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Abstract. Tools of algebraic statistics combined with MCMC algorithms have been used in con-
tingency table analysis for model selection and model fit testing of log-linear models. However, this
approach has not been considered so far for association models, which are special log-linear models
for tables with ordinal classification variables. The simplest association model for two-way tables,
the uniform (U) association model, has just one parameter more than the independence model and
is applicable when both classification variables are ordinal. Less parsimonious are the row (R) and
column (C) effect association models, appropriate when at least one of the classification variables
is ordinal. Association models have been extended for multidimensional contingency tables as well.
Here, we adjust algebraic methods for association models analysis and investigate their eligibility,
focusing mainly on two-way tables. They are implemented in the statistical software R and illus-
trated on real data tables. Finally the algebraic model fit and selection procedure is assessed and
compared to the asymptotic approach in terms of a simulation study.
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1. Introduction

Steve Fienberg was admirable for his broad research interests, the ability to perfectly
combine the development of sound statistical methodology and its sophisticated and in-
spiring application in practice, as well as for his talent to detect intriguing contemporary
statistical problems in diverse fields (such as social sciences, justice, official statistics) that
generated stimulating research questions. He was also admirable for the natural way he
switched among diverse approaches for statistical inference. Not only was he a frequentist
and a Bayesian but he also set his signature to the analysis of contingency tables via
algebraic statistical methods. In his editorial note of the Statistica Sinica (2007) special
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volume on algebraic statistics he stated: ‘I have a fondness for contingency table problems,
and many of them utilize algebraic geometry representations, often in multiple forms’.

Log-linear models are undoubtedly the predominant tool for analyzing contingency
tables. The books of Bishop, Fienberg & Holland [4] and Fienberg [11] have inducted
generations of statisticians into the analysis of contingency tables and are established as
timeless fundamental references. The usual inferential approach to log-linear models is
asymptotic. However, in the case of small sample sizes (or sparse tables) exact inference is
typically more appropriate while under sparseness the existence of the maximum likelihood
estimators (MLEs) of the model parameters is not always ensured. In this setting, given a
model and a collection of sufficient statistics, analyzing the exact conditional distribution
of a contingency table can be carried out using algebraic methods as revealed by the
pioneering work of Diaconis and Sturmfels [6]. They proposed an algorithm for sampling
from a set of tables with given marginals, using a Markov basis, a kind of lattice basis that
can be obtained by computing a Gröbner basis of a specially designed ideal. Following
up on this work, Aoki and Takemura [3] and Rapallo [24, 25] derived Gröbner bases for
some classical log-linear models that take structural zeros into account. At the same time,
Fienberg and co-authors dealt with the problem of existence of MLEs for log-linear models.
Erikson et al. [10] provided a polyhedral description of the conditions for the existence of
MLEs for hierarhical log-linear models. Fienberg and Rinaldo [12] derived necessary and
sufficient conditions for the existence of the MLEs of log-linear models’ parameters when
sampling zeros are observed. They further studied the geometric properties of log-linear
models and provided algorithms for extended maximum likelihood estimation. Fienberg
also introduced approaches for disclosure limitation in multidimensional tables to protect
the confidentiality of individual responses and considered the problem of inference for
log-linear models under disclosure limitation (see [7] and references therein).

Standard log-linear models treat all the classification variables of a contingency table
as nominal. In practice, it is common to use these models even in scenarios where one or
more variables do have a natural ordering to their levels (i.e. some are ordinal), ignoring
information that can be leveraged for better inferential procedures and more sensible mod-
eling. In such cases, ordinal log-linear models, also known as association models, are more
appropriate (cf. Goodman [13, 14]), which capture this ordering by assigning scores to the
categories of the classification variables. They impose a structure on the underlying associ-
ation and are thus more parsimonious than usual log-linear models. Simultaneously, they
provide sound physical interpretation for the local associations in the table, expressed in
terms of the local odds ratios and based on the differences between the scores of successive
classification categories.

The goal of this paper is the application of algebraic methods to model fit and selection
in association models. We will focus mainly on two-way contingency tables. Using known
algebraic techniques for log-linear models, we elaborate on how to conduct hypothesis tests
for association models with sparse tables and on model selection for the class of association
models. The corresponding algorithms are implemented in R [23].

The paper is structured as follows. In Section 2, association models are presented. Sub-
sequently, in Section 3 algebraic techniques for analyzing contingency tables are briefly
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reviewed. In Section 4, Markov bases for association models are constructed. The related
algorithms are demonstrated on three examples in Section 5 while the algebraic p-value
simulation is compared with the traditional asymptotically approximated p-value compu-
tation in Section 6. The results are summarized in the final section of the paper.

2. Association Models

Consider an I × J contingency table of observed frequencies u = (uij) that cross-
classifies two categorical variables X and Y of I and J levels, respectively, for a sample
of fixed size n =

∑
i,j uij . Let Uij be the random number of observations in cell (i, j).

For a given distribution p = (pij) on the table, we denote the expected cell frequencies by
mij = npij .

Provided the table does not exhibit any structural zeroes, the possible hierarchical
log-linear models for u are (i) that of independence (I) between X and Y

logmij = λ+ λXi + λYj , i = 1, . . . , I, j = 1, . . . , J, (1)

where λ, λXi and λYj denote the overall mean, the ith row and jth column main effects,
respectively, and (ii) the saturated (S) model

logmij = λ+ λXi + λYj + λXY
ij , i = 1, . . . , I, j = 1, . . . , J, (2)

with λXY
ij being the interaction parameter between the ith row and jth column. Log-linear

models are over-parameterized and their parameters are subject to some identifiability
constraints (usually the parameters corresponding to the last (or first) level of the clas-
sification variables are considered as redundant and set equal to 0). For λXI = λYJ = 0,
the non-redundant parameters of model (1) are λ, λX1 , . . . , λ

X
I−1, λ

Y
1 , . . . , λ

Y
J−1. Thus, the

degrees of freedom for model (1) are df(I) = (I − 1)(J − 1) while (2) has IJ − 1 non-
redundant parameters and hence df(S) = 0. Te derivation of the degrees of freedom of a
model will be further considered in Section 3. For more details on log-linear models and
related inference, we refer to Agresti [2].

