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Abstract. We consider the connectivity of fiber graphs with respect to Gröbner basis and

Graver basis moves. First, we present a sequence of fiber graphs using moves from a Gröbner

basis and prove that their edge-connectivity is lowest possible and can have an arbitrarily

large distance from the minimal degree. We then show that graph-theoretic properties of fiber

graphs do not depend on the size of the right-hand side. This provides a counterexample to

a conjecture of Engström on the node-connectivity of fiber graphs. Our main result shows

that the edge-connectivity in all fiber graphs of this counterexample is best possible if we

use moves from Graver basis instead.
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1 Introduction

Many applications in statistics require a deeper analysis of the structure of a fiber of an integer

matrix A ∈ Z
d×n with ker(A) ∩ Z

n
≥0 = {0n} and a vector b ∈ Z

d defined as

FA,b := {u ∈ Z
n
≥0 : A · u = b}. (1.1)

Very often, one needs to sample elements of the set FA,b randomly, for example in hypothesis

testing for log-linear models [6, Chapter 1]. The assumption ker(A) ∩ Z
n
≥0 = {0n} makes FA,b

finite for all b ∈ Z
d. A random sampling on FA,b can be realised by performing a random walk

on a fiber graph G(FA,b,M) which is defined for a set M ⊆ ker(A) ∩ Z
d as the graph on the

nodes FA,b in which two nodes v,u ∈ FA,b are adjacent if either v − u ∈ M or u − v ∈ M.

The set M can be seen as a set of directions or moves one is allowed to choose from during the

random walk. Since random walks on graphs are essentially the same as Markov chains whose

state space equals the node-set of the graph – in the context of this paper FA,b – one can ask

whether this Markov chain converges against a stationary distribution. If G (FA,b,M) is connected

and non-bipartite, the Markov chain is irreducible and aperiodic and hence convergence towards
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a stationary distribution is guaranteed [8, Theorem 4.9]. Thus, the study of the connectedness of

fiber graphs is an important question in statistics.

The idea of sampling from fiber graphs goes back to the seminal work [4] of Diaconis and Sturmfels.

They formulated the connectedness of fiber graphs equivalently in the language of commutative

algebra: a set of movesM⊆ ker (A)∩Zn \{0n} makes the fiber graphs G (FA,b,M) connected for

all b ∈ Z
d simultaneously if and only if the set of polynomials {xm

+

− xm
−

: m ∈ M} generates

the toric ideal

IA := 〈xu
+

− xu
−

: u ∈ ker(A) ∩ Z
n〉.

The tools of commutative algebra provide a long list of moves which generate the toric ideal finitely

(see [10, Chapters 3 and 10]): every reduced Gröbner bases of A with respect to a term ordering ≺

on Z
n
≥0, denoted by R≺ (A), the universal Gröbner basis of A, denoted by U (A), and the Graver

basis of A, denoted by G(A), are Markov bases of A. We call a fiber graph using moves from a

Gröbner basis a Gröbner fiber graph and a fiber graph using moves from the Graver basis a Graver

fiber graph.

When working with Markov chains, it is typical to ask: What can we say about the random walk

and the convergence of the corresponding Markov chain? How long do we have to run the random

walk until we have a sufficiently good approximation of its stationary distribution? Is there a

difference in using moves from R≺ (A) rather then from G(A) (see Example 1.1)? In this paper we

have a closer look at a more refined structural information of fiber graphs from which we think an

answer to these questions can eventually be derived.

G(FA,b,R≺ (A)) G (FA,b,U (A)) G (FA,b,G(A))

Fig. 1. Different fiber graphs of the same underlying fiber.

Example 1.1. Figure 1 shows the fiber graphs for the matrix A = (1, 1, 2) ∈ Z
1×3 and the right-

hand side b = 3 using different types of moves. Even if we see obvious differences in those three

fiber graphs, the only statement we can make so far is that they are all connected. The mixing

times of those fiber graphs with respect to the Metropolis-Hastings chain as defined in Section 7

read from left to right as follows: 5.78807, 6.32917, and 2.24376. We see that the mixing time of

the Graver fiber graph surpasses the mixing time of the Gröbner fiber graphs by far.



3

To measure mixing we have to go beyond mere connectedness. One possible measurement could be

the connectivity of the underlying fiber graph (see Section 2) which counts the number of paths

between two nodes. It can be argued that the connectivity of a graph measures in some sense the

possibility of ‘getting stuck’ in a node during a random walk and hence a small connectivity cannot

lead to a good mixing time of the related Markov chain. In Section 7 we present our computational

results confirming this hypothesis.

Based on the assumption that a high connectivity is a desirable property of fiber graphs, Engström

conjectured in a talk at IST Austria in 2012 that the node-connectivity is best possible for Gröbner

fiber graphs.

Conjecture 1 (Engström; 2012). Let A ∈ Z
d×n be a matrix with ker(A) ∩ Z

n = {0n} and ≺ be

a term ordering on Z
n. Then for all b ∈ Z

d, the node-connectivity of G (FA,b,R≺ (A)) equals its

minimal degree.

A recent result of Potka supports Conjecture 1. He proved in [11] that the node-connectivity of

certain Gröbner fiber graphs of the n× n independence-model is best possible. However, we show

in Section 5 that Conjecture 1 is false in general. Let Ik be the identity matrix in Z
k×k and let 1k

be the k-dimensional vector having all entries equal to 1. For

Ak :=






Ik Ik 0 0 −1k 0

0 0 Ik Ik 0 −1k

0 0 0 0 1 1




 ∈ Z

(2k+1)×(4k+2) (1.2)

the underlying fiber graph of FAk,e2k+1
has node-connectivity 1 and minimal degree k when using

moves from the reduced lexicographic Gröbner basis of Ak (see Corollary 5.1). Hence, we cannot

expect to have a best possible connectivity in all Gröbner fiber graphs. Thus, [11] poses a weaker

follow-up conjecture which claims that the node-connectivity in fiber graphs is best possible if the

right-hand side is sufficently large.

