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Abstract. We consider the lattice, L, of all subsets of a multidimensional contingency table and
establish the properties of monotonicity and supermodularity for the marginalization function, n(·),
on L. We derive from the supermodularity of n(·) some generalized Fréchet inequalities comple-
menting and extending inequalities of Dobra and Fienberg. Further, we construct new monotonic
and supermodular functions from n(·), and we remark on the connection between supermodularity
and some correlation inequalities for probability distributions on lattices. We also apply an inequal-
ity of Ky Fan to derive a new approach to Fréchet inequalities for multidimensional contingency
tables.
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1. Introduction

In the statistical analysis of contingency tables, the derivation of upper and lower
bounds for cell entries has been accorded considerable attention. The motivation for this
problem stems from a broad range of areas, including statistical inference in the social
and biomedical sciences, ecology, computer-aided tomography, causal analysis, graphical
models, survey sampling, privacy and disclosure limitation, observational studies, and
other fields. We refer to Dobra [2], Dobra and Fienberg [3], and Fienberg [5] for detailed
accounts of results in this area and numerous references to the literature.

The motivation for this paper stems from the work of Dobra and Fienberg [3], who
derived for the cell entries of multidimensional contingency tables a class of generalizations
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of the classical inequalities of Fréchet [7]. We were especially intrigued by the possibility of
developing an approach to these inequalities complementing the graph-theoretic treatment
given in [3].

In deriving our results, we also apply an inequality of Ky Fan [4] which seems to
have been overlooked hitherto within the literature on supermodularity. We deduce from
Fan’s inequality some known Fréchet and Boole inequalities, derived by Fienberg [5] for
multiway contingency tables, and we apply Fan’s inequalities to derive Fréchet inequalities
for general multiway contingency tables free of graphical restrictions arising from loglinear
models. We also investigate the limitations of Fan’s inequality by showing that, in at least
one instance, the inequality provides a bound which is weaker than a coresponding bound
which we obtain from the results of Dobra and Fienberg [3].

Our results are as follows. We establish in Section 2 the monotonicity and supermod-
ularity of the marginalization function, n(·), of a multidimensional contingency table. We
deduce Fréchet inequalities from the supermodularity of n(·), develop new monotonic and
supermodular functions from n(·), and remark on the connection between supermodular-
ity and correlation inequalities for certain probability distributions on contingency tables.
In Section 3, we apply Fan’s inequality, thereby obtaining a new approach to deriving
Fréchet inequalities for multidimensional contingency tables. In Section 4, we remark on a
general procedure for interpreting classes of correlation inequalities for log-supermodular
probability density functions as Fréchet inequalities.

2. Generalized Fréchet bounds

Let L = {1, . . . , `} be an index set, and denote by L the set of all subsets of L. Then
L is partially ordered by set-theoretic inclusion ⊂ and forms a complete finite distributive
lattice, where the meet ∧ and join ∨ operations coincide with the set-theoretic operations
of intersection ∩ and union ∪, respectively.

Let X1, . . . , X` be discrete random variables. We suppose that each Xj takes values
xj ∈ Ij , a discrete set of labels, j = 1, . . . , `. We define the discrete random vector
X = (X1, . . . X`), whose values are x = (x1, . . . , x`) ∈ JL = I1 × · · · × I`.

Consider an `-way contingency table n := (nx : x ∈ JL). For each collection of labels
a = {i1, . . . , ip} ⊂ L, let Ja := Ii1 × · · · × Iip ; then each x ∈ JL can be written in the form
x = (xa, xL\a). Define the marginalization function,

nx(a),+ :=
∑

xL\a∈JL\a

nxa, xL\a , (1)

a ⊂ L. Consequently, it can be seen that each contingency table n defines a marginalization
function that takes input a ⊂ L and outputs a marginal table n(a) := (nx(a),+ : x(a) ∈ Ja).
In this way, we can identify the marginalization function with the contingency table.

As an example, consider the 2-way contingency table in Table 1, arising in a well-known
study [10], [11, p. 81 ff.] of the presence of lead in the blood of children of employees in
an industrial factory in Oklahoma which used lead in the manufacture of batteries. In
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Table 1: Number of children classified by father’s hygiene and by father’s exposure to lead.

