
We consider the problem of finding generators of the toric ideal associated to a combinatorial object 
called a staged tree. Our motivation to consider this problem originates from the use of staged trees 
to represent discrete statistical models such as conditional independence models and discrete Bayesian networks. 
The main theorem in this article states that toric ideals of staged trees that are balanced and stratified are 
generated by a quadratic Gröbner basis whose initial ideal is square-free. We apply this theorem to construct 
Gröbner bases of a subclass of discrete statistical models represented by staged trees. The proof of the main result 
is based on Sullivant’s toric fiber product construction (J. Algebra 316:2 
(2007), 560–577).

1. Introduction

The study of toric ideals associated to statistical models was pioneered by the work of Diaconis and 
Sturmfels [4], who first used the generators of a toric ideal to formulate a sampling algorithm for discrete 
distributions. Since then, and with the subsequent work of [2; 17; 8], the study of toric ideals of discrete 
statistical models has been an active area of research in algebraic statistics. The books by Sullivant [18, 
Chapter 9] and Aoki, Hara and Takemura [1] are good references to learn about the role of toric ideals in 
statistics. A recent introduction to the topic, from the point of view of binomial ideals, can be found in 
[13, Chapter 9], which also contains a thorough list of references of previous contributions to this topic.

In 2008, Smith and Anderson [15] introduced a new graphical discrete statistical model called a staged 
tree model. This model is represented by an event tree together with an equivalence relation on its vertices. 
Staged tree models are useful to represent conditional independence relations among events and random 
variables, such as those coming from discrete graphical models. Hence, any discrete Bayesian network or 
decomposable model is also a staged tree model [15]. There are two properties that make staged tree 
models more general than Bayesian networks or decomposable models. First, the state space of a staged 
tree model does not have to be a cartesian product. Second, using staged tree models it is possible to 
represent extra context-specific conditional independence between events. The book of Collazo, Görgen 
and Smith [3] is a good reference to learn about these models.

In this article we define the toric ideal associated to a staged tree and study its properties from an 
algebraic and combinatorial point of view. We present Theorem 2.14, which states that toric ideals of 
staged trees that are balanced and stratified have quadratic Gröbner basis with square-free initial ideal. 
We apply Theorem 2.14 in Section 5 to obtain Gröbner bases for toric ideals of staged tree models. Our
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results provide a new point of view on the construction of Gröbner bases for decomposable graphical
models, some conditional independence models, as well as the construction of Gröbner bases for staged
tree models whose underlying tree is asymmetric.

This article is organized as follows. In Section 2, we define the toric ideal associated to a staged tree.
In Section 3, we formulate a toric fiber product construction for balanced and stratified staged trees. In
Section 4, we prove our main result Theorem 2.14. Finally, in Section 5 we apply our results to compute
Gröbner bases for several statistical models.

2. Staged trees

We start by defining our two objects of interest: a staged tree and its associated toric ideal. First, we set up
the graph-theoretic notation and conventions. Let T = (V, E) be a directed rooted tree, with vertex set V
and set E of directed edges. We only consider trees T = (V, E) where all elements in E are oriented
away from the root. Since we only consider directed paths, we refer to any directed path in T simply as a
path. For v,w ∈ V the directed edge in E from v to w is denoted by (v,w), the set of children of v is
ch(v)= {u | (v, u) ∈ E}, and the set of outgoing edges from v is E(v)= {(v, u) | u ∈ ch(v)}. A vertex
v ∈ V is a leaf if ch(v)=∅ and it is an nonroot vertex if it is different from the root.

Definition 2.1. Let T = (V, E) be a tree, L a finite set of labels, and θ : E→L a surjective function. For
each v ∈ V, θv := {θ(e) | e ∈ E(v)} is the set of labels associated to v. The pair (T , θ) is a staged tree if

(i) for each v ∈ V, we have |θv| = |E(v)|, and

(ii) for any two vertices v,w ∈ V either θv = θw or θv ∩ θw =∅.

Condition (ii) in Definition 2.1 defines an equivalence relation on the set of nonleaf vertices of T .
Namely, two nonleaf vertices v,w ∈ V are equivalent if and only if θv = θw. We refer to the partition
induced by this equivalence relation on the set of nonleaf vertices as the set of stages of T and to a
single element in this partition as a stage. Condition (i) in Definition 2.1 guarantees that all edge labels
associated to a single vertex are distinct. We use (T , θ) to denote a staged tree with labeling rule θ . For
simplicity we will often drop the use of θ and write T for a staged tree.

To define the toric ideal associated to (T , θ) we define two polynomial rings. The first ring is
R[p]T :=R[pλ |λ∈3], where3 is the set of root-to-leaf paths in T . The second ring is R[2]T :=R[z,L],
where the labels in L are indeterminates together with a homogenizing variable z. For a path γ in T ,
E(γ ) is the set of edges in γ .

Definition 2.2. The toric staged tree ideal associated to (T , θ) is the kernel of the ring homomorphism
ϕT : R[p]T → R[2]T defined as

pλ 7→ z ·
∏

e∈E(λ)

θ(e). (1)

The ideal ker(ϕT ) defines the toric variety specified as the closure of the image of the monomial
parametrization 8T : (C

∗)|L| → P|3|−1 given by (θ(e) ∈ L) 7→
(
z ·
∏

e∈E(λ) θ(e)
)
λ∈3

. We use the
homogenizing variable z in Definition 2.2 to consider the projective toric variety in P|3|−1.
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Figure 1. Three examples of staged trees. In each tree two vertices with the same color
are in the same stage.

It is often useful to encode a monomial map between polynomial rings by using an exponent matrix.
Let B = (bi j ) be a d × n matrix with nonnegative integer entries. The columns of B define a monomial
map φB :R[z1, . . . , zn]→R[t1, . . . , td ], z j 7→

∏d
i=1 tbi j

i . The matrix B is the exponent matrix of φB . We
will use this notation in Sections 3 and 4.

Example 2.3. The staged tree T1 in Figure 1 has label set L= {s0, . . . , s13}. Each vertex in T1 is denoted
by a string of 0s and 1s, and each edge has a label associated to it. The root-to-leaf paths in T1 are
denoted by pi jkl , where i, j, k, l ∈ {0, 1}. A vertex in T1 represented with a blank circle indicates a stage
consisting of a single vertex. We use colors in the vertices of T1 to indicate which vertices are in the same
stage. For instance, the set of purple vertices {000, 010, 100, 110} are in the same stage and therefore
they have the same set {s10, s11} of associated edge labels. The map φT1 sends (s0, . . . , s13) to

(s0s2s6s10, s0s2s6s11, s0s2s7s12, s0s2s7s13, s0s3s8s10, s0s3s8s11, s0s3s9s12, s0s3s9s13,

s1s4s6s10, s1s4s6s11, s1s4s7s12, s1s4s7s13, s1s5s8s10, s1s5s8s11, s1s5s9s12, s1s5s9s13).

The toric ideal ker(ϕT1) is generated by a quadratic Gröbner basis with square-free initial ideal.

Example 2.4. Consider the two staged trees T2, T3 depicted in Figure 1. For the staged tree T2, ker(ϕT2)

is generated by a quadratic Gröbner basis with square-free initial ideal. For T3, the ideal ker(ϕT3) also
has a Gröbner basis with square-free initial ideal but its elements are of degree 2 and degree 4.