Conjecture 2 ([11]). Let A ∈ Z
d×n be a matrix and ≺ be a term ordering. There exists N ∈ Z

d
≥0

such that for all b ∈ Z
d
≥0 with bi ≥ Ni for all i ∈ [d], the node-connectivity of the fiber graph

G (FA,b,R≺ (A)) equals its minimal degree.

We prove in Section 2 that once we observe a bad connectivity in an arbitrary fiber of a matrix, we

can construct fibers of a related matrix whose right-hand side entries exceed any given bound and

whose connectivity remains bad. Thus, by modifying our original counterexample (1.2), we show

in Section 5 that this gives rise to a counterexample to Conjecture 2.

Since these results diminish the hope for suitable connectivity in Gröbner fiber graphs, we consider

in Section 6 a possible way out. We show that in all Graver fiber graphs of Ak, in particular even

in those in which the Gröbner connectivity is lowest possible, the edge-connectivity best possible.



4

2 Connectivity and Fiber Graphs

In this section we recall some basic definitions from graph theory and introduce the framework of

graph connectivity. We refer to [5] for a more general introduction to this field. Let G = (V,E) be

a simple graph in finitely many nodes V and edges E. In this notation, a fiber graph G (FA,b,M)

can be written as (FA,b, {{u,v} : u− v ∈ ±M}). We call

δ(G) := min{deg(v) : v ∈ V }

the minimal degree of G where deg(v) is the cardinality of the neighborhood of v in G. Let k ∈ Z≥0,

then G is k-node-connected if |V | > k and if for all X ⊆ V such that |X | < k, the induced graph

of G on the nodes V \X is connected. In addition, the node-connectivity of G is

κ(G) := max{k ∈ Z≥0 : G is k-node-connected}.

Similarly, G is k-edge-connected if |E| > k and if for all X ⊆ E such that |X | < k the graph

(V,E \X) is connected. The edge-connectivity of G is

λ(G) := max{k ∈ Z≥0 : G is k-edge-connected}.

For every graph G we have δ(G) ≥ λ(G) ≥ κ(G) [5, Chapter 1.4]. For example, we obtain δ(G) ≥

λ(G) by removing all adjacent edges from a node with minimal degree in G, which isolates this node

and hence gives a disconnected graph. The edge-connectivity of G is best possible if δ(G) = λ(G)

and similarly the node-connectivity is best possible if δ(G) = κ(G). Even if these definitions look

very convenient at a first glance, they are rather unwieldy for proving general results about fiber

graphs. For our purposes, an equivalent property based on the number of paths between two nodes

turns out to be more useful and enables us to put hands on the connectivity of fiber graphs (see

also Menger’s Theorem [5, Chapter 3.3]). To obtain a lower bound on the node-connectivity of a

graph, we only have to determine the number of paths between nodes whose neighborhoods have

a non-empty intersection rather than between all nodes according to Liu’s criterion [9]. Since our

main result concerns edge-connectivity, we modify Liu’s original criterion and obtain a similar

statement involving edge-connectivity (see Lemma 2.1). A proof of Liu’s criterion can be found in

[1] and the idea behind the proof of Lemma 2.1 is similar, which is the reason why we omit its

proof here.

Lemma 2.1. Let k ∈ Z≥0 and let G = (V,E) be a connected graph with |E| > k. If for all

u, v ∈ V such that {u, v} ∈ E there are at least k edge-disjoint paths from u to v in G, then we

have λ(G) ≥ k.

Since δ(G) ≥ λ(G), replacing k with δ(G) in Lemma 2.1 gives a sufficient condition for the edge-

connectivity to be best possible. The next lemma is very useful in the proof of Proposition 2.1.

Lemma 2.2. Let G = (V,E) be a graph and K ⊆ V with |K| ≤ λ(G) and v ∈ V \K. Then there

are |K| edge-disjoint paths in G connecting all nodes of K with v.
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Proof. We extend G to a new graph G∗ by adding a node u and by inserting edges between u and

all nodes of K. Since |K| ≤ λ(G), G∗ must have edge-connectivity at least |K| due to the fact

that removal of |K| − 1 edges does not disconnect G∗. The definition of edge-connectivity gives

|K| many edge-disjoint paths from u to v in G∗. Clearly, those paths connect all nodes of K with

v in G as well and by removing u from G∗ we obtain edge-disjoint paths from all nodes of K to v

in G. �

The following proposition helps us out in Section 6.

Proposition 2.1. Let G = (V1 ∪ V2, E) with V1 ∩ V2 = ∅ and such that the induced subgraphs on

V1 and V2 have both an edge-connectivity of at least n. Furthermore, assume that every node in V1

has at least m ≥ n+ 2 neighbors in V2. Let v1 ∈ V1 and v2 ∈ V2 be two adjacent nodes such that

there are m node-disjoint paths in G connecting v1 and v2 which only use edges whose end-points

are in V1 and V2, respectively. Then there are m+n edge-disjoint paths in G connecting v1 and v2.

