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Detecting epistasis via Markov bases
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Abstract. Rapid research progress in genotyping techniques have allowed large genome-wide as-
sociation studies. Existing methods often focus on determining associations between single loci and
a specific phenotype. However, a particular phenotype is usually the result of complex relation-
ships between multiple loci and the environment. In this paper, we describe a two-stage method
for detecting epistasis by combining the traditionally used single-locus search with a search for
multiway interactions. Our method is based on an extended version of Fisher’s exact test. To
perform this test, a Markov chain is constructed on the space of multidimensional contingency
tables using the elements of a Markov basis as moves. We test our method on simulated data and
compare it to a two-stage logistic regression method and to a fully Bayesian method, showing that
we are able to detect the interacting loci when other methods fail to do so. Finally, we apply our
method to a genome-wide data set consisting of 685 dogs and identify epistasis associated with
canine hair length for four pairs of single nucleotide polymorphisms (SNPs).
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1. Introduction

Conditions with genetic components such as cancer, heart disease, and diabetes, are
the most common causes of mortality in developed countries. Therefore, the mapping
of genes involved in such complex diseases represents a major goal of human genetics.
However, genetic variants associated with complex diseases are hard to detect. Indeed,
only a small portion of the heritability of complex diseases can be explained by the variants
identified so far. This led to several hypotheses (see e.g. [19]). One of them is that most
common diseases are caused by several rare variants with low effects, rather than a few
common variants with large effects ([24]). Another hypothesis is that the variants interact
in order to produce the disease phenotype and independently only explain a small fraction
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of the genetic variance. In this paper, we mainly focus on the interaction hypothesis, but
we will also discuss the relevance of our method to the rare variant hypothesis along the
way.

Recent development of methods to screen hundreds of thousands of single nucleotide
polymorphisms (SNPs) has allowed the discovery of over 50 disease susceptibility loci with
marginal effects ([23]). Genome-wide association studies have hence proven to be fruitful
in understanding complex multifactorial traits. The quasi-absence of reports of interacting
loci, however, shows the need for better methods for detecting not only marginal effects of
specific loci, but also interactions of loci. Although some progress in detecting interactions
has been achieved in the last few years using simple log-linear models, these methods
remain inefficient to detect interactions for large-scale data ([2]).

Various models of interaction have been presented in the past, for example the addi-
tive model and the multiplicative model. The former model assumes that the SNPs act
independently, and a single marker approach seems to perform well. In the multiplicative
model, SNPs interact in the sense that the presence of two (or more) variants have a
stronger effect than the sum of the effects of each single SNP. We will discuss such models
in more detail in Section 2.1. A complete classification of two-locus interaction models
has been given in [15].

In the method described in this paper, we first reduce the potential interacting SNPs
to a small number by filtering all SNPs genome-wide with a single locus approach. The
loci achieving some threshold are then further examined for interactions. Such a two-stage
approach has been suggested and implemented in [20]. For some models of interaction,
they show that the two-stage approach outperforms the single-locus search and performs
at least as well as when testing for interaction within all subsets of k SNPs.

Single locus methods consider each SNP individually and test for association based
on differences in genotypic frequencies between case and control individuals. Widely used
methods for the single-locus search are the χ2 goodness-of-fit test or Fisher’s exact test
together with a Bonferroni correction of the p-values to account for the large number of
tests performed. We suggest using Fisher’s exact test as a first stage to rank the SNPs by
their p-value and select a subset of SNPs, which is then further analyzed. Under the rare
variant hypothesis the resulting contingency tables are sparse and it is desirable to test
for interactions within the selected subset using an exact test. We suggest using Markov
bases for this purpose. A Markov basis is a set of Markov chain moves, which connects a
contingency table to all tables with the same margins (see e.g. [7]).

In Section 2, we define three models of interaction and present our algorithm for
detecting epistasis using Markov bases in hypothesis testing. In Section 3, we test our
method on simulated data and make a comparison to logistic regression and BEAM, a
Bayesian approach ([31]). Finally, we run our algorithm on a genome-wide dataset from
dogs ([5]) to test for epistasis related to canine hair length.



