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Toric ideals to hierarchical models are invariant under the action of a product of symmetric groups. Taking the 
number of factors, say, m, into account, we introduce and study invariant filtrations and their equivariant Hilbert 
series. We present a condition that guarantees that the equivariant Hilbert series is a rational function 
in m+1 variables with rational coefficients. Furthermore we give explicit formulas for the rational functions with 
coefficients in a number field and an algorithm for determining the rational functions with rational coef-ficients. A 
key is to construct finite automata that recognize languages corresponding to invariant filtrations.

1. Introduction

Hierarchical models are used in algebraic statistics to determine dependencies among random variables; 
see, e.g., [17]. Such a model is determined by a simplicial complex and the number of states each random 
variable can take. The Markov basis to any hierarchical model corresponds to a generating set of an 
associated toric ideal; see [3]. This toric ideal is rather symmetric; that is, it is invariant under the action 
of a product of symmetric groups. The number of minimal generators of the toric ideals grows rapidly 
when the number of states of the considered random variables increases. However, the independent set 
theorem (see Theorem 2.4) shows that the symmetry can be leveraged to describe, for a fixed simplicial 
complex, simultaneously the generating sets and thus Markov bases for all numbers of states of the 
random variables. The conceptional proof of this result by Hillar and Sullivant [7] introduces the notion 
of an S∞-invariant filtration. Informally, this is a  sequence ( I n)n∈N of compatible i deals I n  in polynomial 
rings Rn whose number of variables increases with n and where each In is invariant under the action of a 
symmetric group that permutes the variables of Rn . To such a filtration, the second author and Römer [14] 
introduced an equivariant Hilbert series in order to analyze simultaneously quantitative properties of the 
ideals in the filtration. I t i s a  formal power series in two variables and they showed that i t i s rational with 
rational coefficients [14, Theorem 7.8].

The variables occurring in the elements of a toric ideal to a hierarchical model can naturally be grouped 
into m sets of variables, where m is the number of random variables. Permuting the variables in any 
one of these groups gives a group action that leaves the ideal invariant. This suggests the introduction 
of an S -invariant filtration ( see Definition 2. 2). For m = 1 it  specializes to  the fil trations mentioned 
above. Every S -invariant filtration n aturally g ives r ise t o a n e quivariant H ilbert s eries d efined as  a 
formal power series in m+1 variables (see Definition 3 .1). Our main result gives a condition guaranteeing
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that this power series is a rational function in m+1 variables with rational coefficients (see Theorem 3.5).
Furthermore, we present two methods to determine this rational function. One approach is more special
and produces an explicit rational function, but with coefficients in a suitable extension field of the rational
numbers (see Proposition 5.4). The other approach is much more general and gives directly a formula
for the rational function with rational coefficients. It determines the equivariant Hilbert series as the
generating function of a regular language (see Section 5).

The remaining part of this paper is organized as follows. In Section 2, we discuss the symmetry of toric
ideals to hierarchical models and introduce Sm

∞
-invariant filtrations. Their equivariant Hilbert series in

m+1 variables are studied in Section 3. Our main result about such Hilbert series is stated as Theorem 3.5.
We reduce its proof to a special case in that section, but postpone the argument for the special case to the
following section. In Section 4 we use regular languages and finite automata to establish the special case.
The idea is to encode the monomials that determine the Hilbert series by a language. We then construct
a deterministic finite automaton that recognizes this language. Thus, the language is regular. Using a
suitable weight function we then show that the corresponding generating function of the language is
essentially the desired Hilbert series. Since generating functions of regular languages are rational, this
completes the argument of our main result. Furthermore, using the finite automaton that describes a
regular language, there is an algorithm that determines the generating function of the language explicitly
as a rational function with rational coefficients. This is explained and illustrated in Section 5. We also
describe in that section a more limited direct approach that gives an explicit formula for the rational
function, but with coefficients in a number field.

2. Symmetry and filtrations

After reviewing needed concepts and notation we introduce Sm
∞

-invariant filtrations in this section.
Throughout this paper we use N to denote the set of positive integers and N0 to denote the set of

nonnegative integers. For any q ∈ N, we set [q] = {1, 2, . . . , q}, and so [0] =∅. We use #T to denote
the number of elements in a finite set T.