Proof. By assumption, we obtain for every j ∈ [m] a path Pj connecting v1 and v2 which only uses

edges between V1 and V2 (the edge {v1, v2} is regarded as a path):

v1
Pj

←−−→ v2. (2.1)

Moreover, all these paths are pairwise node-disjoint and hence pairwise edge-disjoint. Denote by

N(v) the neighborhood of a node v in G. Since, by assumption, the induced subgraph on V1 is

n-edge-connected, we have that v1 has at least n neighbors in V1, i.e., |N(v1) ∩ V1| ≥ n. Let

w1, . . . , wn be n arbitrary nodes in the neighborhood of v1 in V1. Again by assumption, we know

that |N(wi)∩V2| ≥ m for all i ∈ [n]. Our goal is to construct additional edge-disjoint paths between

v1 and v2. Since the paths Pj are pairwise node-disjoint, every wi could have been used by at most

one path Pj . Hence, for every i ∈ [n], up to two edges going from wi to V2 could have been used by

the paths Pj . In particular, there are still m− 2 edges from wi into V2 which have not been used

by any of the paths Pj . Since we have m − 2 ≥ n by assumption, each wi has at least n unused

neighbors in V2 and thus we can choose for every i ∈ [n] a node ki ∈ N(wi)∩V2 such that the edge

{wi, ki} is not used by any of the paths Pj and such that ki 6= ki′ for all i 6= i′. By construction,

{v1, wi, ki}, i ∈ [n], give n pairwise node-disjoint paths from v1 to ki. Since the induced subgraph

on V2 is also n-edge-connected we can apply Lemma 2.2 on the set {ki : i ∈ [n]} and the node v2 in

the induced subgraph on V2 and we obtain for every i ∈ [n] a path Qi connecting ki with v2 such

that all of those paths are pairwise edge-disjoint (note that if there is an i′ ∈ [n] such that ki′ = v2

we set Qi′ = ∅ and we still can apply the lemma on the smaller set consisting of the wi 6= wi′). All

in all, we have for all i ∈ [n] a path

v1
{v1,wi}
←−−−−→ wi

{wi,ki}
←−−−→ ki

Qi
←−−→ v2 (2.2)

and by construction these paths are pairwise edge-disjoint. Since for all i ∈ [n] the path from v1 to

wi stays completely in V1, the path from Qi only uses edges connecting nodes in V2 and since the



6

edges {wi, ki} had not been used by the paths Pj which on the other hand only uses edges between

V1 and V2, the paths given in (2.2) are pairwise edge-disjoint to all paths Pj , j ∈ [m]. This gives

m+ n pairwise edge-disjoint paths in G connecting v1 and v2. �

Our next result states that graph-theoretic properties of fiber graphs are independent of the size

of the right-hand side.

Theorem 1 (Universality Theorem). Every Gröbner fiber graph of a matrix A ∈ Z
d×n is

isomorphic to a Gröbner fiber graph of a matrix A′ ∈ Z
2d×(n+d) with arbitrarily large entries of its

right-hand.

Proof. Let b ∈ Z
d be the right-hand side of an arbitrary fiber of A and let R be a Gröbner basis

of A with respect to an arbitrary term ordering ≺ on Z
n. Consider the following matrix:

A′ :=

(

A Id

0 Id

)

∈ Z
2d×(n+d).

Clearly, we have ker (A′) ∩ Z
n+d =

{
(v,0)T : v ∈ ker (A) ∩ Z

n
}
. Thus, we obtain that R′ :=

{(v,0)⊺ : v ∈ R} is a Gröbner basis of A′ with respect to an arbitrary extension ≺′ of ≺ on

Z
n+d. We define for every bound N ∈ Z≥0 the right-hand side b′(N) :=

(

b+ ñ · 1d

ñ · 1d

)

∈ Z
2d where

ñ := max{N,N − bi : i ∈ [d]} ∈ Z≥0. It is easy to see that have the following correlation between

fibers of A and A′:

FA′,b′(N) =

{(

v

ñ · 1d

)

: v ∈ FA,b

}

.

Thus, for every N ∈ Z≥0 the map FA,b → FA′,b′(N),v 7→

(

v

ñ · 1d

)

gives a bijection from the nodes

of FA′,b′(N) to the nodes of FA,b. Even more, from the relation between the Gröbner bases R and

R′, this map respects the set of edges and hence it gives rise to a graph isomorphism between the

graphs G
(
FA,b′(N),R

′
)
and G (FA,b,R) for all N ∈ Z≥0. Since we have b

′(N) ≥ N ·12d we found

a fiber graph which is isomorphic to G (FA,b,R) such that the right-hand side components exceeds

every given bound N ∈ Z≥0. �

It is not hard to see that Theorem 1 is true if we choose Universal Gröbner bases or Graver bases

as sets of allowed moves as well. With a view towards Conjecture 2: due to the isomorphism, all

properties of the underlying graph carry over and hence it is enough to consider a Gröbner fiber

graph of a matrix whose connectivity is strictly less than its minimal degree in a low-sized right-

hand side (see Section 5). Since there are no general tools for determining the connectivity of fiber

graphs available, we establish some definitions and lemmas from which our connectivity results

in Section 6 benefit from. First, we slightly extend our definition of a fiber graph in Section 1 in
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the sense that we do not only restrict on fibers as a set of nodes but rather on arbitrary sets of

integer points. For two sets F ⊆ Z
k
≥0 andM⊆ Z

k, G(F ,M) is the graph on F in which two nodes

v,u ∈ F are adjacent if either v − u ∈ M or u − v ∈ M. Given an integer vector w ∈ Z
k
≥0, the

box of w is

Bw := [w1]× [w2]× · · · × [wk] ⊆ Z
k
≥0

and the standard basis of Zk is Ek := {ei : i ∈ [k]} ⊆ Z
k
≥0. The next lemma states that the

node-connectivity is best possible in the graph G(Bw,Ek). We omit the proof since it can easily

archived as a consequence of the node-version of Lemma 2.1. Recall that for w ∈ Z
k the support

supp(w) ⊆ [k] is the set of indices of all non-zero coordinates of w.

Lemma 2.3. For w ∈ Z
k
≥0, the minimal degree and node-connectivity of the graph G(Bw,Ek)

equals | supp(w)|.