A. S. Malaspinas, C. Uhler / J. Alg. Stat., 2 (2011), 36-53 38

2. Method

2.1. Models of interaction

In this paper, we mainly study the interaction between two SNPs and a binary phe-
notype, as for example the disease status of an individual. However, our method can be
easily generalized for studying interaction between three or more SNPs and a phenotype
with three or more states. We show a generalization in Section 3.4, where we analyze a
genome-wide dataset from dogs and, inter alia, test for interaction between three SNPs
and a binary hair length phenotype (short hair versus long hair).

The binary phenotype is denoted by D, taking values 0 and 1. We assume that the
SNPs are polymorphic with only two possible nucleotides. The two SNPs are denoted by
X and Y , each with genotypes taking values 0, 1 and 2 representing the number of minor
alleles. We investigate three different models of interaction: a control model, an additive
model, and a multiplicative model. The parameterization is given in the following tables
showing the odds of having a specific phenotype

P(D = 1|genotype)

P(D = 0|genotype)
.

• Control model:

Y
0 1 2

0 ε ε ε
X 1 ε ε ε

2 ε ε ε

• Additive model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβ εαβ2

2 εα2 εα2β εα2β2

• Multiplicative model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβδ εαβ2δ2

2 εα2 εα2βδ2 εα2β2δ4

These three models can also be expressed as log-linear models. We denote the state
of X by i, the state of Y by j, and the state of D by k. If nijk describes the expected
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Figure 1: Nesting relationship of the control model, the additive model, and the multiplicative model. The
intersection of the no 3-way interaction model with the multiplicative model corresponds to the additive model.
The shading indicates the presence of epistasis.

cell counts in a 3× 3× 2 contingency table, then the three models can be expressed in the
following way, where the γ terms represent the effects the variables have on the cell counts
(e.g. γXi represents the main effect for X), and α, β, δ, and ε are defined by the odds of
having a specific phenotype shown in the above tables:

Control model: log(nijk) = γ + γXi + γYj + γXY
ij + k log(ε)

Additive model: log(nijk) = γ + γXi + γYj + γXY
ij + k log(ε) + ik logα

+jk log β

Multiplicative model: log(nijk) = γ + γXi + γYj + γXY
ij + k log(ε) + ik logα

+jk log β + ijk log δ

Note that in the additive model the interaction effect for SNP X (SNP Y ) and the disease
status is additive with respect to the number of causative SNPs i (j), whereas in the
multiplicative model there is an additional 3-way interaction effect between SNPs X,Y ,
and the disease status, which is multiplicative in the number of causative SNPs i, j. From
the representation as log-linear models we can deduce the nesting relationship shown on
the Venn diagram in Figure 1. Note that the additive model corresponds to the intersection
of the no 3-way interaction model (log(nijk) = γ + γXi + γYj + γDk + γXY

ij + γXD
ik + γY D

jk )
with the multiplicative model, and the control model is nested within the additive model.

In a biological context, interaction between markers (or SNPs) is usually used as a
synonym for epistasis. Cordell [6] gives a broad definition: “Epistasis refers to departure
from ‘independence’ of the effects of different genetic loci in the way they combine to cause
disease”. Epistasis is for example the result of a multiplicative effect between two markers
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(i.e. log(δ) 6= 0 in the multiplicative model).
In contrast, in a mathematical context interaction is used as synonym for dependence.

Two markers are said to be interacting if they are dependent, i.e.

P(marker 1 = i,marker 2 = j) 6= P(marker 1 = i)P(marker 2 = j).

In general, in association studies the goal is to find a set of markers that are associated
with a specific phenotype. In what follows, we will use the term interaction as synonym for
dependence and the term epistasis with respect to a specific phenotype synonymously to
the presence of a k-way interaction (k ≥ 3) between k− 1 SNPs and a specific phenotype.
The epistatic models are indicated by the shading in Figure 1.

2.2. Algorithm

The χ2 goodness-of-fit-test is the most widely used test for detecting interaction within
contingency tables. Under independence the χ2 statistic is asymptotically χ2 distributed.
However, this approximation is problematic when some cell counts are small, which is
often the case in contingency tables resulting from association studies and particularly
problematic under the rare variant hypothesis. The other widely used test is Fisher’s exact
test. As its name suggests, it has the advantage of being exact. But it is a permutation test
and therefore computationally more intensive. For tables with large total counts or tables
of higher dimension, enumerating all possible tables with given margins is not feasible.