A hierarchical model M=M(1, r) with m parameters is given by a collection 1= {F1, F2, . . . , Fq}

of nonempty subsets Fj ⊂[m]with
⋃

j∈[q] Fj =[m] and a vector r= (r1, r2, . . . , rm)∈Nm. Each parameter
corresponds to a random variable, and ri denotes the number of values parameter i can take. We refer to r as
the vector of states. Every set Fj indicates a dependency among the parameters corresponding to its vertices.
Thus, we may assume that no Fj is contained in some Fi with i 6= j and refer to the sets Fj as facets.

Diaconis and Sturmfels [3] pioneered the use of algebraic methods in order to study statistical models.
We need some notation. For any subset F = {i1, i2, . . . , is} ⊂ [m], we write

rF = (ri1, ri2, . . . , ris ) ∈ Ns and [rF ] = [ri1]× [ri2]× · · · × [ris ] ⊂ Ns .

In particular, [r[m]]= [r]⊂Nm. Given a field K and a hierarchical model M=M(r,1), consider the ring
homomorphism

8M : Rr =K[xi | i ∈ [r]] −→ SM=K[y j,iFj
| Fj ∈1, iFj ∈ [rFj ]],

xi 7−→
∏

Fj∈1

y j,iFj
. (2-1)
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The kernel of this homomorphism, denoted by IM, is called the toric ideal to the hierarchical model M.
We also refer to Rr/IM as the coordinate ring of the model M.

In the simplest cases explicit sets of generators of such ideals are known. We use the standard partial
order ≤ on Zs given by i = (i1, . . . , is) ≤ j = ( j1, . . . , js) if i1 ≤ j1, . . . , is ≤ js . If q = 1 then 8M is
an isomorphism, and so IM is zero.

Example 2.1. Let q = 2; i.e., 1= {F1, F2}.

(i) Suppose first that F1 and F2 are disjoint. Possibly permuting the positions of the entries of a vector
i ∈ [r] = [rF1∪F2], we write xiF1 ,iF2

instead of xi . This corresponds to a bijection [rF1∪F2]→ [rF1]×[rF2].
Using this notation, a generating set of IM is (see, e.g., [2; 3])

G(M(r, {F1, F2}))= {xiF1 ,iF2
xi ′F1

,i ′F2
− xiF1 ,i

′

F2
xi ′F1

,iF2
| iF1 < i ′F1

∈ [rF1], iF2 < i ′F2
∈ [rF2]}.

In the special case, where m = 2 and, say, F1 = {1}, F2 = {2}, this set becomes

{xi1,i2 xi ′1,i
′

2
− xi1,i ′2 xi ′1,i2 | 1≤ i1 ≤ i ′1 ≤ r1, 1≤ i2 ≤ i ′2 ≤ r2},

which is the set of 2× 2 minors of a generic r1× r2 matrix with entries xi1,i2 . The image of the map 8M

in this case is known in algebraic geometry as the coordinate ring of the Segre product Pr1−1
×Pr2−1

whose homogeneous ideal is IM.

(ii) Consider now the general case, where F1 and F2 are not necessarily disjoint. Note that [m] is the
disjoint union of F1 \ F2, F2 \ F1 and F1 ∩ F2. Thus, possibly permuting the positions of the entries
of i ∈ [r ] as above, we write xiF1\F2 ,iF1∩F2 ,iF2\F1

for xi . Fixing a vector c ∈ [rF1∩F2], we define a set
Gc(M(r[m]\F1∩F2, {F1 \ F2, F2 \ F1})) whose elements are

xiF1\F2 ,c,iF2\F1
xi ′F1\F2

,c,i ′F2\F1
− xi ′F1\F2

,c,iF2\F1
xiF1\F2 ,c,i

′

F2\F1
,

where
iF1\F2 < i ′F1\F2

∈ [rF1\F2] and iF2\F1 < i ′F2\F1
∈ [rF2\F1].

The collection

G(M(r, {F1, F2}))=
⋃

c∈[rF1∩F2 ]

Gc(M(r[m]\F1∩F2, {F1 \ F2, F2 \ F1}))

is a generating set for the ideal IM(r,{F1,F2}); see [4; 8].