We are interested in relating the combinatorial properties of the staged tree (T , θ) with the properties
of the toric ideal ker(ϕT ). The two definitions that are relevant for the statement of the main theorem
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are the definition of balanced staged tree and of stratified staged tree. Before stating the main theorem,
Theorem 2.14, we look into the definition and consequences of these two notions.

Definition 2.5. Let T be a tree. For v ∈ V, the level of v is denoted by `(v) and it is equal to the number
of edges in the unique path from the root of T to v. If all the leaves in T have the same level then the
level of T is equal to the level of any of its leaves. The staged tree (T , θ) is stratified if all its leaves have
the same level and if every two vertices in the same stage have the same level.

It is easy to check that all trees in Figure 1 are stratified. Namely, we only need to verify that every
two vertices with the same color are also in the same level. Notice that the combinatorial condition of
(T , θ) being stratified implies the algebraic condition that the map ϕT is square-free.

We now turn our attention to the definition of a balanced staged tree. This definition is formulated in
terms of polynomials associated to each vertex of the tree. We proceed to explain their notation and basic
properties.

Definition 2.6. Let (T , θ) be a staged tree, v ∈ V, and Tv the subtree of T rooted at v. The tree Tv is a
staged tree with the induced labeling from T . Let 3v be the set of v-to-leaf paths in T . The interpolating
polynomial of Tv is

t (v) :=
∑
λ∈3v

∏
e∈E(λ)

θ(e).

When v is the root of T , the polynomial t (v) is called the interpolating polynomial of T . Two staged trees
(T , θ) and (T , θ ′) with the same label set L are polynomially equivalent if their interpolating polynomials
are equal.

The interpolating polynomial of a staged tree is useful to capture symmetries among subtrees. It is
also an important tool in the study of the statistical properties of staged tree models. This polynomial
was defined by Görgen and Smith in [10] and further studied by Görgen et al. in [11]. Although these
two articles are written for a statistical audience, we would like to emphasize that their symbolic algebra
approach to the study of statistical models proves to be very important for the use of these models in
practice. We will define the statistical model associated to a staged tree and connect to other results in
algebraic statistics in Section 5.

If (T , θ) is a staged tree, the polynomials t ( · ) satisfy a recursive relation. This relation is useful to
prove statements about the algebraic and combinatorial properties of T . We state this property as a lemma.

Lemma 2.7 [11, Theorem 1]. Let (T , θ) be a staged tree, v ∈ V and ch(v) = {v0, . . . , vk}. Then the
polynomial t (v) admits the recursive representation t (v)=

∑k
i=0 θ(v, vi )t (vi ).

Example 2.8. Consider the staged tree T1 in Figure 1. If v and w are orange and blue vertices in T1

respectively and r is the root of T1 then

t (v)= s6(s10+ s11)+ s7(s12+ s13),

t (w)= s8(s10+ s11)+ s9(s12+ s13),

t (r)= (s0s2+ s1s4)t (v)+ (s0s3+ s1s5)t (w).
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Definition 2.9. Let (T , θ) be a staged tree and let v,w be two vertices in the same stage, with ch(v)=
{v0, . . . , vk} and ch(w)= {w0, . . . , wk}. After a possible reindexing of the elements in ch(w), we may
assume that θ(v, vi )= θ(w,wi ) for all i ∈ {0, . . . , k}. The pair v,w is balanced if

t (vi )t (w j )= t (wi )t (v j ) in R[2]T for all i 6= j ∈ {0, . . . , k}. (2)

The staged tree (T , θ) is balanced if every pair of vertices in the same stage is balanced.

Example 2.10. The two staged trees T2, T3 in Figure 1 are not balanced. The pair of pink vertices in T2

is not balanced because (s10+ s11)(s12+ s13) 6= (s10+ s11)
2. By a similar argument we can check that T3

is also not balanced.

Although the balanced condition in Definition 2.9 seems to be algebraic and hard to check, in many
cases it is very combinatorial. To formulate a precise instance where this is true we need the following
definition.

Definition 2.11. Let (T = (V, E), θ) be a staged tree. We say that two vertices v,w ∈ V are in the same
position if they are in the same stage and t (v)= t (w).

The notion of position for vertices in the same stage was formulated in [15]. Intuitively it means that if
we regard the subtrees Tv and Tw as representing the unfolding of a sequence of events, then the future of
v and w is essentially the same. In the next lemma we use positions of vertices to provide a sufficient
condition on a stratified staged tree (T , θ) to be balanced.

Lemma 2.12. Let (T , θ) be a stratified staged tree. Suppose that every two vertices in T that are in the
same stage are also in the same position. Then (T , θ) is balanced.

Proof. Following Definition 2.9, it suffices to prove that any pair of vertices in the same position is
balanced. Let v,w be two vertices in the same position. We use the same notation in Definition 2.9 and
assume without loss of generality that θ(v, vi )= θ(w,wi ). Using Lemma 2.7 we write

t (v)= t (w) ⇐⇒

k∑
i=0

θ(v, vi )t (vi )=

k∑
i=0

θ(w,wi )t (wi ) ⇐⇒

k∑
i=0

θ(v, vi )(t (vi )− t (wi ))= 0.

Since (T , θ) is stratified, the variables appearing in the polynomials t (vi ), t (wi ) are disjoint from the
set of variables {θ(v, v0), . . . , θ(v, vk)}. Thus t (vi )= t (wi ) for all i ∈ {0, . . . , k}. It follows that for all
i, j ∈ {0, . . . , k} the equality t (vi )t (w j )= t (wi )t (v j ) is true. Hence (T , θ) is balanced. �

Example 2.13. The staged tree T1 in Figure 1 is balanced. This can be readily checked by noting that
the blue vertices are in the same position and that the same is true for the orange vertices. The two trees
in Figure 3 are examples of balanced staged trees in which the blue vertices are not in the same position.

We are now ready to state the main theorem.

Theorem 2.14. If (T , θ) is a balanced and stratified staged tree then ker(ϕT ) is generated by a quadratic
Gröbner basis with square-free initial ideal.
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We clarify that the conditions of (T , θ) being balanced and stratified in Theorem 2.14 are sufficient
for ker(ϕT ) to have a quadratic Gröbner basis but are not necessary. In the examples of staged trees in
Figure 1, all of the trees T1, T2, T3 are stratified but only T1 is balanced. Even though T2 is not balanced,
it has a quadratic Gröbner basis with square-free initial terms.

3. Toric fiber products

In this section we review toric fiber products following the exposition in [17]. We then use these results
in Section 4 to prove Theorem 2.14.