These models treat both classification variables as nominal, i.e. the parameter esti-
mates and consequently the models’ goodness-of-fit statistics are invariant to reordering
of the row or column categories. Thus, they ignore important information if the mea-
surement scale of at least one classification variable is ordinal. However, ordinal data are
very common in many application fields. Association models are special models for con-
tingency tables that incorporate this additional information by assigning ordered scores
to the rows and columns of the table. They impose a structure on the association among
the classification variables, leading thus to models that are more parsimonious than the
saturated model while at the same time providing meaningful interpretations.

The simplest association model for two-way tables is that of Linear-by-Linear associ-
ation (LL model)

logmij = λ+ λXi + λYj + βuivj , (3)
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where ui, i = 1, . . . , I, and vj , j = 1, . . . , J , are known row and column scores with
u1 ≤ u2 ≤ · · · ≤ uI (u1 < uI) and v1 ≤ v2 ≤ · · · ≤ vJ (v1 < vJ). Usually, the scores
are set to satisfy the sum-to-zero and the sum of squares-to-one identifiability constraints
(see Kateri [17, Chapter 6]). The independence model (1) is nested in (3), which has
just one parameter more, the intrinsic association parameter β. Hence model (3) has
df(LL) = (I − 1)(J − 1)− 1. If the scores are equidistant for successive categories of rows
as well as of columns, then under model (3) all local odds ratios of the table are equal, i.e.

log θij =
pijpi+1.j+1

pi+1.jpi.j+1
= c , i = 1, . . . , I − 1, j = 1, . . . , J − 1, (4)

and it is called the Uniform association model (U model) .
The LL model has the advantage of being very parsimonious and easy to interpret.

However, it requires the direct assignment of scores to the row and column categories,
which is not always an easy task (see Agresti [1, Chapter 6] for details). Thus, it is useful
to have models that allow for parametric scores. If we consider the row scores in (3) to be
unknown while the column scores are known, (3) can equivalently be expressed as

logmij = λ+ λXi + λYj + µivj , (5)

where µi = βui (parameter β is redundant and thus absorbed in the parametric row
scores). Model (5) is called the Row effects association model (R model) and assumes
Y to be ordinal. X can be nominal (since µi are not necessarily ordered) or ordinal
with unknown scores. The R model has I − 1 additional parameters than model (3),
corresponding to the row scores. Thus, the associated degrees of freedom of model (5)
equal df(R) = (I−1)(J−2). Analogously, the Column effects association model (C model)

logmij = λ+ λXi + λYj + uiνj , (6)

with df(C) = (I − 2)(J − 1), considers known row scores and parametric column scores
νj = βvj , treating X as ordinal and Y as nominal (or ordinal with unknown scores).
Parametric row or column scores are also subject to identifiability constraints (see Kateri
[17]).

The association models considered above are special log-linear models that fill the gap
between the two extreme log-linear models (1) and (2), and have been mainly developed
by Goodman (cf. [13, 14, 15]). For a detailed introduction to association models, their
features, inference and an overview of the related literature, we refer to [17, Chapters 6
and 7]. At this point we shall mention only one basic property of association models (see
Remark 2.1 below) that will be needed in the sequel.

Remark 2.1.

1. Inferentially, association models are invariant under linear transformations of the
row and column scores. For this, important are not the scores themselves but the
distances between scores of successive categories. In the case of binary classification
variables (i.e. one distance), score assignment does not have any inferential impact
on the association model; any two distinct values can be used and are thus consid-
ered as prefixed.
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2. As already noted, parametric scores are not necessarily ordered for successive cat-
egories and can be applied also to tables having the corresponding classification
variable nominal. In this case, interpretation requires some caution [17, Section 6.4].

3. We have assumed above that the sample size n is known a priori and the random table
of counts is multinomially distributed, e.g. U = (Uij) ∼ Mult(n,p). Alternatively,

it could be assumed that each cell count is Poisson distributed, e.g. Uij
ind.∼ P(mij).

In this case, the total sample size n is random. Upon observing the sample and
conditioning on its size n, the kernel of the likelihood is the same for both sampling
schemes, hence they lead to the same MLEs.

Association models are also applicable for contingency tables of higher dimension.
They can be derived by replacing one or more of the interaction terms of any hierarchical
log-linear model by multiplicative terms based on scores, leading thus to more parsimo-
nious models that impose a certain structure on the interactions. For example, in the
presence of a third classification variable of K levels (layers), consider for the I × J ×K
contingency table the log-linear model of conditional independence of Y and Z given X

logmij = λ+ λXi + λYj + λZk + λXY
ij + λXZ

ik , (7)

denoted by (XY,XZ) in standard hierarchical log-linear model notation. If Z is ordinal
and wk, k = 1, . . . ,K are known scores for its categories, then the most parsimonious
association model of conditional independence of Y and Z given X is

logmij = λ+ λXi + λYj + λZk + βXY uivj + βXZuiwk , (8)

having just two parameters more than the model of complete independence (X,Y, Z).
Both interaction terms of model (8) are of LL-type. Model (8) is denoted (XYLL, XZLL)
and is illustrated in Example 5.3 below. Less parsimonious association models are derived
by considering some of the scores in (8) as parametric.