In order to exploit a more refined structure of fiber graphs of Ak (see Section 4), we first have a

look at sets of the following type: for a given set F ⊆ Z
k and a vector b ∈ Z

k the b-slack of F is

SL (F ,b) :=

{(

x

b− x

)

: x ∈ F

}

⊆ Z
2k (2.3)

and the 0k-slack of F is abbreviated as SL (F) := SL (F ,0k). We need in Section 3 and 4 the

special case that F = Bw and we denote its slack short by B
sl
w
:= SL (Bw,w). In the next lemma

we show that the connectivity of a graph does not change by adding slacks to the set of nodes if

we slack the set of moves by 0k, too.

Lemma 2.4. For b ∈ Z
k
≥0, F ⊆ Bb, and a set of moves M⊆ Z

k we have

G(F ,M) ∼= G(SL (F ,b) , SL (M)). (2.4)

Proof. Since F ⊆ Bb, we have SL (F ,b) ⊆ Z
2k
≥0 and hence the graph on the right-hand side of

(2.4) is well-defined in the sense our definition given above. The map

F → SL (F ,b) ,v 7→

(

v

b− v

)

gives a bijection between the nodes of the two graphs in (2.4) which does not only respect the set

of edges, but even more induces a bijection between them, too. �

3 Graver and Gröbner bases of Ak

In this section, we construct both the Graver basis and the reduced Gröbner basis with respect

to a lexicographic term ordering of Ak as defined in (1.2). For this, it is necessary to recall the
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definition of the Graver basis of a matrix first. Let ⊑ be the partial ordering on Z
n such that for

two integer vectors u,v ∈ Z
n we have u ⊑ v if ui ·vi ≥ 0 and |ui| ≤ |vi| for all i ∈ [n]. The Graver

basis G(A) of a matrix A ∈ Z
d×n is the set of all ⊑-minimal elements in ker (A) ∩ Zn \ {0n}. Note

that G(A) is always a finite set [10, Chapter 3]. When it comes to calculations of Graver bases, the

following definition is very helpful: for a non-negative vector v ∈ Z
k
≥0, let χ(v) ∈ {0, 1}

k be such

that we have for all i ∈ [k]

χ(v)i =







0, if vi = 0

1, if vi 6= 0
.

Theorem 2. For k > 0, the Graver basis of Ak is the (disjoint) union of

±B
sl
−1k
×B

sl
1k
× {−1} × {1} (3.1)

and the sets

± SL (Ek)× {02k} × {0} × {0} and

± {02k} × SL (Ek)× {0} × {0}.
(3.2)

Proof. Denote the union of the sets given in (3.1) and (3.2) by G. We show that for every u ∈

Z
4k+2 with u 6= 04k+2 and Aku = 02k+1 there exists g ∈ G such that g ⊑ u. We write u =

(x1,x2,y1,y2, s, t)
⊺
for vectors x1,x2,y1,y2 ∈ Z

k and integers s, t ∈ Z. The block structure of Ak

yields the following equations:

x1 + x2 = s · 1k

y1 + y2 = t · 1k

s+ t = 0.

(3.3)

We distinguish the following two cases.

Case 1: s = −t = 0. Clearly, we have x1 = −x2 and y1 = −y2. As u 6= 04k+2 we can assume

without loss of generality that x1 6= 0k. Thus, there is i ∈ [k] and λ ∈ {−1, 1} such that

λ ·

(

ei

−ei

)

⊑

(

x1

x2

)

which gives rise to an element in SL (Ek)× {02k} × {0}× {0} which is less than u with respect to

⊑.

Case 2: s = −t 6= 0. Without restricting generality (since G is symmetric we can multiply u by −1

if necessary) we can assume that t > 0 and as t is an integer we have t ≥ 1 and thus s = −t ≤ −1.

Clearly, we have −x−
1 ⊑ x1 and x+

1 ⊑ x1 and hence we have −χ(x−
1 ) ⊑ x1. As s ≤ −1, equation

(3.3) gives −1k + χ(x−
1 ) ⊑ x2 which implies

(

−χ(x−
1 )

−1k + χ(x−
1 )

)

⊑

(

x1

x2

)

.
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Similarly, one can show that
(

χ(y+
1 )

1k − χ(y+
1 )

)

⊑

(

y1

y2

)

.

Since −χ(x−
i ) ∈ B−1k

and χ(y+
1 ) ∈ B1k

and due to s ≤ −1 and t ≥ 1 we found an element in

B
sl
−1k
×B

sl
1k
× {−1} × {1} ⊆ G which is less than u with respect to the partial ordering ⊑. �

In the following, we consider a Gröbner basis with respect to the lexicographic ordering ≺lex on

Z
n
≥0 where for two integer vectors u,v ∈ Z

n
≥0 with u 6= v we have u ≺lex v if ui < vi for the

smallest i ∈ [n] such that ui 6= vi. The next theorem extracts the reduced Gröbner basis of Ak

with respect to ≺lex from its Graver basis.

Theorem 3. For k > 0, the reduced Gröbner basis of Ak with respect to ≺lex consists of the vector

(0k,1k,0k,−1k, 1,−1)
⊺

and the vectors of the sets

SL (Ek)× {02k} × {0} × {0} and

{02k} × SL (Ek)× {0} × {0}.
(3.4)

Proof. As any reduced Gröbner basis of Ak is contained in the Graver basis of Ak [12, Propo-

sition 4.11], the result follows immediately by extracting those elements from the Graver basis

G(Ak), given in Theorem 2, that cannot be reduced by other elements of G(Ak) with respect to

≺lex. �

4 The Fiber-Structure of Ak

Equipped with explicit descriptions of both the Graver basis and the reduced ≺lex-Gröbner basis of

Ak, we discover in this section the structure of FAk,b for any given right-hand side vector b ∈ Z
2k+1.