Given a positive integer m, set [m] = {1, 2, . . . ,m}. Let r be a positive integer, and let s and t be two
vectors of positive integers in Zr

>0. Consider the multigraded polynomial rings

K[x] := K[x i
j | i ∈ [r ], j ∈ [si ]] and K[y] := K[yi

k | i ∈ [r ], k ∈ [ti ]]

graded by the same set A= {a1, . . . , ar
} ⊂ Zd, where

deg(x i
j )= deg(yi

k)= ai

and such that there exists a vector w ∈Qd such that 〈w, ai
〉 = 1 for any ai

∈A. A polynomial in K[x] or
K[y] is A-homogeneous whenever it is homogeneous with respect to the multigrading given by A. An
ideal in K[x] or K[y] is A-homogeneous if it is generated by A-homogeneous elements. If I ⊆ K[x]
and J ⊆ K[y] are A-homogeneous ideals, then the quotient rings R = K[x]/I and S = K[y]/J are also
multigraded rings. Let

K[z] := K[zi
jk | i ∈ [r ], j ∈ [si ], k ∈ [ti ]]

and consider the ring homomorphism

φI,J : K[z] → R⊗K S,

zi
jk 7→ x̄ i

j ⊗ ȳi
k,

where x̄ i
j and ȳi

k are the equivalence classes of x i
j and yi

k respectively.

Definition 3.1. The toric fiber product of I and J is I ×A J := ker(φI,J ).

We now recall results from [17] about the generators of the ideal I ×A J. The generators of I ×A J
come in two flavors; new quadratic generators that are created by the toric fiber product construction and
new generators that are lifts of generators from I and J.

Consider the monomial parametrization

φB : K[zi
jk | i ∈ [r ], j ∈ [si ], k ∈ [ti ]] → K[x i

j , yi
k | i ∈ [r ], j ∈ [si ], k ∈ [ti ]],

zi
jk 7→ x i

j yi
k,

where B is the exponent matrix of φB . Let

QuadB := 〈z
i
j1k2

zi
j2k1
− zi

j1k1
zi

j2k2
| 1≤ i ≤ r, 1≤ j1 < j2 ≤ si , 1≤ k1 < k2 ≤ ti 〉.
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By [17, Proposition 10], the elements in QuadB are a Gröbner basis of the ideal IB := ker(φB) with
respect to any term order that selects the underlined terms as leading terms. The elements in QuadB are
new quadratic generators created by the toric fiber product construction of I and J.

The construction of the generators of I ×A J that are lifts to the ring K[z] of elements in I and J is
explained in full generality in [17]. Since we will only consider lifts of pure quadratic binomials, we
restrict the definition from [17] to this case. We define lifts of A-homogeneous elements in K[x], an
analogous construction works to define lifts of elements in K[y].

Consider the A-homogeneous polynomial

f = x i1
a1

x i2
a2
− x i1

a3
x i2

a4
∈ K[x],

where i1, i2 ∈ [r ], a1, a3 ∈ [si1], a2, a4 ∈ [si2] and f ∈ I. Set k = (k1, k2) with k1 ∈ [ti1], k2 ∈ [ti2] and
consider fk ∈ K[z] defined by

fk = x i1
a1k1

x i2
a2k2
− x i1

a3k1
x i2

a4k2
.

The new A-homogeneous polynomial fk is in I ×A J for all k because f ∈ I.

Definition 3.2. Let A be linearly independent and let F ⊂ I be a collection of pure and quadratic
A-homogeneous polynomials. We associate to each f ∈ F the set T f = [ti1]× [ti2] of indices and define

Lift(F)= { fk | f ∈ F, k ∈ T f }.

The set Lift(F) is called the lifting of F to I ×A J. For a collection H of A-homogeneous elements of J,
we define Lift(H) in a similar way.

We are now ready to state the result from [17] that we will use in the proof of Theorem 2.14. The
important part of this theorem is that we can construct Gröbner basis of the toric fiber product I ×A J by
using lifts of Gröbner bases for I and J together with the elements in QuadB .

Theorem 3.3 [17, Theorem 12]. Suppose that A is linearly independent. Let F ⊂ I be a homogeneous
Gröbner basis for I with respect to the weight vector ω1 and let H ⊂ J be a homogeneous Gröbner basis
for J with respect to the weight vector ω2. Let ω be a weight vector such that QuadB is a Gröbner basis
for IB . Then the set Lift(F)∪Lift(H)∪QuadB is a Gröbner basis for I ×A J with respect to the weight
order φ∗B(ω1, ω2)+ εω for sufficiently small ε > 0.

4. Proof of main theorem

In the first part of this section we explain how to construct staged trees from smaller pieces and relate this
construction to toric fiber products in Proposition 4.4. Then, in Proposition 4.11 we use this construction
repeatedly for balanced and stratified staged trees. Finally, we use these results together with Theorem 3.3
to prove our main theorem.

Let (T , θ) be a staged tree. We recursively define an indexing on the set of nonroot vertices of T .
The children of the root are indexed by {0, 1, . . . , k}. If a is the index of a vertex v and |E(v)| = j + 1,
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then we index the children of a by a0, . . . , a j . This way each nonroot vertex in V is indexed by a finite
sequence of nonnegative integers

a = a1a2 · · · a`,

where ` is the level of the vertex indexed by a. From this point on we refer to any nonroot vertex in V
via its index a. All vertices of the trees in Figure 1 are indexed following this rule. In Figure 1 the index
of each vertex is displayed immediately above each vertex and on the side for the leaves. We denote by
iT the set of indices of the leaves in T .

Definition 4.1. If a staged tree has level one we call it a level-one tree. We reserve for it the special
notation (B, ε), where B = (V, E) is the tree and ε its labeling rule. By condition (i) in Definition 2.1,
the size of the label set of B is equal to |E |. Let E = {e0, . . . , em}. We use εk to denote the image of the
k-th element in E under ε. We also use the notation (B, {ε0, . . . , εm}) when we wish to emphasize the
label set of the level-one tree.

Definition 4.2. Let (T , θ) be a staged tree and G = {G1, . . . ,Gr } be a partition of the set of leaves iT .
We consider a collection {(Bi , ε

(i)) | i ∈ [r ]} of level-one trees such that their label sets are pairwise
disjoint and disjoint from the label set of (T , θ). The gluing component TG associated to T and G is

TG :=
⊔
i∈[r ]

(Bi , ε
(i)).

The gluing component TG is a forest of level-one trees; its label set is the union of the label sets of each
(Bi , ε

(i)). We denote by [T , TG] the tree obtained by gluing Bi to the leaf a for all a ∈ Gi and all i ∈ [r ].

Remark 4.3. The tree [T , TG] is a staged tree. Its label set is the union of the labels sets of (T , θ)
and TG . The labeling rule is inherited from the labelings of T and TG and it satisfies conditions (i), (ii)
in Definition 2.1. Moreover, i[T ,TG ] = {ak | a ∈ Gi , k ∈ iBi , i ∈ [r ]}. The stages in [T , TG] are the ones
inherited from T union the new stages determined by G. This means that two vertices a, b ∈ iT are in
the same stage in [T , TG] provided a, b ∈ Gi .

We relate ker(ϕ[T ,TG ]) to the toric fiber product of the two ideals ker(ϕT ) and the zero ideal 〈0〉. Fix
the notation for T ,G, [T , TG] as in Definition 4.2. We associate to TG the rings

R[p]TG := R[pi
k | k ∈ iBi , i ∈ [r ]] and R[2]TG := R[ε

(i)
k | i ∈ [r ], k ∈ iBi ],

and the ring map
ϕTG : R[p]TG → R[2]TG ,

pi
k 7→ ε

(i)
k .

Since there is a one-to-one correspondence between the variables pi
k and ε(i)k , we see that ϕTG is an

isomorphism. In particular, ker(ϕTG )= 〈0〉. Now, using G we regroup the variables in R[p]T by

R[p]T = R[pi
j | j ∈ Gi , i ∈ [r ]].