3. Inference for Log-Linear Models

For inferential purposes it is advantageous to use the generalized linear model (GLM)
formulation of log-linear models. For this, contingency tables of counts are expanded
to vectors. Consider a random, non-negative integer valued k-way contingency table
U ∈ Nm1×···×mk , formed by cross-classifying n independent and identically distributed
realizations of the categorical variables X1, . . . , Xk, that take values in the finite sets of
categories [m1], . . . [mk], respectively, with [mi] := {1, . . . ,mi}. Elongating the cells of the
contingency table into a vector (subject to an ordering), we denote by X the corresponding
discrete random vector with sample space X = [m], m =

∏
imi. A probability distribution

on X is then defined by the values of the parameters px = P[X = x] for x ∈ X . In the
following, we use p = (px, x ∈ X ) ∈ ∆m−1 for a m-dimensional probability vector, where
∆m−1 denotes the standard probability simplex. A statistical model M is a subset of the
probability simplex M ⊆ ∆m−1, and, with a common abuse of notation, a parametric
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model is a model M = Im(p) where p : B → ∆m−1 and B is called the parameter space.
In this article, assume B = RdM .

Elongating for example the I × J random table of counts U by rows, we set u =
(U11, . . . , U1J , . . . , UI1, . . . , UIJ)T . The I model (1) can then equivalently be expressed as
a Poisson/multinomial GLM in terms of the non-redundant parameters as

log Y = log(m11, . . . ,m1J , . . . ,mI1, . . . ,mIJ)T = Dβ , (9)

with dI = I + J − 1, β = (λ, λX1 , . . . , λ
X
I−1, λ

Y
1 , . . . , λ

Y
J−1)

T and

D =


1 1(1) I∗

1 1(2) I∗

...
...

...

1 1(I−1) I∗

1 0J×(I−1) I∗


with 1 the J × 1 matrix of 1’s, 1(i) the J × (I − 1) matrix with 1’s at the i-th column and
0’s in all other entries, 0s×t the s× t matrix of 0’s and

I∗ =

(
EJ−1
01×(J−1)

)
,

where Es is the s× s identity matrix. D is known as the design (or model) matrix. The
degrees of freedom of model M equals df(M) = dim kerD = m − rankD. The design
matrix of a GLM expressed in terms of non-redundant parameters is of full rank, i.e
rankD = dM.

Poisson/multinomial GLMs share the very convenient property of GLMs with canonical
link function, namely their design matrices specify directly the sufficient statistics of the
model. In particular, if T : X → NdM with T = (T1, . . . , TdM) the minimal sufficient
statistic, then the (i, j)th element of DT is given by DT (i, j) = Tj(xi), i = 1, . . . ,m,
j = 1, . . . , dM, so that in aggregate the vector of minimal sufficient statistics is DTu.
Practically, this means that all possible contingency tables of the same sample size n
that yield the same T lead to the same estimated table of expected frequencies under the
corresponding model. This set of tables is crucial for exact conditional hypothesis (model)
testing, as explained next.

The standard goodness of fit test of a log-linear modelM is based on Pearson’s X2 or
the likelihood ratio statistic G2, which are asymptotically equivalent. Under M,

G2(M) = 2
∑
i

xi log

(
xi
ŷi

)
,

where ŷi is the maximum likelihood estimate of the expected frequency yi under model
M, is under mild conditions asymptotically χ2

df(M) distributed. Whenever asymptotic
inferential methods are not accurate, the test is based on the conditional distribution of
G2 (or X2), given T = t, i.e. conditioning on the sufficient statistic. This exact conditional
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distribution can be explicitly computed using combinatorial methods only for very small
sample sizes; however, it can be approximated to arbitrarily high accuracy using the
algebraically-enabled Monte Carlo strategy introduced by Diaconis and Sturmfels [6].

3.1. Model Fitting using Markov bases

In algebraic statistics, a log-linear model M is usually expressed in a power product
model formulation

px = c(β) exp

(
d∑

i=1

βiTi(x)

)
∝

d∏
i=1

θ
Ti(x)
i , x ∈ X ,

with θi = exp(βi). Considering px = px(θ), the new parameter space is Θ = Rd
≥0, with

d > dM.
For depicting the connection between modeling contingency tables and computational

algebra, log-linear models are connected to matrices possessing the property of homogene-
ity.

Definition 3.1. A matrix A ∈ Nd×m is called homogeneous if there exists θ ∈ Rd such
that θTA = (1, . . . , 1).

This leads to an algebraic representation of a log-linear model.

Definition 3.2. Let A ∈ Nd×m be a homogeneous matrix. The log-linear model associ-
ated with A is defined by

MA := {p = (px)x∈X ∈ int(∆m−1) : log p ∈ rowspan(A)}, (10)

where rowspan(A) is the linear space spanned by the rows of A.

The matrix A specifies a sufficient statistic function, so that A is sometimes referred
to as the sufficient statistic generating matrix. However, due to the parameterization, the
sufficient statistics vector Au is not minimal (rankA = dM < d while in the GLM formula-
tion usually rankD = dM). For example, for the I model, the minimal sufficient statistics
vector is DTu = (n,U1+, . . . , UI−1.,+, U+1, . . . , U+.J−1) while the sufficient statistics vec-
tor specified by A is Au = (U1+, . . . , UI+, U+1, . . . , U+J) subject to

∑
i,j Uij = n, where

Ui+ =
∑

j Uij and U+j =
∑

i Uij , for i = 1, . . . , I, j = 1, . . . , J , with d = I + J = dI + 1.

Remark 3.3.

1. Note that the matrix A in Definition 1.1.9 of Drton et al. [8] is a special case of A
in Definition 3.2 above, since every matrix whose columns all sum to the same value
is also homogeneous.

