorphism
to the function p yields

[68]⊕
[
−7.0000 3.4641
−6.9282 11.0000

]
⊕ [−4].

Given this output, we may now easily construct the k-dimensional submodules of CS3
described in Theorem 2 for all k such that 1 ≤ k ≤ 6.

For example, suppose we want a 3-dimensional submodule S of CS3 such that ‖pS‖ ≥
‖pS′‖ for all 3-dimensional submodules S′ of CS3. In this case, because CS3 contains only
two 1-dimensional irreducible submodules, we know that S must be the direct sum of an
irreducible 1-dimensional submodule and an irreducible 2-dimensional submodule.

For the 1-dimensional submodule, we will use the trivial submodule of CS3. This is
because the projection of p onto the trivial submodule is larger than the projection of p
onto the sign submodule. This is easy to see in this case because |68| > | − 4|. Note also
that we do not need to compute the singular value decomposition of one-by-one matrices
because doing so would just return the matrices themselves.

On the other hand, for the 2-dimensional submodule, we will use the singular value
decomposition of the matrix [

−7.0000 3.4641
−6.9282 11.0000

]
which is [

−4.5876 5.4827
−8.2669 9.8798

]
+

[
−2.4124 −2.0186
1.3387 1.1202

]
.

The matrix on the left corresponds to a 2-dimensional submodule with the property that
the projection of p onto it has maximal length when compared with the projections of p
onto all irreducible 2-dimensional submodules of CS3. By Theorem 2, it follows that the
inverse image under D1 ⊕D2 ⊕D3 of

[68]⊕
[
−4.5876 5.4827
−8.2669 9.8798

]
⊕ [0]

will generate the 3-dimensional submodule S for which we were looking, and that this
inverse image will in fact be the projection pS .

Finally, as noted in the introduction, we were drawn to these kinds of constructions
because of linear rank tests of uniformity [1]. For example, we could ask what would
happen if we were to use the 2-dimensional submodule created above, which is orthogonal
to the trivial submodule, in a linear rank test of uniformity applied to the function p.
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means marginals pairs probabilities ours

statistic 1.0882 6.7647 1.3235 7.0000 6.3841

p-value 0.5804 0.1489 0.7236 0.2206 0.0411

Table 1: The outcome of several linear rank tests of uniformity when applied to our data set p.

Furthermore, we could ask how the outcome of this test compares to those of other well-
known linear rank tests of uniformity. The results of such a comparison are presented in
Table I.

In Table I, we see that standard linear rank tests of uniformity such as the means test,
marginals test, pairs test, and probabilities test (see Chapter 3 of [5]) fail to reject the null
hypothesis of uniformity because they lead to large p-values. On the other hand, the test
associated with the 2-dimensional submodule constructed above leads to a rejection of the
null hypothesis of uniformity with a p-value of .0411, which is the smallest p-value for any
such test associated with a 2-dimensional submodule by Theorem 4. This is because our
new test corresponds to a submodule that contains a large projection of the data, while
the other tests correspond to submodules that contain only small projections of the data.

6. Future Directions

This paper arose because we wanted to better understand linear rank tests of uni-
formity. In that setting, distributions defined on symmetric groups are the appropriate
objects of study. It is common, however, to encounter partially ranked data where respon-
dents do not fully rank a set of items. For example, they might be asked to list only their
top k choices from a list of n items where k < n. In this case, the associated distributions
can be viewed as distributions on cosets of a subgroup of the symmetric group, and it
would be interesting to see what the analogues of Theorem 2 and Theorem 4 would be in
this case.

Furthermore, it would be interesting to have analogues of Theorem 2 and Theorem 4
for data defined on homogeneous spaces of finite groups in general (i.e., for data defined
on cosets of a subgroup of a finite group). Section 2.3 of [4] seems like a good place for
interested readers to start working with such data, especially when it comes to finding
matrices whose singular value decompositions are as useful as the ones we have described
in this paper. See also Chapter 5 of [3] for more information about data defined on
homogeneous spaces of finite groups.
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