Father’s exposure
Low Medium High

Poor 7 5 13
n = Father’s hygiene Medium 1 1 3

Good 0 1 3

this example, ` = 2, I1 = {Poor,Medium,Good}, the levels of father’s hygiene, and
I2 = {Low,Medium,High}, the levels of father’s exposure. Then n({1, 2}) = n denotes
the contingency table itself, ni,j denotes the (i, j)-th entry of the contingency table corre-
sponding to x1 = i and x2 = j, and n(∅) = 34 is the total number of individuals in the
table. Also, the marginal tables are the row sums, n({1}) = (25, 5, 4), and the column
sums, n({2}) = (8, 7, 19).

In order to simplify the marginalization notation, we may write, for example, n+,j
instead of n({2})j . Then, according to the simple Fréchet bound [7], each cell entry in a
2-way table is bounded by the 1-way marginals in the following way:

min
(
n({1})i, n({2})j

)
≥ n({1, 2})i,j ≥ max

(
n({1})i + n({2})j − n(∅), 0

)
,

for all (i, j) ∈ I1 × I2. In the simpler notation, this statement is equivalent to

min(ni,+, n+,j) ≥ ni,j ≥ max(ni,+ + n+,j − n++, 0),

for all (i, j) ∈ I1 × I2. Whenever a statement holds for all choices of indices, we will omit
the indices; then the simple Fréchet bounds are given by

min
(
n({1}), n({2})

)
≥ n({1, 2}) ≥ max

(
n({1}) + n({2})− n(∅), 0

)
. (2)

In the following result, we generalize these bounds to multiway conditional tables.
Namely, we prove that the marginalization function n is decreasing and supermodular.

Theorem 2.1. The marginalization function n has the following properties:
(a) n is decreasing on L, i.e., n(a) ≥ n(b) for all a ⊂ b ∈ L, and
(b) n is supermodular on L, i.e.,

n(a ∪ b) + n(a ∩ b) ≥ n(a) + n(b) (3)

for all a, b ∈ L.

Proof. Property (a) follows directly from (1) and the non-negativity of all cell entries
in a contingency table.

To establish Property (b), the supermodularity of n, we consider three cases:
(1) a ⊂ b or b ⊂ a: Then n(a ∪ b) + n(a ∩ b) = n(a) + n(b), so the inequality (3) is valid,
trivially.
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(2) a∩b = ∅: Without loss of generality, let a = {i1, . . . , iq} and b = {iq+1, . . . , im} and let
ni01,...,i0m,+ denote an arbitrary cell in the marginal contingency table n(a∪b) corresponding

to n, where (i01, . . . , i
0
q) ∈ Ja and (i0q+1, . . . , i

0
m) ∈ Jb. Then

n(∅) ≡
∑

i1,...,im

ni1,...,im,+

=
∑

iq+1,...,im

ni01,...,i0q ,iq+1,...,im,+ +
∑
i1,...,iq

ni1,...,iq ,i0q+1,...,i
0
m,+
− ni01,...,i0m,+

+
∑

(i1,...,im) 6=(i01,...,i
0
m)

ni1,...,im,+.

Discarding the last term, we obtain

n(∅) ≥
∑

iq+1,...,im

ni01,...,i0q ,iq+1,...,im,+ +
∑
i1,...,iq

ni1,...,iq ,i0q+1,...,i
0
m,+
− ni01,...,i0m,+

= n(a) + n(b)− n(a ∪ b).

(3) For the last case we assume without loss of generality that a = {i1, . . . , iq} and b =
{ip, . . . , im} with p ≤ q. Similar to the previous case, let ni01,...,i0m,+ denote an arbitrary

cell in the marginal contingency table n(a∪ b) corresponding to n, where (i01, . . . , i
0
q) ∈ Ja

and (i0p, . . . , i
0
m) ∈ Jb. Then

n(a ∩ b) =
∑

i1,...,ip−1,iq+1,...,im

ni1,...,ip−1,i0p,...,i
0
q ,iq+1,...,im,+

=
∑

iq+1,...,im

ni01,...,i0q ,iq+1,...,im,+ +
∑

i1,...,ip−1

ni1,...,ip−1,i0p,...,i
0
m,+
− ni01,...,i0m,+

+
∑

(i1,...,ip−1)6=(i01,...,i
0
p−1),

(iq+1,...,im)6=(i0q+1,...,i
0
m)

ni1,...,ip−1,i0p,...,i
0
q ,iq+1,...,im,+

≥
∑

iq+1,...,im

ni01,...,i0q ,iq+1,...,im,+ +
∑

i1,...,ip−1

ni1,...,ip−1,i0p,...,i
0
m,+
− ni01,...,i0m,+

= n(a) + n(b)− n(a ∪ b).