2. For the log-linear independence model (1), the sufficient statistic generating matrix
A ∈ N(I+J)×IJ always fulfills the homogeneity assumption since θTA = (1, . . . , 1)
with θ = (11×I , 0, . . . , 0).
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The set of contingency tables of the same total size n that lead the same value of the
sufficient statistic vector for a log-linear model MA is denoted by

FA(u) := {v ∈ Nm |Av = Au} = {v ∈ Nm |v − u ∈ kerZ(A)}

and is called the fiber of the contingency table u ∈ τ(n) = {u ∈ Nm :
∑

i ui = n} with
respect to the log-linear model MA.

For b ∈ kerZA we denote the positive elements of b by b+ = (b+i )i = (max(0, bi))i=1,...,m

and the negative part by b− = (b−i )i = −min(0, bi)i=1,...,m. Then b can be written as
b = b+ − b−.

The Diaconis-Sturmfels Markov chain algorithm [6] is used to sample from X condi-
tional on a sufficient statistic, i.e. under the associated assumption for p(θ). It is based
on constructing Markov basis, which comprises moves between tables in a fiber ensuring
that every pair of tables in this fiber is connected. The computation of Markov bases for
specific log-linear models has been considered by Rapallo [24]. For a review on the con-
cept of the Diaconis-Sturmfels algorithm along with a compact and smooth presentation
of the mapping of statistical probabilities to polynomials, we refer to Riccomagno [27].
The log-linear representation is connected to parametric (and therefore binomial) toric
models as discussed in Rapallo [26]. It turns out that the toric ideal IT corresponding
to the related binomial toric model has the following connection to the sufficient statistic
generating matrix.

Proposition 3.4. Consider a log-linear model associated to a sufficient statistic gener-

ating matrix A ∈ Nd×m and let θ
T1(x)
1 · · · θTd(x)

d for x ∈ X be the power products of its
parametrization. The toric ideal of the toric model can then be described as

IT = 〈pu − pv |Au = Av for u, v ∈ Nm〉. (11)

Note that if A is the sufficient statistic generating matrix, i.e. A = (aix) i=1,...,d,
x∈X

then

a set of generators for IT corresponds to a Markov basis B ⊆ kerZ(A) of A.
The computation of Markov bases is related to the problem of computing the corre-

sponding toric ideals. This connection is characterized exactly by the following theorem
of Diaconis and Sturmfels [6, Theorem 3.1].

Theorem 3.5. (Fundamental Theorem of Markov Bases - FTMB)
A finite subset B ⊆ kerZ(A) is a Markov Basis for A if and only if the collection of
binomials {pb+ − pb− | b ∈ B} is a generating set for the toric ideal IT (A), i.e.

〈pb+ − pb− | b ∈ B〉 = IT (A).

The property of homogeneity for matrices can be translated directly to ideals, as stated
next.

Proposition 3.6. [28]
The toric ideal IT (A) is homogeneous if and only if the corresponding matrix A fulfills the
assumption of homogeneity.
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Remark 3.7. It can be shown that the minimal sets of generators of IT have the same
number of elements (see Kreuzer and Robbiano [19, Proposition 4.1.22]). Note that Buch-
berger’s algorithm for computing Gröbner bases of ideals (see [5]) preserves homogeneity.
Hence, with a minimal set of generators of IT we can deduce a minimal Markov basis and
the FTMB reduces the problem of determining minimal Markov bases for the Metropolis
algorithm to computing a minimal generating set of a corresponding toric ideal.

3.2. Model Selection

Whenever asymptotic inferential approaches are not applicable, the algebraic meth-
ods discussed so far can be used for model selection, as demonstrated by Krampe and
Kuhnt [18]. However, when considering numerous different models the Diaconis-Sturmfels
algorithm has to be applied several times, making the model selection computational
very expensive. The computational costs can be reduced when the models considered are
downsized to sequences of nested models by exploiting their structures.

Consider two modelsM1 andM2 withM1 being nested inM2, i.e. M1 ⊆M2. Then
G2(M1) ≥ G2(M2). If M2 is acceptable for modeling the observed data, the decision
whether the simpler model M1 could be adopted is based on the conditional testing of
model M1, given that M2 holds. Asymptotically,

G2(M1|M2) = G2(M1)−G2(M2) ∼ χ2
df(M1)−df(M2)

,

providing a test that is more powerful than the unconditional based on G2(M1).
It follows that the sufficient statistic TM2 for the parameters of model M2 contains

the sufficient statistics TM1 . Let Ft be the set of all contingency tables with the same
sufficient statistic value T = t. ModelM2 comprises of more restrictions than modelM1.
Therefore, the set Ft(M1)

contains Ft(M2)
, i.e. Ft(M2)

⊆ Ft(M1)
. This hierarchical structure

is passed to the corresponding Gröbner bases.

Theorem 3.8. [18]
Let M1 and M2 be two log-linear models with M1 ⊆ M2. Following the Diaconis-
Sturmfels approach, if IM1 and IM2 are the corresponding elimination ideals, IM1 ⊇ IM2.

For a sequence of nested models

M1 ⊆M2 ⊆ . . . ⊆Mk

Theorem 3.8 allows us to generate in the Metropolis algorithm only one Markov chain for
the most parsimonious modelM1. For every other modelMi, i = 2, . . . , k, chains can be
extracted from this Markov chain.

From a practical perspective, it should be mentioned that the accuracy of the ap-
proximation of this method depends on the number of simulated tables from Ft(M1)

with
TMi = tMi , i = 1, . . . , k. This number is bounded by the number of steps of the Markov
chain on Ft(M1)

and can decrease extremely for modelsMi, i > 1, as their complexity (i.e.
dMi) increases. Furthermore, the larger the sample size and therefore the larger the num-
ber of possible tables that could be generated, the smaller becomes this number. Hence,
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the benefit of algebraic model selection can only be ensured if the length of the simulated
Markov chain is adjusted. If the adjusted chain length turns out to be too large, it might
be more efficient to conduct several distinct MCMC simulations. For more details on this
algebraic model selection approach and its performance we refer to [18].