Diaconis and Sturmfels [7] describe an extended version of Fisher’s exact test using
Markov bases. A Markov basis for testing a specific interaction model is a set of moves
connecting all contingency tables with the same sufficient statistics. A Markov basis allows
the construction of a Markov chain on the set of contingency tables with given margins
and computing the p-value of a given contingency table using its stationary distribution.
Such a test can be used for analyzing multidimensional tables with large total counts. In
addition, it has been shown in [7] that the stationary distribution is a good approximation
of the exact distribution of the χ2-statistic even for very sparse contingency tables, leading
to a substantially more accurate interaction test than the χ2-test for sparse tables. Useful
properties of Markov bases can be found in [9].

A Markov basis of the null model can be computed using the software 4ti2 ([1]). All
Markov bases mentioned in this paper can be found on our website§. Then a Markov chain
is started at the observed 3× 3× 2 data table and elements of the Markov basis are used
as moves in the Metropolis-Hastings steps. At each step the χ2 statistic is computed. Its
stationary distribution is an approximation of the exact distribution of the χ2 statistic.

2.2.1. Interaction tests with the extended version of Fisher’s exact test

In this subsection we present various hypotheses that can easily be tested using Markov
bases and discuss a hypothesis that is particularly interesting for association studies. For
simplicity we constrain this discussion to the case of two SNPs and a binary phenotype.

§http://www.carolineuhler.com/epistasis.htm
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Table 1: Standard interaction models for three-dimensional contingency tables.

Model Minimal sufficient statistics Expected counts

(X,Y,D) (ni..), (n.j.), (n..k) n̂ijk =
ni..n.j.n..k

(n...)2

(XY,D) (nij.), (n..k) n̂ijk =
nij.n..k

(n...)

(XD,Y ) (ni.k), (n.j.) n̂ijk =
ni.kn.j.

(n...)

(X,Y D) (ni..), (n.jk) n̂ijk =
n.jkni..

(n...)

(XY, Y D) (nij.), (n.jk) n̂ijk =
nij.n.jk

(n.j.)

(XY,XD) (nij.), (ni.k) n̂ijk =
nij.ni.k

(ni..)

(XD,Y D) (ni.k), (n.jk) n̂ijk =
ni.knj.k

(n..k)

(XY,XD, Y D) (nij.), (ni.k), (n.jk) Iterative proportional fitting

Table 1 consists of the standard log-linear models on three variables. Their fit to a
given data table can be computed using the extended version of Fisher’s exact test. We
use the notation presented in [4] to denote the different models. Interaction is assumed
between the variables not separated by commas in the model. So the model (X,Y,D)
in Table 1 represents the independence model, the model (XY,XD, Y D) the no 3-way
interaction model and the other models are intermediate models. For association studies
the no 3-way interaction model (XY,XD, Y D) is particularly interesting and will be used
as null model in our testing procedure.

Performing the extended version of Fisher’s exact test involves sampling from the
space of contingency tables with fixed minimal sufficient statistics and computing the χ2

statistic. So the minimal sufficient statistics and the expected counts for each cell of
the table need to be calculated. These are given in Table 1. If a loop is present in the
model configuration as for example in the no 3-way interaction model (this model can be
rewritten as (XY, Y D,DX)), then there is no closed-form estimator for the cell counts
(see [4]). But in this case, estimates can be achieved by iterative proportional fitting (i.e.
[11]).

It is important to note that testing for epistasis necessarily implies working with multi-
dimensional contingency tables and is not possible in the collapsed two-dimensional table
shown above. In this table, the two SNPs are treated like a single variable and we consider
their haplotype. The sufficient statistics for the model described in Table 2 are the row
and column sums (nij.) and (n..k). So testing for association in this collapsed table is the
same as using (XY,D) as null model. In this case, the null hypothesis would be rejected
even in the presence of marginal effects only, showing that testing for epistasis in Table 2
is impossible.

2.2.2. Hypothesis testing with the extended version of Fisher’s exact test

Our goal is to detect epistasis when present. According to the definition of epistasis in
Section 2.1 and as shown in Figure 1, epistasis is present with regard to two SNPs and
a specific phenotype, when a 3-way interaction is found. So we suggest using as null
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Table 2: Testing for association between haplotypes and phenotype.

Phenotype status: Total:
0 1

Haplotype: 00 n000 n001 n00.
01 n010 n011 n01.
10 n100 n101 n10.
11 n110 n111 n11.