We write b = (w1,w2, c)
⊺ ∈ Z

2k+1 with vectorsw1,w2 ∈ Z
k and c ∈ Z. We assume that FAk,b 6= ∅

and hence we can choose an arbitrary element u ∈ FAk,b and write u = (x1,x2,y1,y2, s, t)
⊺ ∈

Z
4k+2
≥0 with vectors x1,x2,y1,y2 ∈ Z

k
≥0 and s, t ∈ Z≥0. Since we have Aku = b, we obtain the

following relations:

x1 + x2 = w1 + s · 1k

y1 + y2 = w2 + t · 1k

s+ t = c.

(4.1)

We see immediately that we must have w1+s ·1k ≥ 0k, w2+ t ·1k ≥ 0k and c ≥ 0, since otherwise

FAk,b = ∅. As t is uniquely determined by t = c− s, those inequalities give

max{(w−
1 )i : i ∈ [k]}

︸ ︷︷ ︸

=‖w−

1
‖∞

≤ s ≤ c−max{(w−
2 )i : i ∈ [k]}

︸ ︷︷ ︸

=‖w−

2
‖∞

. (4.2)
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So we can define both a lower and an upper bound on s by

l(b) := ‖w−
1 ‖∞ and u(b) := c− ‖w−

2 ‖∞.

If l(b) > u(b), we certainly have FAk,b = ∅ and hence we can assume that l(b) ≤ u(b). The

equations in (4.1) suggest that we can regard x2 and y2 as slack variables since they are already

uniquely determined by the choices of x1 ∈ Bw1+s·1k
and y1 ∈ Bw2+(c−s)·1k

. Hence, any element

of the fiber looks like

vb (x,y, s) :=













x

w1 + s · 1k − x

y

w2 + (c− s) · 1k − y

s

c− s













(4.3)

for x ∈ Bw1+s·1k
and y ∈ Bw2+(c−s)·1k

. Using our definition of slacked boxes as defined in (2.3),

we obtain an explicit description of elements in FAk,b which have their (4k+1)th coordinate equal

to s:

Bb (s) := B
sl
w1+s·1k

×B
sl
w2+(c−s)·1k

× {s} × {c− s} ⊆ Z
2k+2k+2
≥0 . (4.4)

This gives us a very convenient partition of the fiber into u(b)− l(b) + 1 disjoint sets:

FAk,b =

u(b)
⋃

s=l(b)

Bb (s) . (4.5)

We see that the Graver moves from the sets defined in (3.1) connect nodes from two adjacent boxes

Bb (s1) and Bb (s2) with |s1 − s2| = 1, whereas Graver moves from (3.2) connect nodes within the

same box Bb (s) (see Figure 2).

Fig. 2. Different types of Graver moves of Ak.

Even more, since the (4k+ 1)th and (4k+2)th coordinates coincide for all elements in Bb (s), the

next lemma follows immediately.

Lemma 4.1. For b ∈ Z
2k+1 and s ∈ [l(b), u(b)], the following equality holds:

G(Bb (s) ,G(Ak)) = G(Bb (s) ,R≺lex
(Ak)).
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Based on our observations in Section 2, we know that the node-connectivity in those induced

subgraphs is best possible as the next lemma shows.

Lemma 4.2. Let b ∈ Z
2k+1 such that FAk,b 6= ∅. For all s ∈ [l(b), u(b)], the minimal degree and

the node-connectivity of the graph G(Bs (b) ,G(Ak)) equal

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|.

Proof. Using the representation of Bb (s) in (4.4) and a projection onto the first 4k coordinates,

we obtain that the induced subgraph of G (FAk,b,G(Ak)) on the nodes Bb (s) is isomorphic to the

graph

G(Bsl
w1+s·1k

×B
sl
w2+(c−s)·1k

, SL (Ek)× {02k} ∪ {02k} × SL (Ek)). (4.6)

Graphs of this particular structure can be interpreted as the Cartesian product of two related

graphs, in our case here, G(Bsl
w1+s·1k

, SL (Ek)) and G(Bsl
w2+(c−s)·1k

, SL (Ek)) (we refer to [3] for

a definition). This gives that the minimal degree of this graph is the sum of the minimal de-

grees of G(Bsl
w1+s·1k

, SL (Ek)) and of G(Bsl
w2+(c−s)·1k

, SL (Ek)). Using the isomorphism given in

Lemma 2.4, their minimal degrees coincide with the minimal degrees of the graphs G(Bw1+s·1k
,Ek)

and G(Bw2+(c−s)·1k
,Ek), respectively. Applying the formula of Lemma 2.3, the minimal degree of

the graph given in (4.6) equals

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|.

as claimed. �

Whereas Lemma 4.1 states that the Gröbner and Graver fiber graphs coincide on the subgraph

induced by Bb (s), Lemma 4.2 says that the node-connectivity in those subgraphs is best possible.

But what about moves between two neighbouring boxes of FAk,b? Let us now determine under

which conditions nodes of neighboring boxes are adjacent to each other. For that it is necessary

that FAk,b has at least two boxes, which is precisely the case if l(b) < u(b). To simplify our proofs

it is reasonable to define for all choices v1,v2 ∈ B1k
the following move from the Graver basis of

Ak:

g
k (v1,v2) :=













−v1

−1k + v1

v2

1k − v2

−1

1













∈ B
sl
−1k
×B

sl
1k
× {−1} × {1}.