4. Algebraic Inference for Association Models

Since the association models considered in Section 2 are special log-linear models, the
algebraic methods developed for log-linear models goodness-of-fit testing are applicable
also to them. Thus, the corresponding p-values can be simulated by a Metropolis algo-
rithm, which will be based on conditioning on the sufficient statistics and will use Markov
bases of the respective model to perform a random walk on the fiber. Hence, in order to
apply the algorithm, we need to specify the sufficient statistic generating matrix for the
association models.

4.1. Markov Bases for Association Models

For the LL model the row and column score vectors u = (u1, . . . , uI)T , v = (v1, . . . , vJ)T ,
respectively, are fixed and the joint probability distribution is p = (pij) with

pij =
exp(λ)

n
exp(λXi ) exp(λYj ) exp(βuivj) ∝ xiyjzuivj ,

for i = 1, . . . , I and j = 1, . . . , J . In order to apply algebraic methods we need uivj ∈ N.
It can be easily verified that the sufficient statistics of the LL model are given by UX =
(U1+, . . . , UI+), UY = (U+1, . . . , U+J) and

∑
i

∑
j uivjUij . Let the sufficient statistic vec-

tor be

TLL = (UX ,UY ,
∑
i

∑
j

uivjUij).

An explicit form of the corresponding sufficient statistic generating matrix ALL, ALL ∈
N(I+J+1)×IJ , can be given using the Kronecker product notation:

ALL =

EI ⊗ 1T
J

1T
I ⊗ EJ

uT ⊗ vvvT

 (12)

where Em denotes an m × m identity matrix and 1n = (1, 1, . . . , 1)T denotes the n-
dimensional vector consisting of 1s. The rank of ALL is equal to the dimension of Im(TLL)
which is equal to the number of linearly independent parameters. Note that UX and
UY are not minimal, since

∑
i Ui+ =

∑
j U+j = n. Thus rankALL = I + J and hence

df(U ) = dim kerALL = IJ − rankALL = (I − 1)(J − 1) − 1. For I, J > 2 there exist
non-trivial elements in the matrix kernel that could serve as moves in a Markov basis.
The corresponding binomial ideal is

I = 〈pij − xiyjzuivj , i = 1, . . . , I, j = 1, . . . , J〉.
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It can be shown that the reduced Gröbner Basis of the elimination ideal

IT (ALL) = I ∩ R[pij , i = 1, . . . , I, j = 1, . . . , J ]

is generated from binomials too. By Remark 3.7 its minimal sets of generators have the
same number of elements (and therefore there exist corresponding minimal Markov bases)
if the ideal I is homogeneous. By Proposition 3.6 the toric ideal is homogeneous if and only
if the sufficient statistic generating matrix fulfills the homogeneity assumption. Hence, the
question arises whether the matrix associated to the LL model is homogeneous.

Proposition 4.1. Consider a LL model with row and column scores vectors u and v , re-
spectively. The associated matrix ALL given by (12) fulfills the assumption of homogeneity.

Proof. It needs to be shown that there exists a real vector θ ∈ R(I+J+1) such that
AT

LLθ = 1T where 1 = (1, 1, . . . , 1) ∈ RIJ . Consider the sufficient statistic generating
matrix AI for the independence model that is the (I + J) × IJ submatrix of ALL where
the last row uT ⊗ vT is not included. By Remark 3.3, the matrix is homogenous. Indeed,
if we choose θ̃ ∈ R(I+J) with θ̃I+J arbitrary and θ̃i = −θ̃I+J + 1, θ̃I+j = θ̃I+J for
i = 1, . . . , I, j = 1, . . . , J , we get AT

I θ̃ = 1. Then for θT = (θ̃T , 0) it holds AT
LLθ = 1T and

thus ALL is homogeneous.

Since homogeneity is preserved when computing the Gröbner basis (see [19]), a minimal
Markov basis of kerZ(A) is well-defined and can be computed by the FTMB (Theorem 3.5).

The R model is based on known and fixed column scores v = (v1, . . . , vJ)T and para-
metric row scores µ = (µ1, . . . , µI). Similarly to the LL model, the joint probability of the
R model is determined by

pij =
exp(λ)

n
exp(λXi ) exp(λYj ) exp(µivj) = z0xiyjw

vj
i ∝ xiyjw

vj
i .

The sufficient statistic is given by

TR = (UX ,UY ,UR),

where UR = (
∑

j vjU1j , . . . ,
∑

j vjUIj). The corresponding sufficient statistic generating

matrix AR , AR ∈ N(2I+J)×IJ , and the binomial ideal are

AR =

EI ⊗ 1T
J

1T
I ⊗ EJ

EI ⊗ vT

 and I = 〈pij − xiyjw
vj
i , i = 1, . . . , I, j = 1, . . . , J〉. (13)

Matrix AR has rankAR = 2I + J − 2 and thus df(R ) = dim kerAR = (I − 1)(J − 2).
Similarly to the LL model, the corresponding sufficient statistic generating matrix of

the R model is homogeneous. The proof is analogous to that of Proposition 4.1, with
θT = (θ̃,0I) where 0I is the I-dimensional vector of zeroes.



T.M. Pham, M. Kateri / J. Alg. Stat., 10, No.1 (2019), pp.30-50 41

Proposition 4.2. Consider an R model with fixed column scores v and parametric row
scores µ. The associated matrix A given by (13) fulfills the assumption of homogeneity.