Even in the simple cases of Example 2.1, the number of minimal generators of a toric ideal IM is large
if the entries of r are large. However, many of these generators have similar shape. This can be made
precise using symmetry.

Indeed, denote by Sn the symmetric group in n letters. Set S[r] = Sr1 × Sr2 × · · · × Srm . This group
acts on the polynomial ring Rr by permuting the indices of its variables, that is,

(σ1, . . . , σm) · xi = x(σ1(i1),...,σm(im)).

It is well known that toric ideals have minimal generating sets consisting of binomials. Thus, the definition
of the homomorphism8M in (2-1) implies that the ideal IM is S[r]-invariant, that is, σ · f ∈ IM whenever
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σ ∈ S[r] and f ∈ IM. In some cases, this invariance can be used to obtain all minimal generators of IM
from a subset by using symmetry. For example, in the special case m = q = 2, F1 = {1}, F2 = {2}, with
r1, r2 ≥ 2, the set G(M(r, {F1, F2})) can be obtained from

x1,1x2,2− x1,2x2,1

using the action of Sr1×Sr2 . Note that this is true for every vector r= (r1, r2). There is a vast generalization
of this observation using the concept of an invariant filtration.

The symmetric group Sn is naturally embedded into Sn+1 as the stabilizer of {n + 1}. Using this
construction componentwise, we get an embedding of S[r] into S[r ′] if r ≤ r ′. Set

Sm
∞
=

⋃
r∈Nm

S[r].

Definition 2.2. An Sm
∞

-invariant filtration is a family (Ir)r∈Nm of ideals Ir ⊂ Rr such that every ideal Ir

is S[r]-invariant and, as subsets of Rr ′ ,

S[r ′] · Ir ⊂ Ir ′ whenever r ≤ r ′.

Note that fixing 1, the ideals (IM(1,r))r∈Nm
0

form an Sm
∞

-invariant filtration. It is useful to extend these
ideas.

Remark 2.3. Let T be any nonempty subset of [m]. For vectors r ∈ Nm, we want to fix the entries in
positions supported at T, but vary the other entries. To this end write (r[m]\T , rT ) instead of r .

Fix a vector c ∈ Nm\#T. Let Ir ⊂ Rr be an Sm
∞

-invariant filtration. Restricting S[r] and its action to
components supported at T, we get an S#T

∞
-invariant filtration of ideals IrT = Ic,rT ⊂ Rc,rT with rT ∈N#T.

Note that this idea applies to the ideals IM(1,r) with fixed1. We can now state the mentioned extension
of the example given above Definition 2.2. It is called independent set theorem and has been established
by Hillar and Sullivant in [7, Theorem 4.7]; see also [5].

Theorem 2.4. Fix 1 and consider a subset T ⊂ [m] such that #(Fj ∩ T )≤ 1 for every j ∈ [q]. Assume
the number of states of every parameter j ∈ [m] \ T is fixed, and consider the hierarchical models
M(1, rT )=M(1, (c, rT )), where c ∈Nm−#T. Then the ideals IM(1,rT ) form an S#T

∞
-invariant filtration

I1,r[m]\T = (IM(1,rT ))rT∈N#T , that is, there is some d ∈ N#T such that S[rT ] · IM(1,d) generates in Rc,rT

the ideal IM(1,rT ) whenever rT ≥ d.

In other words, this result says that a generating set of the ideal IM(1,r) can be obtained from a fixed
finite minimal generating set of IM(1,(c,d)) by applying suitable permutations whenever the number of
states of every parameter in [m] \ T is large enough.

Theorem 2.4 is not true without an assumption on the set T ; see [7, Example 4.3].

Remark 2.5. An Sm
∞

-invariant filtration can also be described using a categorical framework. Indeed, if
m = 1 this approach has been used in [15] to study also sequences of modules by using the category FI,
whose objects are finite sets and whose morphisms are injections. This approach can be extended to any
m ≥ 1 using the category FIm (see, e.g., [12] in the case of modules over a fixed ring). For conceptional
simplicity we prefer to use invariant filtrations in this paper.
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3. Equivariant Hilbert series

In order to study asymptotic properties of ideals in an S∞-invariant filtration, an equivariant Hilbert series
was introduced in [14]. Here we study an extension of this concept for Sm

∞
-invariant filtrations.