Choose s ∈ [l(b), u(b)] and let (x,y)⊺ ∈ Bw1+1k·s×Bw2+(c−s)·1k
and v1,v2 ∈ B1k

. The following

conditions on v1 and v2

supp(v1) ⊆ supp(x) and [k] \ supp(v1) ⊆ supp(w1 + s · 1k − x) (4.7a)

supp(v2) ⊆ supp(y) and [k] \ supp(v2) ⊆ supp(w2 + (c− s) · 1k − y) (4.7b)
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lead to a technical characterization for a Graver move to be applicable at vb (x,y, s):

vb (x,y, s)
g
k(v1,v2)
←−−−−−→ vb (x− v1,y + v2, s− 1) ⇐⇒ (4.7a) and s > l(b)

vb (x,y, s)
−g

k(v1,v2)
←−−−−−−→ vb (x+ v1,y − v2, s+ 1) ⇐⇒ (4.7b) and s < u(b).

In particular, we see that only a fraction of moves between two adjacent boxes of FAk,b are actually

moves from the lexicographic Gröbner basis of Ak. So the main difference of the fiber graphs of Ak

with respect to Graver and Gröbner moves results from how the boxes Bb (s) are connected among

each other. From our observations in this section, we obtain that there is a large number of Graver

moves between two neighboring boxes and we summarize this results in the following proposition.

Proposition 4.1. Let b = (w1,w2, c)
⊺ ∈ Z

2k+1 with w1,w2 ∈ Z
k and c ∈ Z such that FAk,b 6= ∅

and consider the fiber graph G(FAk,b,G(Ak)). For s ∈ [l(b), u(b)], a node v ∈ Bb (s) has neighbors

in Bb (s− 1) if and only if s > l(b) and in this case that are at least 2k many. In the same way,

v has neighbors in Bb (s+ 1) if and only if s < u(b) and that are at least 2k many in this case.

Proof. The statement of the proposition follows immediately from the fact that moves of the form

g
k (χ(x),v2) are applicable at vb (x,y, s) for all v2 ∈ B1k

if s > l(b) and in the same way we see

that moves of the form −gk (v1, χ(y)) are applicable at vb (x,y, s) if s < u(b) for all v1 ∈ B1k
. �

5 Gröbner Fiber Graphs of Ak

As mentioned in the previous section, the number of edges between two boxes of a fiber is signifi-

cantly higher under the Graver basis than the reduced lexicographic Gröbner basis and our hope is

that this affects the connectivity of the fiber graphs. Indeed, considering the fiber of e2k+1 ∈ Z
2k+1,

we have that l(e2k+1) = 0 and u(e2k+1) = 1. Thus, (4.5) gives

FAk,e2k+1
= Be2k+1

(0) ∪ Be2k+1
(1)

= B
sl
0k
×B

sl
1k
× {0} × {1} ∪B

sl
1k
×B

sl
0k
× {1} × {0}

= {0k} ×B
sl
1k
× {0} × {1} ∪B

sl
1k
× {0k} × {1} × {0}.

This combined with Lemma 4.2 implies that the minimal degree of G
(
FAk,e2k+1

,R≺lex
(Ak)

)
is at

least k. Due to the connection to slacked boxes, Lemma 4.2 explains the structure of the fiber

within a box very well. But what about edges between two boxes with respect to Gröbner moves?

According to Theorem 3, the only move available is

g
k (0k,0k) = (0k,−1k,0k,1k,0k,−1, 1)

⊺
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and according to Section 4, this move can be applied only once in the fiber FAK ,e2k+1
, namely as

move between the following nodes:

(0k,0k,0k,1k, 0, 1)
⊺

g
k(0k,0k)
←−−−−−→ (0k,1k,0k,0k, 1, 0)

⊺.

This means there is only a single edge connecting Bb (0) and Bb (1) (see Figure 3) and hence

the minimal degree of G
(
FAk,e2k+1

,R≺lex
(Ak)

)
equals k. Thus, removing this edge gives a non-

Fig. 3. A sketch of Be2k+1
(0) and Be2k+1

(1) for k = 2 and k = 3 with respect to Gröbner moves.

connected graph, i.e., the edge-connectivity of the fiber graph equals 1. Since in all graphs the

node-connectivity is always less than the edge-connectivity, we obtain the following corollary.

Corollary 5.1. For k > 0, the edge-connectivity of the fiber graph

G
(
FAk,e2k+1

,R≺lex
(Ak)

)

equals 1, whereas its minimal degree equals k. In particular, Ak gives a counterexample to Conjec-

ture 1 for k ≥ 2.

However, a priori Ak does not provide evidence against Conjecture 2 since the conjecture claims

that the node-connectivity equals the minimal degree only for sufficiently large right-hand sides.

But Theorem 1 gives us an instruction how to modify Ak such that it becomes a counterexample

to Conjecture 2 as well:

Bk :=

(

Ak+1 I2k+1

0 I2k+1

)

∈ Z
(6k+3)×(4k+2).

Corollary 5.2. For k > 0, there exists a term ordering ≺k on Z
6k+3
≥0 such that for all N ∈ Z≥0

there exists b ∈ Z
4k+2 with b ≥ N · 14k+2 such that the edge-connectivity of G(FBk,b,R≺k

(Bk))

equals 1 whereas its minimal degree equals k. In particular, Bk gives a counterexample to Conjec-

ture 2 for k ≥ 2.
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6 Graver Fiber Graphs of Ak

As shown in the last section, node-connectivity and even edge-connectivity fail to be best possible in

general in Gröbner fiber graphs. As the number of moves in the Graver basis enlarge the number

of moves in a Gröbner basis by far, we hope that this circumstance reflects positively onto the

connectivity of those fiber graphs. So let us now investigate how the situation looks like if we

replace Gröbner moves with Graver moves. We prove that even if the edge-connectivity of some

Gröbner fiber graphs of Ak is rather bad, the edge-connectivity of its Graver fiber graphs is best

possible. With Proposition 4.1 in mind, let us first determine the minimal degree of the Graver

fiber graphs.