It is straightforward to obtain the analogous results for the C model, for which df(C ) =
dim kerAC = (I − 2)(J − 1), with

AC =

EI ⊗ 1T
J

1T
I ⊗ EJ

uT ⊗ EJ

 and I = 〈pij − xiyjzui
j , i = 1, . . . , I, j = 1, . . . , J〉 . (14)

4.2. Model Selection for Association Models

For two-way tables and the association models considered we have the following pos-
sible sequences of nested models

I ⊆ U (or LL) ⊆ R (or C) , (15)

provided the known column (row) scores of the R (C) model are the same to the cor-
responding scores of the U (or LL) model. The model selection procedures discussed in
Section 3.2 applies directly and Theorem 3.8 leads to the following result.

Lemma 4.3. Let II, ILL, IR, IC denote the elimination ideals from the Diaconis-Sturmfels
algorithm for the I, LL, R, C model, respectively. Then it holds

(i) II ⊇ ILL ⊇ IR and

(ii) II ⊇ ILL ⊇ IC.

It is straightforward to adjust these results to nested association models for tables
of higher dimension. Pham [22] considered model selection for association models for
three-way tables.

5. Examples

We shall apply the algebraic statistics approach on well–known examples of the con-
tingency tables literature, two two-dimensional and one three–dimensional. They are all
worked out in R using functions for association models fitting by [17] and the R package
algstat by Kahle, Garcia-Puente and Yoshida ([16]). Though R itself has no base support
for symbolic computation, algstat provides some functionality for algebraic statistics in
R having ports to Macaulay2, Bertini, LattE-integrale and 4ti2. Technical details are
omitted and can be found in Pham [22].

5.1. Boys’ Disturbed Dreams

Consider the 5× 4 table of Boys’ Disturbed Dreams (Maxwell [20, p.70]), depicted in
Table 1. The study cross-classified boys by their age and the severity of their disturbed
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Table 1: Boys’ Disturbed Dreams by Age. In parentheses are provided the MLEs of the expected frequencies
under the C model.

Degree of Suffering (ordinal)

Age Not severe (1) (2) (3) Very severe (4) Totals

5-7 7 (4.047) 4 (5.712) 3 (4.476) 7 (6.765) 21
8-9 10 (14.252) 15 (11.878) 11 (10.395) 13 (12.475) 49
10-11 23 (20.564) 9 (10.120) 11 (9.891) 7 (9.425) 50
12-13 28 (31.930) 9 (9.279) 12 (10.128) 10 (7.664) 59
14-15 32 (29.208) 5 (5.012) 4 (6.110) 3 (3.671) 44
Totals 100 42 41 40 223

dreams. The variables age (X) and degree of suffering (Y ) are measured on a five-level
interval scale and a four-level ordinal scale, respectively.

We fitted the Independence (I) and the LL, R and C models to the data in Table 1.
Scores for interval scales can be decided naturally as the midpoints of the intervals. Since
in our set-up scores need to be integers, we consider the row scores u = (6, 8, 10, 12, 14).
Scores for ordinal scales are subjective. For the column scores we set v = (1, 2, 3, 10),
emphasizing the last category. The G2 goodness-of-fit tests, along with the asymptotic
and the algebraic approximated exact p-values, are given in Table 2.

For this example, the asymptotic and algebraic strategies provide similar results, as
probably expected, since, for example for the C model, the estimated expected frequencies
in 15% (< 20%) of the cells are smaller than 5. However, in tables with small cell entries,
the adequacy of the chi-squared approximation for G2 can not always be guaranteed by the
well-known 20% condition of Cochran. It is difficult to give guidelines that cover all cases
of possibly poor chi-squared approximations and is thus suggested to apply small-sample
methods as well, whenever the approximation is doubtful [2, Section 3.2.3].

There is a strong evidence against independence. The model that best describes
these data is the C model. At significance level α = 0.10, this is the only acceptable
model. Conditional testing of the LL model, given that the C model holds, is based on

Table 2: G2 goodness-of-fit tests for the models applied in Table 1.

p-value
Model G2 d.f. algebraic asympt.

I 32.457 12 0.0019 0.0012
LL 18.308 11 0.0950 0.0747
R 16.524 8 0.0396 0.0355
C 7.459 9 0.6179 0.5895

G2(LL |C ) = 10.849, which is asymptotically χ2
2 distributed and gives a p-value of 0.0044.

The corresponding algebraic approximated p-value equals 0.0909. Thus, for α = 0.01, the
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algebraic model selection suggests the simpler LL model while the asymptotic approach
the C model.

5.2. Pathologists’ Diagnosis of Carcinoma

The 4 × 4 table, given in Table 3 can be found in Agresti [2, Section 11.5]. It cross-
classifies the ratings by two pathologists, labeled A and B, who separately classified 118
slides regarding the presence and extent of carcinoma of the uterin cervix. Their common
rating scale has the ordered categories (1) negative, (2) atypical squamous hyperplasia,(3)
carcinoma in situ,(4) squamous or invasive carcinoma. This data set is a raters agreement

Table 3: Diagnosis of Carcinoma Data. In parentheses are provided the MLEs of the expected frequencies under
the LL model.

Pathologist B
Pathologist A 1 2 3 4 Total

1 22 (21.608) 2 (3.428) 2 (0.963) 0 (0.001) 26
2 5 (5.189) 7 (6.461) 14 (14.255) 0 (0.095) 25
3 0 (0.201) 2 (1.966) 36 (34.048) 0 (1.785) 38
4 0 (0.002) 1 (0.145) 17 (19.734) 10 (8.119) 28

Total 27 12 69 10 118

problem and can be analyzed by models for matched pairs data. Agresti fitted in his
analysis the quasi-independence (QI) model but concluded that the quasi-symmetry (QS)
model fits better, based on asymptotic testing [2, Section 11.5.3]. For testing these models,
Rapallo [24] provided the algebraic approximation of the corresponding p-values (QI: p-
value = 0.008, QS: p-value = 1). We shall apply the association models and and test the
model fit via algebraic statistics, since the table is sparse.