This completes the proof.

Note that the simple Fréchet inequalities (2) are a corollary of Theorem 2.1; namely,
the first inequality is a consequence of the property that n(·) is decreasing and the second
inequality is a consequence of supermodularity and the non-negativity of the cell entries.
We now construct new supermodular functions from the marginalization function n(·).

Proposition 2.2. The following functions are increasing and supermodular:



C. Uhler, D. Richards / J. Alg. Stat., 10, No.1 (2019), pp.1-12 5

(a) For s ∈ L, the indicator function is defined as

1s(a) := 1{s⊂a} =

{
1, if s ⊂ a,
0, otherwise,

for all a ∈ L.
(b) The cumulative function is defined as

f(a) :=
∑
s∈L

1s(a)n(s) =
∑
s:s⊂a

n(s), a ∈ L.

Proof. (a) It is clear that 1s(a) is increasing. So we need to prove that

1{s⊂a} + 1{s⊂b} ≤ 1{s⊂a∪b} + 1{s⊂a∩b}.

We analyze the inequality in three cases: First, if s 6⊂ a and s 6⊂ b, then

1{s⊂a} + 1{s⊂b} = 0 ≤ 1{s⊂a∪b} + 1{s⊂a∩b}.

Second, if s ⊂ a but s 6⊂ b or if s ⊂ b but s 6⊂ a, then

1{s⊂a} + 1{s⊂b} = 1 = 1{s⊂a∪b} + 1{s⊂a∩b}.

Third, if s ⊂ a and s ⊂ b, then

1{s⊂a} + 1{s⊂b} = 2 = 1{s⊂a∪b} + 1{s⊂a∩b}.

(b) It is clear that f(a) is increasing. Also, to prove that f(a∪b)+f(a∩b) ≥ f(a)+f(b)
for all a, b ∈ L, we note that this inequality is equivalent to∑

s: s⊂(a∪b)

n(s) +
∑

s: s⊂(a∩b)

n(s) ≥
∑
s: s⊂a

n(s) +
∑
s: s⊂b

n(s).

Let t denote the disjoint union. Note that∑
s: s⊂(a∪b)

n(s) =
∑

s: s⊂(a\b)

n(s) +
∑

s: s⊂(a∩b)

n(s) +
∑

s: s⊂(b\a)

n(s) +
∑

s=s1ts2:
s1⊂(a\b), s2⊂(a∩b)

n(s)

+
∑

s=s1ts2:
s1⊂(b\a), s2⊂(a∩b)

n(s) +
∑

s=s1ts2:
s1⊂(a\b), s2⊂(b\a)

n(s) +
∑

s=s1ts2ts3:
s1⊂(a\b), s2⊂(a∩b), s3⊂(b\a)

n(s).

Hence,∑
s: s⊂(a∪b)

n(s) +
∑

s: s⊂(a∩b)

n(s) =
∑

s: s⊂(a\b)

n(s) + 2
∑

s: s⊂(a∩b)

n(s) +
∑

s: s⊂(b\a)

n(s)

+
∑

s=s1ts2:
s1⊂(a\b), s2⊂(a∩b)

n(s) +
∑

s=s1ts2:
s1⊂(b\a), s2⊂(a∩b)

n(s)
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+
∑

s=s1ts2:
s1⊂(a\b), s2⊂(b\a)

n(s) +
∑

s=s1ts2ts3:
s1⊂(a\b), s2⊂(a∩b), s3⊂(b\a)

n(s).

Discarding the last two terms in the above sum, and rearranging the remaining terms, we
obtain∑

s: s⊂(a∪b)

n(s) +
∑

s: s⊂(a∩b)

n(s) ≥
∑

s: s⊂(a\b)

n(s) +
∑

s: s⊂(a∩b)

n(s) +
∑

s=s1ts2:
s1⊂(a\b), s2⊂(a∩b)

n(s)

+
∑

s: s⊂(b\a)

n(s) +
∑

s: s⊂(a∩b)

n(s) +
∑

s=s1ts2:
s1⊂(b\a), s2⊂(a∩b)

n(s)

=
∑
s: s⊂a

n(s) +
∑
s: s⊂b

n(s).