Total: n..0 n..1 n...

hypothesis the no 3-way interaction model and testing this hypothesis with the extended
version of Fisher’s exact test. The corresponding minimal Markov basis consists of 15
moves. It can be used to approximate the exact distribution of the χ2 statistic and
compute the p-value of the data table. If the p-value is lower than some threshold, we
reject the null hypothesis of no epistasis.

Although in this paper we focus merely on epistasis, it is worth noting that one can
easily build tests for different types of interaction using Markov bases. If one is inter-
ested in detecting whether the epistatic effect is of multiplicative nature, one can perform
the extended version of Fisher’s exact test on the contingency tables, which have been
classified as epistatic, using the multiplicative model as null hypothesis. In this case, the
corresponding minimal Markov basis consists of 49 moves. Similarly, if one is interested
in detecting additive effects, one can use the additive model as null hypothesis and test
the contingency tables, which have been classified as non-epistatic. In this case, the cor-
responding minimal Markov basis consists of 156 moves. Markov bases for all mentioned
tests can be found on our website¶. A strength of the Markov basis approach is that each
Markov basis only needs to be computed once and can then be reused.

3. Results

In this section, we first conduct a simulation study to evaluate the performance of
the suggested method. We then compare our method to a two-stage logistic regression
approach and to BEAM ([31]). Logistic regression is a widely used method for detecting
epistasis within a selection of SNPs. BEAM is a purely Bayesian method for detect-
ing epistatic interactions on a genome-wide scale. We end this section by applying our
method to a genome-wide data set consisting of 685 dogs with the goal of finding epistasis
associated with canine hair length.

3.1. Simulation study

We simulated a total of 50 potential association studies with 400 cases and 400 controls
for three different minor allele frequencies of the causative SNPs and the three models of
interaction presented in Section 2.1. We chose as minor allele frequencies (MAF) 0.1, 0.25

¶http://www.carolineuhler.com/epistasis.htm
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and 0.4. The parameters for the three models of interaction were determined numerically
by fixing the marginal effect measured by the effect size

λi :=
p(D = 1|gi = 1)

p(D = 0|gi = 1)

p(D = 0|gi = 0)

p(D = 1|gi = 0)
− 1

and the prevalence

π :=
∑
g1,g2

p(D|g1, g2)p(g1, g2).

Since only very few cases of interacting loci have been reported, little is known about the
true values of the parameters in the interaction models. For our simulations, we used an
effect size of λ1 = λ2 = 1 and a sample prevalence of π = 0.5. The sample prevalence
corresponds to the prevalence in most disease mapping studies, where the number of cases
is usually equal to the number of controls being examined. There is a trade-off between
effect size and number of cases and controls needed to achieve a certain power. We chose
an effect size of 1 and 400 cases and controls, similar to the two-stage approach used in
[20]. Choosing in addition α = β in the additive model, and α = β and δ = 3α in the
multiplicative model determines all parameters of the interaction models and one can solve
for α, β, δ and ε numerically.

The simulations were performed using HAP-SAMPLE ([30]) and were restricted to
the SNPs typed with the Affy CHIP on chromosome 9 and chromosome 13 of the Phase
I/II HapMap data‖, resulting in about 10,000 SNPs per individual. On each of the two
chromosomes we selected one SNP to be causative. The causative SNPs were chosen
consistent with the minor allele frequencies and far apart from any other marker (at least
20,000bp apart). Note that HAP-SAMPLE generates the cases and controls by resampling
from HapMap. This means that the simulated data show linkage disequilibrium and allele
frequencies similar to real data.

As suggested in [20], we took a two-stage approach for finding interacting SNPs. In
the first step, we ranked all SNPs according to their p-value in Fisher’s exact test on
the 2 × 3 genotype table and selected the ten SNPs with the lowest marginal p-values.
Figure 2 shows a boxplot of the p-values of the causative SNPs for the three models under
consideration and each of the three minor allele frequencies. Within the subset of the ten
lowest ranked SNPs, we then tested for interaction using the extended version of Fisher’s
exact test with the no 3-way interaction model as null hypothesis. We generated three
Markov chains with 40,000 iterations each and different starting values, and used the
tools described in [12] to assess convergence of the chains. This included analyzing the
Gelman-Rubin statistic and the autocorrelations. After discarding an initial burn-in of
10,000 iterations, we combined the remaining samples of the three chains to generate the
posterior distribution of the χ2 statistic.