We assigned the scores u = v = (1, 2, 3, 4) to the categories of the classification variables
and fitted the models I, U, R and C. Notice that the last column contains three (out of
four) zero cells (sampling zeros). Thus, we suspect that there might cause problems in
estimating the last column score parameter ν4 for the C model. Indeed, in the estimation
procedure in R, though estimates for the model parameters are provided, their standard
errors are huge alarming for the correctness of the MLEs (implication of the sparsity of
the table). It can be verified that one of the likelihood equations of the C model, reduces
to u44 = m̂44. Thus, the cell (4, 4) is in fact fixed. Fixed cells are treated analogous to
structural zeros, i.e. they are set equal to the fixed value and the model’s df are corrected
accordingly. In this case, since u+4 = u44, the whole last column turns out to be fixed.

Algebraic hypothesis testing of the independence (I) and the association models U,
R and C leads to the following table of analysis of association (ANOAS) based on the
likelihood-ratio test statistic. Note the corrected degrees of freedom for the C model. The
table shows the model, the corresponding likelihood-ratio statistic G2, the asymptotic and
algebraic simulated p-value.



T.M. Pham, M. Kateri / J. Alg. Stat., 10, No.1 (2019), pp.30-50 44

Model Test statistic d.f. p-value (alg.) p-value (approx.)

1 I 117.9569 9 0.00000 0.0000

2 LL 8.8422 8 0.13830 0.3558

3 R 7.8447 6 0.05853 0.2497

4 C 2.2235 4 0.56155 0.6947

5 I|LL 109.1147 1 0.00000 0.0000

6 I|R 110.1121 3 0.00000 0.0000

7 I|C 115.7333 5 0.00000 0.0000

8 LL|R 0.9974 2 0.63752 0.6073

9 LL|C 6.6186 4 0.12331 0.1575

The advantage of the association models over the QS model for this data set lies on the
fact that under QS the diagonal cells are not modeled (all are kept fixed), which excludes
in this case almost 20% of the data.

5.3. FDA Toxicology Study

The data for this example are from the U.S. Food and Drug Administration (FDA)
and can be found for example in [21]. Animals were treated with four dose levels of a
carcinogen (Y ) and then observed (at necropsy) for the presence or absence of a tumor
type (X). The data is stratified by survival time (Z: in weeks) into four time intervals
0− 50, 51− 80, 81− 104 and terminal sacrifice. As there were no tumors found in the first
time interval, this stratum is not included in this analysis. The data for the remaining
three strata are displayed in Table 4.

Table 4: FDA Animal Toxicology Data. In parentheses are provided the MLEs of the expected frequencies under
the (XYLL, XZLL) model.

Dose of Carcinogen
None 1 unit 5 units 50 units Total

Disease Status Stratum 1: 51-80 weeks of survival
Tumor Present 0 (0.148) 0 (0.168) 0 (0.227) 1 (0.5) 1
Tumor Absent 7 (8.015) 10 (7.819) 6 (7.911) 8 (7.212) 31

Stratum 2: 81-104 weeks of survival
Tumor Present 0 (0.272) 1 (0.308) 0 (0.417) 1 (0.916) 2
Tumor Absent 11 (12.191) 9 (11.892) 13 (12.033) 14 (10.970) 47

Stratum 3: Sacrificed at the end of 104 weeks
Tumor Present 1 (0.718) 1 (0.811) 1 (1.100) 2 (2.415) 5
Tumor Absent 29 (26.656) 26 (26.003) 28 (26.311) 20 (23.986) 103

We tested the model (XYLL, XZLL), i.e. whether the survival time is conditionally
independent from the dose, given the disease status. The column and layer scores for
this model shall be given by v = (1, 2, 4, 10) and w = (1, 2, 3). Note that intuitively the
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column scores would be chosen as (0, 1, 5, 50) or (1, 2, 6, 51), respectively. However, large
scores can cause difficulties in Markov basis computation as the corresponding polynomials
ideals would contain polynomial with a high degree. For the latter choice of scores, the
Markov basis computation using the algstat package in R does not terminate even after
7 hours. Therefore, we decided to use smaller scores that still reflect the different doses
of Carcinogen. The sufficient statistic generating matrix corresponding to this model is
given by

A =


EI ⊗ 1T

J ⊗ 1T
K

1T
I ⊗ EJ ⊗ 1T

K

1T
I ⊗ 1T

J ⊗ EK

EI ⊗ vT ⊗ 1T
K

EI ⊗ 1T
J ⊗wT

 .

The observed test statistic is G2 = 8.082 with df = 15. Thus, the asymptotic p-value
equals 0.9205. The corresponding algebraic simulated p-value is 0.9998.

6. Simulation Study

We have seen in the examples above that for sparse tables the algebraically approxi-
mated p-value can be smaller or larger from the corresponding asymptotic one. In order to
evaluate the performance of algebraic p-value and compare them to the asymptotic ones,
performed a small simulation study. We simulated 4 × 4 data tables from unconditional
distributions of U models. We assumed fixed row and column scores for all simulated ta-
bles given by (1, 2, 3, 4). The parameters λ, λXi , λ

Y
j and z for i, j = 1, . . . , 4 are uniformly

sampled from a range (0, 0.1] and then used to compute the expected cell frequencies. The
chosen range ensures that the sample size of the simulated data is not too large. The
sample size distribution of the data tables is depicted in Figure 1. Assuming the indepen-
dent Poisson sampling scheme, we randomly draw the cell frequencies Uij by using the R
function rpois(s, mu) where s is the number of random samples to be returned and mu

the vector of (non-negative) expected values. We restrict our simulation study to tables
with at most 3 zero cell frequencies. By doing that, we expect simulation tables with
defined maximum likelihood estimators.

The results of the algebraic simulated and approximate p-values are plotted in a dia-
gram and depicted in Figure 2. In the diagram on the left, the dotted lines correspond to
a significance level α = 0.05. The diagram on the right shows the p-values that are smaller
or equal to α = 0.05.