JOURNAL OF ALGEBRAIC STATISTICS 
Volume 12, No. 1, 2021, p.01-20 
https://publishoa.com 
ISSN: 1309-3452

8



We define multigradings on the polynomial rings R[p]T and R[p]TG by

deg(pi
j )= deg(pi

k)= ei for j ∈ Gi , k ∈ iBi , i ∈ [r ].

Here ei is the i-th standard unit vector in Zr. If A is the set of all these multidegrees, then A is linearly
independent as it is the collection of standard unit vectors in Zr.

Suppose ker(ϕT ) is A-homogeneous and fix R = R[p]T / ker(ϕT ), S = R[p]TG/ ker(ϕTG ). Let
R[p][T ,TG ] = R[pi

jk | j ∈ Gi , k ∈ iBi , i ∈ [r ]] and consider the ring homomorphism

ψ : R[p][T ,TG ]→ R⊗R S,

pi
jk 7→ p̄i

j ⊗ p̄i
k for j ∈ Gi , k ∈ iBi , i ∈ [r ].

(3)

The ideal ker(ψ)= ker(ϕT )×A 〈0〉 is the toric fiber product of ker(ϕT ) and 〈0〉.

Proposition 4.4. Let T ,G, and TG be as in Definition 4.2. Suppose that ker(ϕT ) is A-homogeneous.
Then

ker(ϕ[T ,TG ])= ker(ϕT )×A 〈0〉.

Proof. Consider the tensor product of maps ϕ̄T⊗ϕ̄TG : R⊗RS→R[2]T⊗RR[2]TG , where ϕ̄T : R→R[2]T

and ϕ̄TG : S→ R[2]TG are induced by ϕT and ϕTG on the quotient rings R and S respectively. Note that
there is a canonical isomorphism R[2]T ⊗R R[2]TG

∼= R[2][T ,TG ]. Under this isomorphism,

ϕ̄T ⊗ ϕ̄TG ( p̄
i
j ⊗ p̄i

k)= ϕT (p
i
j ) ·ϕTG (p

i
k)=

(
z ·

∏
e∈E(λ j )

θ(e)
)
ε
(i)
k = ϕ[T ,TG ](p

i
jk).

The last equality follows by the construction of [T , TG]. Hence ϕ[T ,TG ] = (ϕ̄T ⊗ ϕ̄TG ) ◦ ψ . Since
ϕ̄T ⊗ ϕ̄TG is injective, ker(ϕ[T ,TG ])= ker(ψ). By (3), and since ker(ϕT ) is A-homogeneous, we conclude
ker(ψ)= ker(ϕT )×A 〈0〉. Thus ker(ϕ[T ,TG ])= ker(ϕT )×A 〈0〉. �

We make several remarks on the scope of Proposition 4.4 via the next set of examples.

Definition 4.5. Let (T , θ) be a stratified staged tree of level m. For 1≤ q ≤m we define V≤q :=
⋃q

i=0 Vi ,
where Vq := {v ∈ V | `(v)= q}. The tree T (q) = (V≤q , E≤q) is the induced subtree of T on the vertex
set V≤q . The restriction θ |E≤q defines a labeling on T (q). The staged tree (T (q), θ |E≤q ) is the level-q
subtree of (T , θ).

Example 4.6. Consider the staged tree T1 in Figure 1 and let T = T (3)1 be the level-three subtree of T .
The label set of T is {s0, . . . , s9}. Fix

G = {{000, 010, 100, 110}, {001, 011, 101, 111}},

TG = (B1, {s10, s11})t (B2, {s12, s13}).

With this choice of T ,G and TG we see that T1 = [T , TG]. Now R[p]T = R[pi
a | a ∈ Gi , i ∈ {1, 2}];

hence deg(p1
000, p1

010, p1
100, p1

110)= e1 and deg(p2
001, p2

011, p2
101, p2

111)= e2 so A = {e1, e2} ⊂ Z2 is of
full rank. The ideal

ker(ϕT )= 〈p1
000 p2

101− p1
100 p2

011, p1
010 p2

111− p1
110 p2

011〉

is A-homogeneous. Hence by Proposition 4.4 ker(ϕT1)= ker(ϕT )×A 〈0〉.
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Example 4.7. Let T2 be the staged tree from Figure 1. We proceed in a similar fashion as in Example 4.6.
Set T = T (2)2 ,

G = {{00, 01, 10}, {11, 31}, {20, 21, 30}},

TG = (B1, {s8, s9})t (B2, {s12, s13})t (B3, {s10, s11}).

Then T2 = [T , TG]. The set G defines a multigrading on R[p]T with A= {e1, e2, e3} ⊂ Z3. The ideal

ker(ϕT )= 〈p1
00 p2

11− p1
10 p1

01, p3
20 p2

31− p3
30 p3

21〉

is not A-homogeneous. Thus in this case ker(ϕT2) 6= ker(ϕT )×A 〈0〉.

Example 4.8. Let T3 be as in Figure 1 and T = T (2)3 . Fix

G = {{00, 01, 10, 31}, {20, 21, 30, 11}},

TG = (B1, {s8, s9})t (B2, {s10, s11})

so T3 = [T , TG]. The set G defines a multigrading on R[p]T with A= {e1, e2} ⊂ Z2. The ideal

ker(ϕT )= 〈p1
00 p2

11− p1
10 p1

01, p2
20 p1

31− p2
30 p2

21〉

is not A-homogeneous. However there is a nonempty principal subideal of ker(ϕT ) that is A-homogeneous.
This principal ideal Q is generated by the quartic p1

00 p2
11 p2

20 p1
31− p1

01 p1
10 p2

21 p2
30. In this case ker(ϕT3)=

Q×A 〈0〉. This does not fall in the context of Proposition 4.4 since ker(ϕT3) 6= ker(ϕT )×A 〈0〉.

Start with a level-one probability tree T1. Let G1 be a partition of iT1 , TG1 be a gluing component and set
T2=[T1, TG1]. In the inductive step, T j+1=[T j , TG j ], with r j := |G j

|. At each step j we also require that
the label set of TG j is disjoint from the label set of T j . Note that G j is a partition of the set iT j . After n iter-
ations, we obtain a stratified staged tree Tn whose set of stages is exactly

⋃n−1
j=1 G j. Whenever a staged tree

(T , θ) is constructed in this way, so T = Tn for some n, we say T is an inductively constructed staged tree.
Any stratified staged tree can be inductively constructed. This follows because the set of edge labels

associated to the vertices in different levels are disjoint and because all leaves have the same level. Staged
trees such as the one in Figure 3 (left) where the leaves have different levels do not fall into the definition
of inductively constructed staged tree, even though the edge labels associated to vertices in two different
levels are disjoint.

We will use Theorem 3.3 in Section 3 to write down the generators of inductively constructed staged
trees that are balanced. The balanced condition is the combinatorial ingredient that makes the algebra of
the toric fiber product work when considering iteratively constructed staged trees. This is already evident
by looking at the trees in Figure 1 together with the Examples 4.6, 4.7, and 4.8. Although, all of the trees
are stratified and can be inductively constructed, only ker(ϕT1) can be constructed in steps by using toric
fiber products. This is because T1 is balanced.