Proposition 6.1 (Minimal degree). Let b = (w1,w2, c)
⊺ ∈ Z

2k+1 with w1,w2 ∈ Z
k and c ∈ Z.

If l(b) = u(b), then we have

δ(G (FAk,b,G(Ak))) = | supp(w1 + ‖w
−
1 ‖∞ · 1k)|+ | supp(w2 + ‖w

−
2 ‖∞ · 1k)|. (6.1)

Otherwise, if l(b) < u(b), then we have

δ(G (FAk,b,G(Ak))) = min
j∈{1,2}

{| supp(wj + ‖w
−
j ‖∞ · 1k)|}+ k + 2k. (6.2)

Proof. If l(b) = s = u(b), the first statement is a reformulation of Lemma 4.2 due to FAk,b =

Bb (s). So assume that we have l(b) < u(b). Since s ∈ [l(b), u(b)], we must have either s > l(b) or

s < u(b) and hence we have either s > ‖w−
1 ‖∞ of c− s > ‖w−

2 ‖∞. Putting those inequalities into

the equation for the minimal degree in Lemma 4.2, we obtain that a node in Bb (s) has at least

min
j∈{1,2}

{| supp(wj + ‖w
−
j ‖∞ · 1k)|} + k

neighbors in his own box Bb (s). Furthermore, due to Proposition 4.1 and since either s > l(b) or

s < u(b), a node in Bb (s) has either at least 2k neighbors in Bb (s− 1) or at least 2k neighbors

in Bb (s+ 1). This shows that the minimal degree of G (FAk,b,G(Ak)) is greater or equal than the

right-hand side of the term given in (6.2). Clearly, the node with minimal degree has to be either

in Bb (l(b)) or in Bb (u(b)). Thus, either













w1 + l(b) · 1k

0k

w2 + (c− l(b)) · 1k

0k

l(b)

c− l(b)













∈ Bb (l(b)) or













w1 + u(b) · 1k

0k

w2 + (c− u(b)) · 1k

0k

u(b)

c− u(b)













∈ Bb (u(b))

has the smallest degree in G (FAk,b,G(Ak)). �
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With an explicit formula for the minimal degree of G (FAk,b,G(Ak)) in mind we can determine the

edge-connectivity of those fiber graphs explicitly. First, we consider edges between two neighboring

boxes and we show that we find a suitable number of disjoint paths connecting their end-points.

Please note that we make these paths even node-disjoint in this case.

Lemma 6.1 (Edges within Box). Let b ∈ Z
2k+1 and s ∈ [l(b), u(b)]. Then for any two adja-

cent nodes in Bb (s) there exist δ(G (FAk,b,G(Ak))) many node-disjoint paths in G(FAk,b,G(Ak))

connecting them.

Proof. We write b = (w1,w2, c)
⊺ ∈ Z

2k+1 with w1,w2 ∈ Z
k and c ∈ Z. Since we have FAk,b 6= ∅

by assumption, we must have l(b) ≤ u(b). Due to Lemma 4.2 and Proposition 6.1 there is nothing

to show for l(b) = u(b) and hence we assume that l(b) < u(b). Without restricting generality, the

two adjacent nodes we need to connect with a sufficient number of node-disjoint paths look like

vb (x,y, s)←→ vb (x+ ej ,y, s) (6.3)

with j ∈ [n], s ∈ [l(b), u(b)], x ∈ Bw1+s·1k
, and y ∈ Bw2+(c−s)·1k

. By Lemma 4.2 we find

| supp(w1 + s · 1k)| + | supp(w2 + (c − s) · 1k)| node-disjoint paths connecting vb (x,y, s) and

vb (x+ ej ,y, s) which only use nodes in Bb (s). If we have s > l(b), we define

v1 :=







χ(x)− ej , if xj > 0

χ(x), if xj = 0
and v′

1 :=







χ(x), if xj > 0

χ(x) + ej , if xj = 0
.

Then we have v1 ∈ B1k
and v′

1 ∈ B1k
. Since we have by (6.3) that x+ ej ≤ w1 + s · 1k, it is easy

to see that v1 fulfills (4.7a) and hence the Graver move g
k (v1,v) is applicable at vb (x,y, s) for

every v ∈ B1k
. As x− v1 + v′

1 = x+ ej by construction, this gives for every v ∈ B1k
a path

vb (x,y, s)

←→vb (x− v1,y + v, s− 1) ∈ Bb (s− 1)

←→vb (x− v1 + v′
1,y + v2 − v, s− 1 + 1) = vb (x+ ej ,y, s)

which only uses edges with end-points Bb (s) and Bb (s− 1). On the other hand, if we have s < u(b),

we have for every v ∈ B1k
a path

vb (x,y, s)

←→vb (x+ v,y − χ(y), s+ 1) ∈ Bb (s+ 1)

←→vb (x+ v + ej ,y − χ(y), s+ 1) ∈ Bb (s+ 1)

←→vb (x+ v + ej − v,y − χ(y) + χ(y), s+ 1− 1) = vb (x+ ej ,y, s) .

Here, the second edge is feasible since j ∈ supp(w1 + s · 1k −x) by assumption (6.3) and hence we

have for the slack variable of x+ v that

j ∈ supp (w1 + (s+ 1) · 1k − (x+ v)) .
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All in all, we get in any case 2k many edge-disjoint paths which only use edges outside of Bb (s)

and hence these paths are node-disjoint to those walking within Bb (s). Thus, there are

| supp(w1 + s · 1k)|+ | supp(w2 + (c− s) · 1k)|+ 2k ≥ δ(G (FAk,b,G(Ak)))

node-disjoint paths between the end-points of the edge given in (6.3). �

In the next lemma we prove that we can find a suitable number of paths even for end-points of

edges in neighbouring boxes of FAk,b as well. Here, Proposition 2.1 plays an important role and

hence we shortly recall its statement: given two subgraphs with a certain connectivity yield a lower

bound on the connectivity of the induced graph on the union of those subgraphs if we can prove the

existence of a suitable number of paths walking between them. In the situation of Proposition 6.2,

the subgraphs whose connectivity is already known are the induced subgraphs on the boxes Bb (s).