The fourth quadrant (with respect to the dotted lines of the right diagram of Figure
2) depicts the p-values where we would come to a different test decision at a significance
level α = 0.05. In fact, in 24 out of 1000 data sets the null hypothesis would be rejected
by the approximate test whereas it would not be rejected by the algebraic method. In
these cases the approximate p-value is smaller than then significance level α = 0.05 which
leads to rejecting the null hypothesis whereas they would not be rejected by the algebraic
method as the respective algebraic simulated p-values are larger than α.
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Figure 1: Frequency distribution of sample sizes of simulated data tables.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

algebraic simulated p−value

a
p
p
ro

x
im

a
te

 p
−

v
a
lu

e
s

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4

algebraic simulated p−value

a
p
p
ro

x
im

a
te

 p
−

v
a
lu

e
s

Figure 2: Comparison of simulated and approximate p-values from the Likelihood Ratio test for data simulated
from U model with various sample sizes. The dashed line represents α = 0.05.

We next examine the type-I-error of the two methods. In 6 out of 1000 data sets the
algebraic method rejects the null hypothesis incorrectly whereas the traditional approxi-
mate procedure rejects 24 out of 1000 data tables falsely. Both methods, and especially
the algebraic one, seem to be too conservative, since their actual sizes (i.e. 0.006 and
0.024) are far below the nominal size (0.05). The conservatism issue is partly unavoidable
in case of small samples or sparse contingency tables [2, Sections 3.5, 16.5]. For this, it is
suggested to base inference on adjustments of the p-value (like the mid p-value).

The maximum difference between the respective p-values is 0.3981, achieved for the
following frequency table of sample size n = 18

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1
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[2,] 1 1 2 1

[3,] 1 0 3 0

[4,] 0 2 1 2

For this table the G2(U) = 8.078, while the asymptotic p-value (= 0.4259) is inappro-
priate, since all the cell frequencies are very small (≤ 3). The algebraic p-values equals
0.8240. The MLEs of the expected cell frequencies under this model are

1 2 3 4

1 0.9377356 1.0204964 1.4171104 0.6246576

2 0.9321875 1.1806791 1.9081901 0.9789433

3 0.5795058 0.8542480 1.6068351 0.9594112

4 0.5505711 0.9445766 2.0678644 1.4369879

Theoretically in such cases, the asymptotic p-values tend to be too small (see Agresti
[2]), which can be confirmed in our simulation.

7. Discussion

In this paper we considered a class of log-linear models for contingency tables, ap-
plicable when at least one of the classification variables is ordinal, known as association
models. Targeting in developing algebraic exact inference procedures for goodness of fit
testing, we defined association models as toric models. Special emphasis is given in three
models of this class for two-way tables, namely the linear by linear (LL), the row effect
(R) and the column effect (C) model. The most popular uniform (U) association model is
a LL model with equidistant row and column scores for successive classification categories.

Algebraic goodness of fit testing of a model is in practice enabled due to the Diaconis-
Sturmfels algorithm, based on computing Markov bases for this model. A key-result
states that Markov bases are equivalent to generating sets of toric ideals and the problem
of computing a Markov basis reduces to the problem of finding a Gröbner basis for toric
ideals. Determining minimal Markov bases is based on setting up matrices of sufficient
statistics that fulfill the assumption of homogeneity.

For the association models mentioned above we derived their sufficient statistic gen-
erating matrices (A), which specify their sufficient statistics, and proved that they are
homogeneous. The algorithm is then implemented in the R-package algstat and illus-
trated on three data sets with ordered categories (two two-way tables and one three-way).
The algebraic p-values are compared with the corresponding asymptotic ones. This com-
parison is further highlighted by a small simulation study. The conservatism of algebraic
inferential methods in case of small samples or sparse tables needs to be further studied.

In designing the corresponding algorithms, attention must also be paid on their effi-
ciency. The efficiency of computing Markov basis relies mainly on the efficiency of Gröbner
basis computation which is determined by the computational complexity of Buchberger’s
algorithm. Hence, Markov basis computation may not be efficient, especially for polyno-
mials with high total degrees and hence matrices of sufficient statistics with large entries
(Dubé [9]). This can be the case very easily for association models as the ordered scores



REFERENCES 48

assigned to the classification variables categories have to be integers. Especially for scores
with large distances between successive categories the computation of Markov bases can
become prohibitive. It is worth to study further the algebraic structure of their cor-
responding varieties and toric ideals in order to obtain simplification for Gröbner basis
computation.

With regard to model selection among nested models, recall that in order to reduce
the computational costs, the adopted approach in Section 3.2 constructs only one Markov
chain (corresponding to the simplest model) and the chains for the other models are the
appropriate subsets of this chain that fulfill the additional constraints imposed by their
additional sufficient statistics. However, the length (N) of the simulated Markov chain
needs to be sufficiently large to ensure that the sub-chains are also sufficiently large. For
instance, in Example 5.1 the independence model is the simplest one and thus serves as
the model for which the Markov chain is built. For this example we have realized that the
length of selected chains are very small even for large number of iterations for the Markov
chain of the independence model. In fact, for N = 1000000 the selected chain for the LL
model has length 4. Therefore, in this case we simulated an individual Markov chain for
each model considered. Thus, further investigation on how to reduce computation costs
for algebraic p-value simulation for ordinal association models is needed.

Finally note that we have not considered here the association model having parametric
both, the row and the column scores. In this case the model, called multiplicative Row-
Column association model (RC model), is multiplicative in its parameters and thus log-
nonlinear. It would be interesting to develop an algebraic inferential approach for the RC
model.
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[9] Thomas W. Dubé. The structure of polynomial ideals and gröbner bases. SIAM J.
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