This establishes the supermodularity of f(a).

Corollary 2.3. Let g : L → R be a non-negative function. Then the function

h(a) :=
∑
s⊂L

1s(a) g(s) =
∑
s:s⊂a

g(s),

a ∈ L, is increasing and supermodular.

Proof. This is a consequence of Proposition 2.2(b) because, in proving that result, we
only used the property that∑

s=s1ts2:
s1⊂(a\b), s2⊂(b\a)

n(s) +
∑

s=s1ts2ts3:
s1⊂(a\b), s2⊂(a∩b), s3⊂(b\a)

n(s) ≥ 0,

which completes the proof.

Remark 2.4. The supermodularity property can be applied to construct log-supermodular
probability distributions and to derive correlation inequalities for those distributions: Let
Θ ⊂ (R≥0)d be a parameter space, and define an exponential family probability distribu-
tion parametrized by θ ∈ Θ on the lattice L with probability density function,

µθ(a) = exp
(
θTn(a)− c(θ)

)
, (4)

a ∈ L, where exp(−c(θ)) is the normalizing constant. Then the probability distribution
µθ is log-supermodular, i.e.,

µθ(a ∪ b)µθ(a ∩ b) ≥ µθ(a)µθ(b)
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for all a, b ∈ L. Log-supermodular distributions are tightly connected to distributions that
are multivariate totally positive of order 2 (MTP2) [8] (also known as FKG [6]); namely,
a distribution µθ on a lattice L is MTP2 if

µθ(a ∪ b) + µθ(a ∩ b) ≥ µθ(a) + µθ(b)

for all a, b ∈ L. Hence for strictly positive distributions, log-supermodularity and MTP2

are equivalent. Note that the MTP2 property depends on the labeling of the points in the
lattice. For example, to check if the sample distribution in Table 1 is MTP2, we need to
check

ni,j + nk,l ≤ nmin(i,k),min(j,l) + nmax(i,k),max(j,l)

for all i, j, k, l ∈ {1, 2, 3}. This leads to eight non-trivial inequalities. When encoding the
father’s hygiene (poor, medium, low) by (1,2,3) and the father’s exposure (low, medium,
high) by (1,2,3), then one can check that the sample distribution is not MTP2, since for
example

n2,1 + n1,3 � n1,1 + n2,3.

However, if we encode the father’s hygiene (poor, medium, low) by (3,2,1) and the father’s
exposure (low, medium, high) by (2,1,3), then one can easily check that all eight non-
trivial inequalities are satisfied and that the distribution is MTP2. Distributions that are
MTP2 up to a relabeling of the states were studied in [1].

Note that the FKG inequality [6] can be used to obtain interesting correlation inequali-
ties on contingency tables: Let h1 and h2 be decreasing functions on the lattice L; then, by
the FKG inequality, the covariance, Cov(h1, h2) := E(h1h2)− E(h1)E(h2) is nonnegative.
For example, with h1(a) = n(a∩α) and h2(a) = n(a∩ β), a ∈ L, it follows from the FKG
inequality that the cell entries in the marginal table of a∩α are positively correlated with
the cell entries in the marginal table of a ∩ β.

One can also construct more general log-supermodular probability distributions and
derive correlation inequalities for those models, as was done in [11]. For example, let

µθ(a) = exp
(
θT1 n(a) + θT2 n(a ∩ α)− c(θ)

)
, (5)

with parameter θ := (θ1, θ2) ∈ (R≥0)d, where a, α ∈ L. This log-supermodular den-
sity function is related to exponential family models arising in observational studies [11,
Chapter 4] and to Ising and Potts models arising in graphical models [13, Subsection 3.3].