In Figure 3 (left), we report the rejection rate of the no 3-way interaction hypothesis
for each of the three minor allele frequencies. Per point in the figure we simulated 50
potential association studies. The power of our two-stage testing procedure corresponds

‖http://hapmap.ncbi.nlm.nih.gov/
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Figure 2: Boxplot of the p-values of the causative SNPs for the three minor allele frequencies and the three
models of interaction, i.e. the control model (left), the additive model (middle), and the multiplicative model
(right).

to the curve under the multiplicative model. The higher the minor allele frequency, the
more accurately we can detect epistasis. Under the additive model and the control model,
no epistasis is present. We never rejected the null hypothesis under the control model and
only once under the additive model, resulting in a high specificity of the testing procedure.

We also analyzed the performance of each step separately. Figure 3 (middle) shows
the performance of the first step and reports the proportion of 50 association studies, in
which the two causative SNPs were ranked among the ten SNPs with the lowest p-values.
Because Fisher’s exact test measures marginal association, the curves under the additive
model and the multiplicative model are similar.

Figure 3 (right) shows the performance of the second step in our method and reports the
proportion of 50 association studies, in which the null hypothesis of no 3-way interaction
was rejected using only the extended version of Fisher’s exact test on the 50 causative
SNP pairs.
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Figure 3: Rejection rate of the no 3-way interaction test in the two-stage approach on 50 simulated association
studies for MAF=0.1, MAF=0.25, and MAF=0.4 (left). Proportion of 50 association studies, in which the
two causative SNPs were ranked among the ten SNPs with the lowest p-values by Fisher’s exact test (middle).
Rejection rate of the no 3-way interaction hypothesis using only the extended version of Fisher’s exact test on
the 50 causative SNP pairs (right).



A. S. Malaspinas, C. Uhler / J. Alg. Stat., 2 (2011), 36-53 45

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

extended Fisher

log. regression

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate
T

ru
e
 p

o
s
it
iv

e
 r

a
te

extended Fisher

log. regression

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

extended Fisher

log. regression

Figure 4: ROC curves of the extended version of Fisher’s exact test and logistic regression for MAF=0.1 (left),
MAF=0.25 (middle), and MAF=0.4 (right) based on the ten filtered SNPs.

3.2. Comparison to logistic regression

For validation, we compared the performance of our method to logistic regression via
ROC curves. Logistic regression is probably the most widely used method for detecting
epistasis within a selection of SNPs nowadays. We based the comparison on the simulated
association studies presented in the previous section using only the simulations under the
multiplicative model. The structure of interaction within this model should favor logistic
regression as logistic regression tests for exactly this kind of interaction.

As before, for each minor allele frequency and each of the 50 simulation studies we
first filtered all SNPs with Fisher’s exact test and chose the ten SNPs with the lowest
p-values for further analysis. Both causative SNPs were within the ten filtered SNPs for
19 (46) [45] out of the 50 simulation studies for MAF=0.1 (MAF=0.25) [MAF=0.4]. We
then ran the extended version of Fisher’s exact test and logistic regression on all possible
pairs of SNPs in the subsets consisting of the ten filtered SNPs. This resulted in 50 ·

(
10
2

)
tests per minor allele frequency with 19 (46) [45] true positives for MAF=0.1 (MAF=0.25)
[MAF=0.4].

Because both methods, logistic regression and our method, require a filtering step, we
compared the methods only based on the ten filtered SNPs. The ROC curves comparing
the second stage of our method to logistic regression are plotted in Figure 4 showing
that our method performs substantially better than logistic regression for MAF=0.1 with
an area under the ROC curve of 0.861 compared to 0.773 for logistic regression. For
MAF=0.25 and MAF=0.4 both methods have nearly perfect ROC curves with areas 0.9986
[0.99994] for our method compared to 0.9993 [0.99997] for logistic regression for MAF=0.25
[MAF=0.4].

3.3. Comparison to BEAM

We also compared our method to BEAM, a Bayesian approach for detecting epistatic
interactions in association studies ([31]). We chose BEAM, because the authors show it is
more powerful than a variety of other approaches including the stepwise logistic regression
approach, and it is one of the few recent methods that can handle genome-wide data.