So the idea behind the proof of Lemma 6.2 is to find a sufficient number of edges between two

neighbouring boxes.

Lemma 6.2 (Edges between adjacent Boxes). Let k > 0 and b ∈ Z
2k+1. Then for any

adjacent nodes in different boxes there are δ(G (FAk,b,G(Ak))) many edge-disjoint paths connecting

them.

Proof. By assumption, there exist at least two boxes in G (FAk,b,G(Ak)) and hence we must have

l(b) < u(b). Without restricting generality, we can assume that the edge between the two adjacent

nodes looks like:

u1 := vb (x,y, s)
g
k(v1,v2)
←−−−−−→ vb (x− v1,y + v2, s− 1) := u2 (6.4)

with s > l(b) and v1,v2 ∈ B1k
. Let us verify the assumptions of Proposition 2.1. As already shown

in Lemma 4.2, the edge-connectivity in the two graphs G(Bb (s− 1) ,G(Ak)) and G(Bb (s) ,G(Ak))

is at least

n := min
j∈{1,2}

{| supp(wj + ‖w
−
j ‖∞ · 1k)|}+ k.

Since we have m := 2k ≥ 2k − 2 ≥ n − 2 it is left to prove that there are 2k node-disjoint paths

connecting u1 with u2 and which only use edges between Bb (s− 1) and Bb (s). For this, we define

the sets

Ws := {vb (x− v1 + z,y, s) : z ∈ B1k
} ⊆ Bb (s)

Ws−1 := {vb (x− v1,y + z, s− 1) : z ∈ B1k
} ⊆ Bb (s− 1) .

(6.5)

It is easy to see that Ws is completely contained in the neighborhood of every node in Ws−1 and

vice versa. This means that G (FAk,b,G(Ak)) has a complete bipartite graph on the node sets Ws

and Ws−1 as subgraph including our original edge (6.4). This gives 2k many node-disjoint paths

between u1 and u2 only using edges between Bb (s) and Bb (s− 1). Applying Proposition 2.1, we

obtain m+ n = δ(G (FAk,b,G(Ak))) edge-disjoint connecting paths connecting u1 and u2. �
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Combining all the results of this section, we obtain our main theorem.

Theorem 4. For k > 0, the edge-connectivity in all Graver fiber graphs of Ak equals its minimal

degree.

Proof. From Lemma 2.1 we know that we only have to consider paths between adjacent nodes.

From the decomposition of the fiber FA,b given in (4.5) we obtain that there are only two kinds of

edges: edges within boxes and edges connecting two neighboring boxes. Lemma 6.1 and Lemma 6.2

state that we found in both cases δ(G (FAk,b,G(Ak))) many edge-disjoint paths connecting the

adjacent nodes of that edge. �

Unfortunately, Theorem 4 says nothing about the node-connectivity of the fiber graphs and we do

not know whether it is best possible or not. Nevertheless, the results of this section make us suggest

that requiring the Graver basis as set of edges should suffice that the edge-connectivity (not the

node-connectivity!) equals the minimal degree in all fiber graphs of arbitrary integer matrices.

Conjecture 3. Let A ∈ Z
d×n be an integer matrix with ker(A) ∩ Z

n
≥0 = {0n}. Then in all Graver

fiber graphs of A, the edge-connectivity equals its minimal degree.

7 Computational Results

In this section, we present how random walks on fiber graphs of Ak behave. Therefore, let us first

introduce briefly the framework. Let G = ({v1, . . . , vn}, E) be a simple graph. Consider the random

walk which has for i, j ∈ [n] the probability

pG(vi, vj) =







min{1/ deg(vi), 1/ deg(vj)}, if {vi, vj} ∈ E and i 6= j
∑

{vi,vk}∈E max{0, 1/ deg(vi)− 1/ deg(vk)}, if i = j

0, if {vi, vj} 6∈ E

to traverse from vi to vj . The matrix PG = (pG(vi, vj))i,j∈[n] is precisely the transition probability

matrix of the Metropolis-Hastings chain on G whose stationary distribution is the uniform distri-

bution on {v1, . . . , vn} [2, Section 1.2.2]. Given a vertex vi and a time step t ∈ N, the jth-entry of

the vector P t
G ·ei ∈ [0, 1]n is the probability that a random walk starting at vi is at vj in time step

t. Let µ(PG) ∈ [0, 1] be the second largest eigenvalue modulus (SLEM) of PG. Since (P t
G · ei)t∈N

converges to uniform 1
n
· 1n asymptotically with µ(PG)

t [2, Section 1.1.2], µ(PG) is an indicator of

how fast the convergence of the corresponding Markov chain towards its stationary distribution is.

In our experiments with Macaulay2 [7] we considered this random walk on the fiber graphs

G
(
FAk,e2k+1

,G(Ak)
)
and G

(
FAk,e2k+1

,R≺lex
(Ak)

)
, respectively. The left plot of Figure 4 shows

how the SLEM of those chains behaves if k rises. It seems that both the SLEM of the Gröbner chain
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Fig. 4. Plots of SLEM and mixing time of FAk,e2k+1
with respect to Graver and Gröbner moves.
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12. Bernd Sturmfels. Gröbner bases and convex polytopes. American Mathematical Society, 1996.


	On the Connectivity of Fiber Graphs