3. Applications of an inequality by Ky Fan

Fan [4] derived a remarkable inequality for supermodular functions. We will show that
many known bounds on the cell entries of a multidimensional contingency table follow
from Fan’s inequality. We will also derive new inequalities from Fan’s inequality and,
further, we will discuss an example of bounds on the cell entries that do not follow from
Fan’s inequality.
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Theorem 3.1 (Fan [4]). Suppose that f is a supermodular function defined on a distribu-
tive lattice L. Then for any finite sequence x1, . . . , xq of elements in L, we have∑

1≤i1<···<ip≤q
f(xi1 ∧ · · · ∧ xip) ≤

q∑
k=p

(
k − 1

p− 1

)
f
( ∨

1≤i1<···<ik≤q
(xi1 ∧ · · · ∧ xik)

)
, (6)

1 ≤ p ≤ q, and dually,∑
1≤i1<···<ip≤q

f(xi1 ∨ · · · ∨ xip) ≤
q∑

k=p

(
k − 1

p− 1

)
f
( ∧

1≤i1<···<ik≤q
(xi1 ∨ · · · ∨ xik)

)
. (7)

Fan’s proof of the inequality (6) is by induction, as follows: First, the case in which
p = 1 and q ≥ 1 is established by induction on q. Next, it is noted that if q = p then both
sides of the inequality (6) are identically equal to f(x1∧· · ·∧xq). Finally, for 2 ≤ p < q, it
is shown by induction that the case (p, q) follows from the cases (p, q−1) and (p−1, q−1).

Example 3.2. This example demonstrates the use of Fan’s inequality (6) to derive Fréchet
bounds arising in the analysis of 3-way contingency tables. Fienberg [5, Section 6] provided
Fréchet bounds based on the 1-dimensional marginals, namely,

min
(
n({1}), n({2}), n({3})

)
≥ n({1, 2, 3})
≥ max

(
n({1}) + n({2}) + n({3})− 2n(∅), 0

)
,

and the bounds based on the 2-dimensional marginals, namely

min
(
n({1, 2}),n({1, 3}), n({2, 3})

)
≥ n({1, 2, 3})
≥ max

(
n({1, 2}) + n({1, 3})− n({1}), n({1, 2}) + n({2, 3})− n({2}),
n({1, 3}) + n({2, 3})− n({3}), 0

)
.

Note that the upper bounds are a consequence of the fact that n(·) is decreasing. The
lower Fréchet bound based on the 1-dimensional marginals follows from Fan’s inequality
(6) by taking p = 1, q = 3 and xi = {i} for i = 1, 2, 3. The lower Fréchet bound based on
the 2-way marginals follows from Fan’s inequality by taking p = 1, q = 2 and taking for
the xi’s two sets of two elements such as x1 = {1, 2} and x2 = {1, 3}.

We now discuss certain generalized Fréchet inequalities described by Fienberg [5].
Fréchet bounds based on the 1-dimensional marginals can be found in a variety of sources
(see, e.g., [5, Equation (6)] and [9, 14, 12]) and are as follows:

min
(
n({1}), . . . , n({`})

)
≥ n({1, . . . , `}) ≥ max

∑̀
j=1

n({j})− (`− 1)n(∅), 0

 .

Note that the first inequality is a consequence of the property that n(·) is decreasing, and
the second inequality is a corollary of Fan’s inequality (6) with p = 1, q = `, and xi = {i},
i = 1, . . . , `. Using Fan’s inequality, we now generalize these 1-dimensional Fréchet bounds
to any dimension d, where 1 ≤ d ≤ `.



C. Uhler, D. Richards / J. Alg. Stat., 10, No.1 (2019), pp.1-12 9

Corollary 3.3. Let n be an `-way contingency table and let 1 ≤ d ≤ `. Then

min
(
n({j1, . . . , jd}) : 1 ≤ j1 < · · · < jd ≤ `

)
≥ n({1, . . . , `})

≥ max

 1(
`−1
d−1
) ∑

1≤j1<···<jd≤`
n({j1, . . . , jd})−

( (
`
d

)(
`−1
d−1
) − 1

)
n(∅), 0

 .

(8)

Proof. The first inequality follows from the fact that n(·) is decreasing.
The second inequality follows from Fan’s inequality (6) with p = 1 and q =

(
`
d

)
, as

follows: Let J = {(j1, . . . , jd) : 1 ≤ j1 < · · · < jd ≤ `} be the set of all subsets of size d
chosen from {1, . . . , `}. Then,

n

 ∨
{i1,...,ik}⊂J

(xi1 ∧ · · · ∧ xik)

 =

{
n({1, . . . , `}), if k ≤

(
`−1
d−1
)

n(∅), otherwise.

Applying Fan’s inequality completes the proof.