Let T j be an inductively constructed staged tree and T j+1 = [T j , TG j ], with r j = |G j
|. Consider the

monomial map
φB j : R[p]T j+1 → R[pi

a, pi
k | a ∈ G j

i , k ∈ iB j
i
, i ∈ [r j ]],

pi
ak 7→ pi

a pi
k,

(4)
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where B j denotes the exponent matrix of the monomial map φB j . Set IB j = ker(φB j ) and

QuadB j = {p
i
ak1

pi
bk2
− pi

bk1
pi

ak2
| a, b ∈ G j

i , k1 6= k2 ∈ iB j
i
, i ∈ [r j ]}.

By Proposition 10 in [17], QuadB j is a Gröbner basis for IB j with respect to any term order that selects
the underlined terms as leading terms.

We now write down the of the elements in Lift(F) for F ⊂R[p]T . Fix T , G, and TG as in Definition 4.2
and denote by A the multigrading of the rings R[p]T , R[p][T ,TG ] defined by G. Following Definition 3.2
for lifts of elements in the ring R[p]T , we consider the A-homogeneous polynomial

f = pi1
a1

pi2
a2
− pi1

a3
pi2

a4
∈ R[p]T ,

where a1, a3 ∈ Gi1 , a2, a4 ∈ Gi2 and i1, i2 ∈ [r ]. Set k = (k1, k2) with k1 ∈ iBi1
, k2 ∈ iBi2

and consider
fk ∈ R[p][T ,TG ] defined by

fk = pi1
a1k1

pi2
a2k2
− pi1

a3k1
pi2

a4k2
.

For each f ∈ F, the set T f = iBi1
× iBi2

is the set of associated indices and

Lift(F)= { fk | f ∈ F, k ∈ T f }.

Definition 4.9. Let Tn be an inductively constructed staged tree with Ti+1=[Ti , TGi ] for 1≤ i ≤ n−1 and
let Ai be the grading in R[p]Ti determined by Gi. Fix two nonnegative integers i, q with 1≤ i+q ≤ n−1.
We define

Liftq(QuadBi ) := LiftAi+q ( · · · (LiftAi+2(LiftAi+1(QuadBi ))) · · · ),

where the subscript in LiftA( · ) indicates the grading of the argument is with respect to A.

We formulate a lemma that says that level-q subtrees of balanced and stratified staged trees are also
balanced. This leads us to consider interpolating polynomials of a vertex in two different rings. For a
staged tree (T = (V, E), θ) and a vertex v ∈ V of level q , we write t( j)(v) for the interpolating polynomial
of v in the level- j subtree (T ( j), θ |E≤ j ), where q ≤ j ≤ m and m is the level of T . Thus t( j)(v) is an
element of R[2]T ( j) .

Lemma 4.10. Let (T , θ) be a staged tree of level m and let q be a positive integer with 1≤ q ≤m− 1. If
(T , θ) is balanced and stratified, then the level-q subtree T (q) of T is also balanced and stratified.

Proof. We must prove that if a, b are two vertices in T (q) that are in the same stage, then they are a
balanced pair in R[2]T (q) . Since T is balanced, a, b are a balanced pair in R[2]T . Namely,

t(m)(ak1)t(m)(bk2)= t(m)(ak2)t(m)(bk1) in R[2]T for all k1, k2 ∈ {0, . . . , |ch(a)| − 1}. (5)

For a vertex v in T (q) define [v] = {u ∈ iT (q) | the root-to-u path in T (q) goes through v}. Then by a
repeated use of Lemma 2.7, for c ∈ {ak1, bk2, ak2, bk1},

t(m)(c)=
∑
u∈[c]

∏
e∈E(λu)

θ(e)t(m)(u),

where λu is the c to u path in T (q). Here t(m)(c) is an element of R[2]T . Denote by tm(c)|T (q) the
polynomial obtained from t(m)(c) by specializing t(m)(u) = 1 for all u ∈ [c]. This specialization is a
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polynomial in R[2]T (q) . Since T is stratified, t (c)|T (q) is the interpolating polynomial t(q)(c) of c as a vertex
in T (q). Applying this specialization to (5) yields the balanced condition for the pair a, b in R[2]T (q) . �

Proposition 4.11. Let Ti be a balanced and inductively constructed staged tree. Suppose Ti+1 = [Ti , TGi ]

and Ti+1 is balanced. Then the elements in

Lifti−2(QuadB1), Lifti−3(QuadB2), . . . , Lift(QuadBi−2), QuadBi−1

are Ai -homogeneous.

Proof. Since Ti is inductively constructed, there is a sequence of stratified trees and gluing components
(T1, TG1), . . . , (Ti−1, TGi−1) from which Ti is constructed. Moreover, by Lemma 4.10 each of T1, . . . , Ti−1

is also balanced. Fix q ∈ {0, 1, . . . , i−2} and j = i−q−1, we show that the binomials in Liftq(QuadB j )

are Ai -homogeneous. To this end we prove that for m such that 0≤m ≤ q , the elements in Liftm(QuadB j )

are A j+m+1-homogeneous. The proof is by induction on m.
Fix m = 0. We will show that the elements in QuadB j are A j+1-homogeneous. The multidegrees in

A j+1 are defined according to the partition G j+1 of the leaves of T j+1. If two leaves c, d ∈ iT j+1 in T j+1

are in the same set G j+1
β of the partition G j+1, then deg(pc)= deg(pd) in R[p]T j+1 .

Since T j+2 is balanced, every pair of vertices in T j+2 in the same stage is balanced. In particular, this
means that for all α ∈ {1, . . . , r j } and a, b ∈ G j

α

t( j+2)(ak1)t( j+2)(bk2)= t( j+2)(bk1)t( j+2)(ak2) for k1, k2 ∈ iB j
α

in R[2]T j+2, (6)

where ch(a)= {ak | k ∈ iB j
α
} and ch(b)= {bk | k ∈ iB j

α
}. Using the construction of T j+2 from T j+1

and TG j+1 , we know that for any index c ∈ {ak, bk | k ∈ iB j
α
}, we have t( j+2)(c)= ε

( j+1)
0 + · · ·+ ε

( j+1)
k′ ,

where {ε( j+1)
0 , . . . , ε

( j+1)
k′ } is the set of labels of some level-one probability tree B j+1

δ in TG j+1 . It follows
that (6) can only involve at most two sets of variables associated to two level-one probability trees in TG j+1 ,
say B j+1

β ,B j+1
γ . This implies that either {ak1, bk1} ⊂ G j+1

β and {ak2, bk1} ⊂ G j+1
γ or {ak1, ak2} ⊂ G j+1

β

and {bk2, bk1} ⊂ G j+1
γ . We use this fact to determine the multigrading of the elements in QuadB j with

respect to A j+1. By definition,

QuadB j =

r j⋃
α=1

{pak1 pbk2 − pbk1 pak2 | a, b ∈ G j
α, k1, k2 ∈ iB j

α
}.