In this method, all SNPs are divided into three groups, namely, SNPs that are not
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Figure 5: Proportion of simulation studies for which the interacting SNP pair belongs to the x SNP pairs with
the lowest p-values for MAF=0.1 (left), MAF=0.25 (middle), and MAF=0.4 (right).

associated with the disease, SNPs that contribute to the disease risk only through main
effects, and SNPs that interact to cause the disease. BEAM outputs the posterior prob-
abilities for each SNP to belong to these three groups. The authors of [31] propose to
use the results in a frequentist hypothesis-testing framework calculating the so called B-
statistic and testing for association between each SNP or set of SNPs and the disease
phenotype. BEAM was designed to increase the power to detect any association with the
disease, and not to separate main effects from epistasis. Therefore, BEAM outputs SNPs
that interact marginally or through a k-way interaction with the disease. This does not
match our definition of epistasis since the presence of marginal effects only already gives
rise to a significant result using BEAM.

We compared our method to BEAM using the B-statistic. The B-statistic is the Bayes
factor which compares the alternative (where the genotypes in cases and controls follow
different distributions) versus the null model (where the genotypes in cases and controls
follow a common distribution). BEAM reports this statistic only for the pairs of SNPs
which have a non-zero posterior probability of belonging to the third group. In addition,
the B-statistic is automatically set to zero for the SNP pairs where any of the two SNPs
are found to be interacting marginally with the disease. We forced BEAM to include the
marginal effects into the B-statistic by choosing a significance level of zero for marginal
effects. This should favor BEAM in terms of sensitivity.

We ran BEAM with the default parameters on our simulated datasets for the mul-
tiplicative model. BEAM has a long running time. It takes about 10.6 hours for the
analysis of one dataset with 10,000 SNPs and 400 cases and 400 controls, whereas the
same analysis takes about 0.7 hours using our method on an Intel Core 2.2 GHz laptop
with 2 Gb memory. Therefore, we ran BEAM with the default parameters only on 1,000
SNPs out of the 10,000 SNPs simulated for the analysis in Section 3.1.

In contrast to BEAM, our method is a stepwise approach, which makes a comparison
via ROC curves difficult. We therefore compared the performance of all three tests by
plotting for a fixed number x of SNP pairs the proportion of simulation studies for which
the interacting SNP pair belongs to the x SNP pairs with the lowest p-values. The resulting
curves are shown in Figure 5. Although the marginal effects were not extracted, BEAM
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has a very high false negative rate, attributing a p-value of 1 to the majority of SNPs,
interacting and not interacting SNPs.

3.4. Genome-wide association study of hair length in dogs

We demonstrate the potential of our Markov basis method in genome-wide association
studies by analyzing a hair length dataset consisting of 685 dogs from 65 breeds and
containing 40, 842 SNPs ([5]).

The individuals in [5] were divided into two groups for the hair length phenotype: 319
dogs from 31 breeds with long hair as cases and 364 from 34 breeds with short hair as
controls. In the original study, it is shown that the long versus short hair phenotype is
associated with a mutation (Cys95Phe) that changes exon one in the fibroblast growth
factor-5 (FGF5 gene). Indeed, the SNP with the lowest p-value using Fisher’s exact test
is located on chromosome 32 at position 7, 100, 913 for the Canmap dataset, i.e. about
300Kb apart from FGF5.

We ranked the 40, 842 SNPs by their p-value using Fisher’s exact test and selected the
20 lowest ranked SNPs (about 0.05%) to test for 3-way interaction. Note that all 20 SNPs
are significantly correlated (p-value < 0.05) with the phenotype. We found a significant
p-value (< 0.05) for four out of the

(
20
2

)
pairs. These pairs together with their p-values

are listed in Table 3.
The pairs include six distinct SNPs located on five different chromosomes and the two

SNPs lying on the same chromosome are not significantly interacting (p-value of 0.54).
This means that a false positive correlation due to hitchhiking effects can likely be avoided.
Hitchhiking effects are known to extend across long stretches of chromosomes in particular
in domesticated species ([26, 27, 21]) consistent with the prediction of [25].

In order to identify potential pathways we first considered genes, which are close to the
six SNPs we identified as interacting. To do so, we used the dog genome available through
the ncbi website∗∗. Most of the genes we report here have been annotated automatically.
Our strategy was to consider the gene containing the candidate SNP (if any) and the
immediate left and right neighboring gene, resulting in a total of two or three genes per
SNP.

Among the six significantly interacting SNPs, four are located close to genes that have
been shown to be linked to hair growth in other organisms. This is not surprising, since
these SNPs also have a significant marginal association with hair growth. We here report
the function of these candidate genes. The two other SNPs are located close to genes that
we were not able to identify as functionally related to hair growth.