We remark that the lower bound in (8) is a generalized Fréchet or generalized Boole
inequality; see Kwerel [9, Eqs. (13) and (14)]. In Kwerel’s notation,

n({1, . . . , `})
n(∅)

≡ p1,...,`, (9)

and
1

n(∅)
∑

1≤j1<···<jd≤`
n({j1, . . . , jd}) ≡ Sd. (10)

Dividing the lower bound in (8) by n(∅), we obtain

n({1, . . . , `})
n(∅)

≥ 1(
`−1
d−1
) 1

n(∅)
∑

1≤j1<···<jd≤`
n({j1, . . . , jd})−

(
`
d

)(
`−1
d−1
) + 1. (11)

Noting that (
`
d

)(
l−1
d−1
) =

l

d
,

it follows from (9) and (10) that (11) is equivalent to

p1,...,` ≥
Sd(
`−1
d−1
) − l

d
+ 1,

which is an inequality stated by Kwerel.

We now generalize a Fréchet-type inequality given by Dobra and Fienberg [3, Theorem
6]. Our proof also reveals that the inequality requires no graph-theoretic hypotheses, so
that it holds in general.
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Theorem 3.4. Let C1, . . . , Cd ∈ L with C1 ∪ · · · ∪ Cd = {1, . . . , `}. Define Sj = (C1 ∪
· · · ∪ Cj−1) ∩ Cj, j = 2, . . . , d. Then

min
(
n(C1), . . . , n(Cd)

)
≥ n({1, . . . , `}) ≥ max

 d∑
i=1

n(Ci)−
d∑
j=2

n(Sj), 0

 .

Proof. The first inequality follows from the fact that n(·) is decreasing.
The proof of the second inequality is by induction on d. For d = 2, the claim follows

from the supermodularity property:

n({1, . . . , `}) ≡ n(C1 ∪ C2) ≥ n(C1) + n(C2)− n(C1 ∩ C2) ≡
2∑
i=1

n(Ci)− n(S2).

Now suppose that the claim holds for the sets C1, . . . , Cd−1. Then by supermodularity,

n({1, . . . , `}) = n
(
(C1 ∪ · · · ∪ Cd−1) ∪ Cd

)
≥ n(C1 ∪ · · · ∪ Cd−1) + n(Cd)− n

(
(C1 ∪ · · · ∪ Cd−1) ∩ Cd

)
= n(C1 ∪ · · · ∪ Cd−1) + n(Cd)− n(Sd).

By the inductive hypothesis,

n(C1 ∪ · · · ∪ Cd−1) ≥
d−1∑
i=1

n(Ci)−
d−1∑
j=2

n(Sj)

and hence

n({1, . . . , `}) ≥
d∑
i=1

n(Ci)−
d∑
j=2

n(Sj),

which establishes the claim.

It is interesting that although the proof is by induction, the result does not appear to
follow from Fan’s inequality which, as we observed before, is also derived by induction.
For example, for d = 3 Fan’s inequality with p = 1 provides

n(C1) + n(C2) + n(C3) ≤ n(C1 ∪ C2 ∪ C3) + n((C1 ∩ C2) ∪ (C1 ∩ C3) ∪ (C2 ∩ C3))

+n(C1 ∩ C2 ∩ C3)

= n(C1 ∪ C2 ∪ C3) + n(S2 ∪ S3) + n(S2 ∩ S3).

However, by supermodularity,

n(C1 ∪ C2 ∪ C3) + n(S2 ∪ S3) + n(S2 ∩ S3) ≥ n(C1 ∪ C2 ∪ C3) + n(S2) + n(S3),

and hence Fan’s inequality results in a bound which is weaker than the inequality derived
in Theorem 3.4.
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4. Discussion

These considerations lead to a general approach to constructing families of Fréchet-
type inequalities. Starting with f , a log-supermodular strictly positive density function
on L, we construct g = log f , a supermodular nonnegative function and then apply Fan’s
inequalities to g and interpret those inequalities as Fréchet-type inequalities. For exam-
ple, we obtain the original Fréchet inequalities by choosing the log-supermodular density
function given in (4). Bearing in mind the many available examples of log-supermodular
density functions [8], this procedure leads to a variety of inequalities.
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ibles et Dépendants. I. Événements en Nombre Fini Fixe. Hermann, Paris, 1940.

[8] Samuel Karlin and Yosef Rinott. Classes of orderings of measures and related correla-
tion inequalities. I. Multivariate totally positive distributions. Journal of Multivariate
Analysis, 10:467–498, 1980.
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