Thus we calculate that the element pak1 pbk2− pbk1 pak2 in QuadB j is A j+1-homogeneous of degree eβ+eγ ,
where eβ and eγ are the multidegrees in A j+1 associated to the sets G j+1

β and G j+1
γ , respectively. This com-

pletes the proof for m = 0. As a result, all the equations in QuadB j can be lifted to elements in ker(ϕT j+2).
Suppose we have constructed Liftm−1(QuadB j ) inductively by lifting the equations in QuadB j and at

each step all equations lift. An element in Liftm−1(QuadB j ) is a binomial of the form

f = pak1s pbk2u′ − pbk1u pak2s′, (7)

where α ∈ {1, . . . , r j }, a, b ∈ G j
α, k1, k2 ∈ iB j

α
and s, s ′, u, u′ are sequences of nonnegative integers of

length m−1 that arise as subindices after lifting m−1 times. Note that ak1s, bk2u′, bk1u, ak2s ′∈ iT j+m The
claim is that (7) is A j+m- homogeneous.
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Following a similar argument as for m = 0, we know that two elements in the same set of the partition
G j+m have the same multidegree with respect to A j+m . As before, this condition can be verified for f
by checking that

t( j+m+1)(ak1s)t( j+m+1)(bk2u′)= t( j+m+1)(bk1u)t( j+m+1)(ak2s ′) in R[2]T j+m+1 . (8)

For c ∈ {ak1, bk2, ak2, bk1}, we have [c] := {w ∈ iT j+m | the root-to-w path in T j+m goes through c}. To
check that (8) holds, consider (2) from Definition 2.9 for the vertices a, b ∈ G j

α. This equation is

t( j+m+1)(ak1)t( j+m+1)(bk2)= t( j+m+1)(bk1)t( j+m+1)(ak2),

where k1, k2 ∈ iB j
α
. We use Lemma 2.7 to rewrite this equation as( ∑

ak1s∈[ak1]

( ∏
e∈E(ak1→ak1s)

θ(e)
)

t j+m+1(ak1s)
)
·

( ∑
bk2u′∈[bk2]

( ∏
e∈E(bk2→bk2u′)

θ(e)
)

t j+m+1(bk2u′)
)

=

( ∑
bk1u∈[bk1]

( ∏
e∈E(bk1→bk1u)

θ(e)
)

t j+m+1(bk1u)
)
·

( ∑
ak2s′∈[ak2]

( ∏
e∈E(ak2→ak2s′)

θ(e)
)

t j+m+1(ak2s ′)
)
. (9)

When we specialize t( j+m+1)(ak1s)= t( j+m+1)(bk2u′)= t( j+m+1)(bk1u)= t( j+m+1)(ak2s ′)= 1 in each
sum in (9) we get the interpolating polynomials t( j+m)(ak1), t( j+m)(bk2), t( j+m)(bk1), t( j+m)(ak2)

in R[2]T j+m . By Lemma 4.10, T j+m is balanced; therefore( ∑
ak1s∈[ak1]

∏
e∈E(ak1→ak1s)

θ(e)
)
·

( ∑
bk2u′∈[bk2]

∏
e∈E(bk2→bk2u′)

θ(e)
)

=

( ∑
bk1u∈[bk1]

∏
e∈E(bk1→bk1u)

θ(e)
)
·

( ∑
ak2s′∈[ak2]

∏
e∈E(ak2→ak2s′)

θ(e)
)
. (10)

The factors in the above equality are sums of monomials all with coefficients equal to 1. Thus for every
pair ak1s ∈ [ak1], bk2u′ ∈ [bk2] in the product of the left-hand side of the equation, there exists a pair
ak2s ′ ∈ [ak2], bk2u ∈ [bk1] in the product of the right-hand side of the equation such that( ∏

e∈E(ak1→ak1s)

θ(e)
)
·

( ∏
e∈E(bk2→bk2u′)

θ(e)
)
=

( ∏
e∈E(bk1→bk1u)

θ(e)
)
·

( ∏
e∈E(ak2→ak2s′)

θ(e)
)
. (11)

Hence (5) for the vertices a, b in T j+m+1 can be rewritten as∑
ak1s∈[ak1]
bk2u′∈[bk2]

( ∏
e∈E(ak1→ak1s)

e′∈E(bk2→bk2u′)

θ(e)θ(e′)
)
(t( j+m+1)(ak1s)t( j+m+1)(bk2u′)−t( j+m+1)(bk1u)t( j+m+1)(ak2s ′))=0.

Since T j+m+1 is stratified, the variables that appear in the factored monomials above are different from
the variables that appear in the factors of the form

t( j+m+1)(ak1s)t( j+m+1)(bk2u′)− t( j+m+1)(bk1u)t( j+m+1)(ak2s ′).
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Hence this last equation is true only if

t( j+m+1)(ak1s)t( j+m+1)(bk2u′)− t( j+m+1)(bk1u)t( j+m+1)(ak2s ′)= 0

for each summand. Following a similar argument as in the case for m = 0, this proves that the elements
in Liftm−1(QuadB j ) are A j+m-homogeneous. �

We are now ready to prove our main result, Theorem 2.14, using toric fiber products for balanced and
inductively constructed staged trees.

Proof of Theorem 2.14. If T is stratified, then T is an iteratively constructed staged tree and T = Tn for
some n. Set Fn = Liftn−2(QuadB1)∪Liftn−3(QuadB2)∪ · · ·∪QuadBn−1 . We prove by induction on n that
ker(ϕTn ) is generated by Fn and that Fn is a Gröbner basis with square-free initial ideal. The first nontrivial
case is n = 2. We have F2 = QuadB1 and from Proposition 10 in [17], F2 is a Gröbner basis for the ideal
ker(ϕT2) = ker(ϕT1)×A1 〈0〉. Suppose the statement is true for i , so the elements in Fi are a Gröbner
basis for ker(ϕTi ). Since Tn is balanced, by Lemma 4.10 the trees Ti and Ti+1 are also balanced. From
Proposition 4.11 the elements in Fi are Ai homogeneous, so by Theorem 3.3 the set Fi+1 is a Gröbner basis
for ker(ϕTi+1). Since the elements in Fn are all extensions of elements in QuadB j for j with 1≤ j ≤ n−1
we see that all the terms in these binomials are square-free. Hence the initial ideal of 〈Fn〉 is square-free. �

Corollary 4.12. Let (T , θ) be a balanced and stratified staged tree. Fix 1 to be the polytope defined
by the convex hull of the lattice points in the exponent matrix of the map ϕT . Then 1 has a regular
unimodular triangulation. In particular the toric variety defined by ker(ϕT ) is Cohen–Macaulay.

Proof. The ideal ker(ϕT ) has a square-free quadratic Gröbner basis with respect to a term order ≺. From
[16, Corollary 8.9], this induces a regular unimodular triangulation of 1. �

5. Connections to discrete statistical models

Staged tree models are a class of graphical discrete statistical models introduced by Anderson and Smith
in [15]. While Bayesian networks and decomposable models are defined via conditional independence
statements on random variables corresponding to the vertices of a graph, staged tree models encode
independence relations on the events of an outcome space represented by a tree. In the statistical literature
these models are also referred to as chain event graphs. We refer the reader to the book [3] and to [19] to
find out more about their statistical properties, practical implementation, and causal interpretation. In
this section we give a formal definition of staged tree models and recall results from [6; 9] about their
defining equations.