First, the SNP chr30.18465869 is located close to (about 80Kb) fibroblast growth factor
7 (FGF7 also called keratinocyte growth factor, KGF ), i.e. it belongs to the same family
as the gene reported in the original study (but on a different chromosome). The FGF
family members are involved in a variety of biological processes including hair development
reported in human, mouse, rat and chicken (GO:0031069, [3]).

∗∗http://www.ncbi.nlm.nih.gov/genome/guide/dog/, build 2.1
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Table 3: Pairs of SNPs, which significantly interact with the hair length phenotype for the Canmap dataset.
Question marks indicate that we were not able to identify a close-by gene which is functionally related to hair
growth.

chromosome and location of SNPs p-value potential relevant genes

chr30.18465869, chr26.6171079 0 FGF7 -?

chr15.44092912, chr23.49871523 0 IGF1 -P2RY1

chr24.26359293, chr15.43667654 2e-04 ASIP -?

chr15.43667654, chr23.49871523 1e-04 ?-P2RY1

Secondly, chr15.44092912 is located between two genes, and about 200Kb from the
insulin-like growth factor 1 gene (IGF1 ). IGF1 has been reported to be associated with
the hair growth cycle and the differentiation of the hair shaft in mice ([28]).

Thirdly, chr23.49871523 is located about 430Kb from the purinergic receptor P2Y1
(P2RY1 ). The purinergic receptors have been shown to be part of a signaling system for
proliferation and differentiation in human anagen hair follicles ([14]).

Finally, chr24.26359293 is located inside the agouti-signaling protein (gene ASIP), a
gene known to affect coat color in dogs and other mammals. The link to hair growth is
not obvious but this gene is expressed during four to seven days of hair growth in mice
([29]).

According to our analysis, IGF1 and P2RY1 are significantly interacting. All other
pairs of interacting SNPs involve at least one SNP for which we were not able to identify
a close-by candidate gene related to hair growth (see Table 3). IGF1 has a tyrosine
kinase receptor and P2RY1 is a G-protein coupled receptor. One possibility is that these
receptors cross-talk as has been shown previously for these types of receptors in order to
control mitogenic signals ([8]). However, a functional assay would be necessary to establish
that any of the statistical interactions we found are also biologically meaningful.

We also considered all triplets of SNPs among the 20 preselected SNPs and tested for
4-way interaction. However, we did not find any evidence for interaction among the

(
20
3

)
triplets.

4. Discussion

In this paper, we proposed a Markov basis approach for detecting epistasis in genome-
wide association studies. The use of different Markov bases allows to easily test for different
types of interaction and epistasis involving two or more SNPs. These Markov bases need to
be computed only once and can be downloaded from our website†† for the tests presented
in this paper.

The use of an exact test is of particular relevance for disease mapping studies where
the contingency tables are often sparse. One example where there has been also functional
validation, is a deletion associated with Crohn’s disease [22]: This deletion was found to
have a population frequency of 0.07, and a frequency of 0.11 in the cases [19]. So within

††http://www.carolineuhler.com/epistasis.htm
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400 controls and under Hardy-Weinberg equilibrium, we would expect only 2 individuals
to be homozygote for this deletion. This shows that also for a moderate number of cases
and controls the resulting tables for disease association studies are likely to be sparse.
The sparsity is even more pronounced for rare variants, defined as variants with a MAF
smaller than 0.005. Current genome wide association studies are still missing these rare
variants, but advances in sequencing technologies should allow to sequence these variants
and appropriate statistical methods will then be necessary.

We tested our method in simulation studies and showed that it outperforms a stepwise
logistic regression approach and BEAM for the multiplicative interaction model. Logistic
regression has the advantage of a very short running time (3 seconds compared to 39
minutes using our method for the analysis of one dataset with 10,000 SNPs and 400 cases
and controls not including the filtering step, which takes about 1 minute for both methods
on an Intel Core 2.2 GHz laptop with 2 Gb memory). However, especially for a minor
allele frequency of 0.1, logistic regression performs worse than our method, even when
simulating epistasis under a multiplicative model, which should favor logistic regression.
This difference arises because our method approximates the exact p-value well for all
sample sizes while the performance of logistic regression increases with larger sample size.
400 cases and 400 controls are not sufficient to get a good performance using logistic
regression for a minor allele frequency of 0.1 and it is expected to do even worse for rare
variants. Another advantage of our method compared to logistic regression is that it is
not geared towards testing for multiplicative interaction only, but should be able to detect
epistasis regardless of the interaction model chosen. It would be interesting to compare
these two methods on data sets generated by other interaction models.