Given a discrete random variable X with state space {0, . . . , n}, a probability distribution on X is a
vector (p0, . . . , pn) ∈ Rn+1, where pi = P(X=i), i ∈ {0, . . . , n}, pi ≥ 0 and

∑n
i=0 pi = 1. The open

probability simplex
1◦n = {(p0, . . . , pn) ∈ Rn+1

| pi > 0, p0+ · · ·+ pn = 1}

consists of all the strictly positive probability distributions for a discrete random variable with state space
{0, . . . , n}. A discrete statistical model is a subset of 1◦n . In the next definition we associate a discrete
statistical model to a given staged tree.

JOURNAL OF ALGEBRAIC STATISTICS 
Volume 12, No. 1, 2021, p.01-20 
https://publishoa.com 
ISSN: 1309-3452

14



Definition 5.1. Let (T , θ) be a staged tree. We define the parameter space

2T :=
{

x ∈ R|L|
∣∣ for all e ∈ E, xθ(e) ∈ (0, 1) and for all a ∈ V,

∑
e∈E(a) xθ(e) = 1

}
.

Note that 2T is a product of open probability simplices. A staged tree model M(T ,θ) is the image of the
map 9T :2T →1◦

|iT |−1 defined by

x 7→ px =

( ∏
e∈E(λ j )

xθ(e)

)
j∈iT

.

We can check that, for every x ∈2T , px is a probability distribution and therefore 9(2T )⊂1
◦

|iT |−1.
Two staged trees (T , θ) and (T ′, θ ′) are statistically equivalent if there exists a bijection between 3T

and 3T ′ in such a way that the image of 9T is equal to the image of 9T ′ under this bijection.

Example 5.2. The staged tree T1 in Figure 1 is the staged tree representation of the decomposable model
associated to the undirected graph G = [12][23][34] on four nodes.

Remark 5.3. For staged tree models, the root-to-leaf paths in the tree represent the possible unfoldings
of a sequence of events. Given an edge (v,w) in T , the label θ(v,w) is the transition probability from v

to w given arrival at v.

Remark 5.4. A staged tree model M(T ,θ) is a discrete statistical model parametrized by polynomials.
The domain of this model is a semialgebraic set given by a product of simplices. As a consequence the
image of 9T is also a semialgebraic set. An important property of these models as noted in [9] is that the
only inequality constraints of the image of 9T are the ones imposed by the probability simplex, namely
0≤ p j ≤ 1 for j ∈ iT and

∑
j∈iT p j = 1.

In Definition 2.2 we defined the toric ideal associated to a staged tree (T , θ). Now we define the ideal
associated to a staged tree model M(T ,θ). For this we use the rings R[p]T and R[2]T from Definition 2.2.
Consider the ideal q of R[2]T generated by all sum-to-1 conditions 1−

∑
e∈E(a) θ(e) for a ∈ V and let

R[2]MT := R[2]T /q. Denote by π the canonical projection from R[2]T to the quotient ring R[2]MT .

Definition 5.5. Let M(T ,θ) be a staged tree model and set ϕ̄T := π ◦ϕT . The ideal ker(ϕ̄T ) is the staged
tree model ideal associated to the model M(T ,θ).

From the definition it follows that for every staged tree (T , θ), the toric staged tree ideal is contained
in the staged tree model ideal; i.e., ker(ϕT )⊂ ker(ϕ̄T ). It is not true in general that these two ideals are
equal [6]. However, Theorem 10 in [6] states that if a staged tree (T , θ) is balanced, then ker(ϕT ) =
ker(ϕ̄T ). Combining this result with Theorem 2.14 we can obtain Gröbner bases for staged tree model
ideals whose staged tree is balanced and stratified.

Corollary 5.6. If (T , θ) is a balanced and stratified staged tree, then the ideal ker(ϕ̄T ) has a quadratic
Gröbner basis with square-free initial ideal.

Example 5.7. Consider the staged tree model defined by the tree T1 in Figure 1 as in Example 5.2. Since
this staged tree model is equal to the decomposable model given by G = [12][23][34], from [8] we know
it has a quadratic Gröbner basis. We recover the same result from the perspective of staged trees by using
Corollary 5.6.
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Corollary 5.6 is relevant in statistics because of the connection of Gröbner bases to sampling [1]. We
presented Example 5.7, where a balanced and stratified staged tree represents an instance of a decomposable
graphical model. We now provide more examples of staged tree models for which Corollary 5.6 holds. The
first one is an explanation of the contraction axiom for conditional independence statements through the lens
of staged trees. Before we present our examples we do a quick overview of discrete conditional indepen-
dence models. Our exposition follows that in [18, Chapter 4]; for more details we refer the reader to [14; 5].

Let X = (X1, . . . , Xn) be a vector of discrete random variables, where X i has state space [di ] for
i ∈ [n]. The vector X has state space X = [d1] × · · · × [dn] and we write pu1···un for the probability
P(X1=u1, . . . , Xn=un). We consider only positive probability distributions of the random vector X . For
each subset A ⊂ [n], X A is the subvector of X indexed by the elements in A. Similarly, XA =

∏
i∈A[di ]

and for a vector x ∈ X , xA denotes the restriction of x to the indexes in A.

Definition 5.8. Let A, B,C be pairwise disjoint subsets of [n]. The random vector X A is conditionally
independent of X B given XC if for every a ∈ X A, b ∈ X B and c ∈ XC

P(X A=a, X B=b|XC=c)= P(X A=a|XC = c) · P(X B=b|XC=c).

The notation X A ⊥⊥ X B | XC is used to denote that the random vector X satisfies the conditional indepen-
dence statement that X A is conditionally independent on X B given XC . When C is the empty set this
reduces to marginal independence between X A and X B .

If C is a list of conditional independence statements among variables in a vector X , the conditional
independence model MC is the set of all probability distributions inside the open probability simplex
1◦
|X |−1 that satisfy the conditional independence statements in C. A conditional independence statement

X A ⊥⊥ X B | XC translates into the condition that the joint probability distribution of the variables in X
satisfies a set of quadratic equations. For elements a ∈ X A, b ∈ X B and c ∈ XC we set pa,b,c,+ =

P(X A=a, X B=b, XC=c).

Proposition 5.9 [18]. If X is a discrete random vector, then the independence statement X A ⊥⊥ X B | XC

holds for X if and only if the probability distribution of X satisfies

pa1,b1,c,+ pa2,b2,c,+− pa1,b2,c,+ pa2,b1,c,+ = 0

for all a1, a2 ∈ XA, b1, b2 ∈ XB and c ∈ XC .

Let R[px | x ∈ X ] be the polynomial ring with one indeterminate for each element in the state space
of X . The conditional independence ideal IA⊥⊥B|C , is the ideal in R[px | x ∈X ] generated by all quadratic
relations in Proposition 5.9. If C is a list of conditional independence statements then we define IC as the
sum of all conditional independence ideals associated to statements in C.

Example 5.10. We consider the contraction axiom for positive distributions using staged tree models. Fix
three discrete random variables X1, X2, X3 with state spaces [d1+ 1], [d2+ 1], [d3+ 1] respectively. The
contraction axiom states that the set of conditional independence statements C={X1 ⊥⊥ X2 | X3, X2 ⊥⊥ X3}

implies the statement X2 ⊥⊥ (X1, X3). A primary decomposition of the ideal IC was obtained in [7,
Theorem 1]. Here we provide a proof, using staged trees, that one of the primary components of IC is
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Figure 2. The staged trees T and T ′ are statistically equivalent, they represent the
contraction axiom for three discrete random variables X1, X2 and X3.

the prime binomial ideal IX2⊥⊥(X1,X3). As mentioned in [7] this is a well-known fact. First we explain
how to represent the two statements in C with a staged tree. Consider the tree T in Figure 2. This
tree represents the state space of the vector (X3, X2, X1) as a sequence of events where X3 takes place
first, X2 second and X1 third. The vertices of T are indexed recursively as defined at the beginning
of Section 4. The statement X2 ⊥⊥ X3 is represented by the stage consisting of the vertices {0, . . . , d3};
these are colored gray in T . The statement X1 ⊥⊥ X2 | X3 is represented by the stages S0, . . . , Sd3 , where
Si = {i j | j ∈ {0, . . . , d2}} and i ∈ {0, . . . , d3}. These stages mean that for a given outcome of X3, the
unfolding of the event X2 followed by X1 behaves as an independence model on two random variables. In
Figure 2 the stage S0 is colored in pink and the stage Sd3 is colored in purple. Although the gray vertices
are not in the same position, we can easily check that T is balanced and stratified. Therefore ker(ϕT ) has
a quadratic Gröbner basis. Following the proof of Theorem 2.14 we can construct this basis explicitly.
It consists of a set of quadratic equations given by the elements in QuadB2 coming from the stages in
S0, . . . , Sd3 and the lifts of the equations QuadB1 coming from the stage {0, . . . , d3}. If we swap the order
of X1 and X2 in T , we obtain the staged tree T ′ in Figure 2. This tree represents the same statistical
model as T now with the unfolding of events X3, X1, X2. The gray stages in T ′ represent the statement
X2 ⊥⊥ (X1, X3). Hence, after establishing the evident bijection between the leaves of T and T ′ we see
that IX2⊥⊥(X1,X3) = ker(ϕT ′)= ker(ϕT ).

One of the main differences between staged tree models and discrete Bayesian networks is that the
state space of a Bayesian network is equal to the product of the state spaces of the random variables in
the vertices of the graph, while the state space of a staged tree model does not necessarily have to equal a
cartesian product. When T is not equal to the cartesian product of some finite sets we call the tree T
asymmetric. The lemmas that follow are important to show that Theorem 2.14 also holds for the case
when T is asymmetric. This implies that we can use Theorem 2.14 to construct quadratic Gröbner bases
for staged tree models whose underlying tree does not necessarily represents the outcomes of a vector of
discrete random variables.
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Figure 3. The staged trees T and T ′ are statistically equivalent.

The definition of staged tree in [9] requires that each vertex in T has either no or at least two outgoing
edges from v. We stepped away from making this requirement for the staged trees we consider in Section 2.
In the next lemmas we explain how this mild extension of the definition behaves with respect to the
balanced condition for a pair of vertices, and how trees defined according to [9] are recovered from the
more general trees we consider. Throughout the next lemmas, we fix a staged tree (T , θ) with edge set E
and define E1 = {e ∈ E | E(v)= {e} for some v ∈ V }. For the trees in Figure 3, T has |E1| = 6, while
for T ′, |E1| = 0.

Lemma 5.11. Suppose (T , θ) is a staged tree. Let T ′ be the staged tree obtained from T by contracting
the edges in E1. Then M(T ,θ) =M(T ′,θ) and ker(ϕ̄T )= ker(ϕ̄T ′).

Proof. First, note that the number of root-to-leaf paths in T ′ is the same as in T . Moreover, each
root-to-leaf path λ′ in T ′ is obtained from a unique root-to-leaf path λ in T by contracting the edges in E1.
Now let λ be a root-to-leaf path in T . The λ-coordinate of the map 9T applied to an element θ ∈2T is

[9T (θ)]λ =
∏

e∈E(λ)

θ(e)=
∏

e∈E(λ′)

θ(e)= [9T ′(θ |T ′)]λ′ .

The second equality in the previous equation follows from taking a closer look at 2T . Indeed for all
e ∈ E1 we have θ(e)= 1 because of the sum-to-1 conditions imposed on 2T in Definition 5.1. For the
third equality, θ |T ′ denotes the restriction of the vector θ to the edge labels of T ′. It follows from the
equalities above that the coordinates of 9T and 9T ′ are equal. Therefore M(T ,θ) =M(T ′,θ). A similar
argument applied to the maps ϕ̄T and ϕ̄T ′ shows that ker(ϕ̄T )= ker(ϕ̄T ′). To carry out this argument we
need to reindex the leaves of the trees; this can be done by dropping the index of the elements in E1. �

We illustrate Lemma 5.11 in Figure 3 where T ′ is obtained from T by contracting the six edges in E1.
The two staged trees in this figure define the same statistical model.
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Remark 5.12. To prove Corollary 5.6 we used [6, Theorem 10]. The proof of Theorem 10 in [6] is
presented for trees such that E1 = 0. However the result still holds when |E1|> 1 because the ideal IPaths

(from [6]) is contained in ker(ϕT ) in this case also; see [6] for more details.

Lemma 5.13. Suppose (T , θ) is a balanced and stratified staged tree. Let T ′ be the tree obtained from T
by contracting the edges in E1. Then (T ′, θ) is also balanced.

Proof. Suppose T is balanced and a, b are in the same stage. Following the notation from Definition 2.9,
we have t (ai)t (b j)= t (b j)t (a j) in R[2]T for all i 6= j ∈ {0, 1, . . . , k}. We specialize θ(e)= 1 in this
equation for all e ∈ E1 to obtain t (ai)t (b j) |θ(e)=1,e∈E1= t (b j)t (ai) |θ(e)=1,e∈E1 in R[2]T ′ . Therefore
T ′ is also balanced. �

Corollary 5.14. Suppose T is a balanced and stratified staged tree. Let T ′ be the staged tree obtained
from T by contracting the edges in E1. Then ker(ϕ̄T ′) is a toric ideal with a quadratic Gröbner basis
whose initial ideal is square-free.

Proof. From Corollary 5.6 it follows that ker(ϕ̄T ) is a toric ideal with a quadratic Gröbner basis and
square-free initial ideal. After an appropriate bijection, by Lemma 5.11, ker(ϕ̄T )= ker(ϕ̄T ′). �

We illustrate the result in Corollary 5.14 with an example.

Example 5.15. Fix T and T ′ to be the staged trees in Figure 3. The staged tree T ′ is considered in [6,
Section 6] as an example of the possible unfolding of events in a cell culture. A thorough discussion of
this example and its difference with other graphical models is also contained in [6, Section 6]. Here we
explain how to obtain a Gröbner basis for ker(ϕT ′) using Corollary 5.14. The tree T ′ is balanced and
statistically equivalent to T . By Corollary 5.6, T has a quadratic Gröbner basis with square-free initial
ideal. Using the lemmas preceding this example, there is a bijection between the root-to-leaf paths in T
and T ′; thus R[p]T and R[p]T ′ are isomorphic. Under this isomorphism, the Gröbner basis for ker(ϕ̄T )
is a Gröbner basis for ker(ϕ̄T ′); its generators are

p0111 p10− p0011 p110, p0011 p0110− p0010 p0111, p0110 p10− p0010 p110,

p0010 p010− p000 p0110, p0011 p010− p000 p0111, p010 p10− p000 p110.
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