BEAM on the other hand, has the advantage of not needing to filter the large number
of SNPs first. However, it runs about 15 times slower than our method for our simulations
and has a very high false negative rate. The difference between our results and what
the authors of BEAM have found might be due to linkage disequilibrium in our data.
BEAM handles linkage disequilibrium with a first order Markov chain, which will be
improved in future versions (Yu Zhang, personal communication). But as of today, we
conclude that this method is impractical for whole genome association studies, since linkage
disequilibrium is present in most real datasets.

The limitation of our method is the need for a filtering step to reduce the number of
SNPs to a small subset. Especially if the marginal association of the interacting SNPs
with the disease is small, these SNPs might not be caught by the filter. However, in our
simulations using Fisher’s exact test as a filter seems to perform well. Another possibility
is to incorporate biological information such as existing pathways ([10]) to choose a subset
of possibly interacting SNPs.

We demonstrated the potential of the proposed two-stage method in genome-wide
association studies by analyzing a hair length dataset consisting of 685 dogs and containing
40, 842 SNPs using the extended version of Fisher’s exact test. In this dataset, we found
a significant epistatic effect for four SNP pairs. These SNPs lie on different chromosomes,
reducing the risk of a false positive correlation due to linkage effects. The dataset includes
dogs from 65 distinct breeds. Although linkage disequilibrium has been shown to extend
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over several megabases within breeds, linkage disquelibrium extends only over tens of
kilobases between breeds and drops faster than in human populations ([26], [17], [18]),
suggesting that it is possible to do fine-mapping between breeds. These observations are
consistent with two bottlenecks, the first associated with the domestication from wolves
and the second associated with the intense selection to create the breeds. Other studies
have successfully employed the extensive variation between breeds to map genes affecting
size and behavior ([16, 5]). The validity of this approach rests on the assumption that
the breeds used are random samples of unrelated breeds or that related breeds make up a
small part of our sample ([16, 13]). This is rarely the case and false positive results may
therefore have arisen from population structure. A second independent dataset would be
useful to confirm our findings. Finally, a functional assay would be necessary to establish
if the interactions we found are also biologically meaningful.

ACKNOWLEDGEMENTS We would like to thank Anders Albrechsten, Luke W.
Miratrix, Rasmus Nielsen, Lior Pachter, Montgomery Slatkin, Yun S. Song, and Bernd
Sturmfels for helpful discussions. We would also like to acknowledge Yu Zhang for his help
with BEAM and Heidi Parker and Elaine Ostrander for providing the dog dataset.

References

[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces. Available at www.4ti2.de.

[2] A. Albrechtsen, S. Castella, G. Andersen, T. Hansen, O. Pedersen, and R. Nielsen.
A Bayesian multilocus association method: allowing for higher-order interaction in
association studies. Genetics, 176(2):1197–1208, 2007.

[3] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nature Genetics, 25(1):25–29, 2000.

[4] Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis: Theory and
Practice. MIT Press, Cambridge, 1975.

[5] E. Cadieu, M. W. Neff, P. Quignon, K. Walsh, K. Chase, H. G. Parker, B. M. Von-
holdt, A. Rhue, A. Boyko, A. Byers, A. Wong, D. S. Mosher, A. G. Elkahloun, T. C.
Spady, C. Andre, K. G. Lark, M. Cargill, C. D. Bustamante, R. K. Wayne, and E. A.
Ostrander. Coat variation in the domestic dog is governed by variants in three genes.
Science, 326(5949):150–153, 2009.



REFERENCES 51

[6] H. J. Cordell. Epistasis: what it means, what it doesn’t mean, and statistical methods
to detect it in humans. Human Molecular Genetics, 11:2463–2468, 2002.

[7] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional
distributions. The Annals of Statistics, 26:363–397, 1998.

[8] I. Dikic and A. Blaukat. Protein tyrosine kinase-mediated pathways in G protein-
coupled receptor signaling. Cell Biochemistry and Biophysics, 30(3):369–387, 1999.

[9] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on algebraic statistics. Basel:
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