We begin by recalling some basic facts. Let I be a homogeneous ideal in a polynomial ring R in
finitely many variables over some field K. We will always assume that any variable has degree 1. Thus,
R/I =

⊕
j≥0[R/I ] j is a standard graded K-algebra. Its Hilbert series is the formal power series

HR/I (t)=
∑
j≥0

dimK[R/I ] j t j .

By Hilbert’s theorem (see, e.g., [1, Corollary 4.1.8]), it is rational and can be uniquely written as

HR/I (t)=
g(t)

(1− t)dim R/I ,

with g(t) ∈ Z[t] and g(1) > 0, unless I = R. The number g(1) is called the degree of I .

Definition 3.1. The equivariant Hilbert series of an Sm
∞

-invariant filtration I = (Ir)r∈Nm of ideals Ir ⊂ Rr

is the formal power series in variables s1, . . . , sm, t

equivHI (s1, . . . , sm, t)=
∑

r∈Nm

HRr/Ir (t) · s
r1
1 · · · s

rm
m

=

∑
r∈Nm

∑
j≥0

dimK[Rr/Ir ] j · s
r1
1 · · · s

rm
m t j .

If m = 1, that is, I is an S∞-invariant filtration, the Hilbert series of I is always rational by [14,
Theorem 7.8] or [11, Theorem 4.3]. For m ≥ 1, one can also consider another formal power series by
focusing on components whose degree is on the diagonal of Nm. This gives∑

r≥1

HR(r,...,r)/I(r,...,r)(t) · s
r .

It is open whether this formal power series is rational if m ≥ 2, even if the ideals are trivial.

Example 3.2. Let m = 2 and consider the filtration I = (Ir), where every ideal Ir is zero. Since the
ring R(r1,r2) has dimension r1r2, one obtains

equivHI (s1, s2, t)=
∑

(r1,r2)∈N2

HR(r1,r2)
(t)·sr1

1 sr2
2 =

∑
(r1,r2)∈N2

1
(1−t)r1r2

·sr1
1 sr2

2 =
∑
r1≥1

[
−1+

(1−t)r1

(1−t)r1−s2
sr1

1

]
.

We do not know if this is a rational function in s1, s2 and t . However, if one considers the more standard
Hilbert series with r = r1 = r2, one gets∑

r≥0

HR(r,r)(t) · s
r
=

∑
n≥1

1
(1− t)r2 · s

r .

This is not a rational function because the sequence (1/(1− t)r
2
)r∈N does not satisfy a finite linear

recurrence relation with coefficients in Q(t).
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For the remainder of this section we restrict ourselves to considering ideals of hierarchical models
M(1, r). As pointed out in Remark 2.3, for any subset T 6= ∅ of [m], these ideals give rise to
S#T
∞

-invariant filtrations. To study their equivariant Hilbert series, it is convenient to simplify notation.
We may assume that T = {m− #T + 1, . . . ,m} and fix the entries of r in positions supported on [m] \ T ;
that is, we fix c ∈ Nm−#T and set n = (n1, . . . , nm−#T )= rT for r ∈ Nm to obtain r = (c, n). We write
M(1, n) instead of M(1, (c, n)) and denote the resulting Sm−#T

∞
-invariant filtration (IM(1,n))n∈Nm−#T

by I1,r[m]\T , as in the independent set theorem. Its equivariant Hilbert series is

equivHI1,r[m]\T
(s1, s2, . . . , s#T , t)=

∑
n∈N#T

HR(c,n)/IM(1,n)(t) · s
n1
1 · · · s

n#T
#T .

The independent set theorem (Theorem 2.4) guarantees stabilization of the filtration. This suggests the
following problem.

Question 3.3. If T ⊂ [m] satisfies #(F ∩ T )≤ 1 for every facet F of 1, is the equivariant Hilbert series
of I1,r[m]\T rational?

The answer is affirmative if T consists of exactly one element.

Proposition 3.4. If #T = 1, then the equivariant Hilbert series of I1,r[m]\T is rational.

Proof. The assumption means T = {m} and r = (c, n) with c ∈Nm−1 and n ∈N. Set c = c1 · · · cm−1 and
fix a bijection

ψ : [c] = [c1]× · · · × [cm−1] → [c].

For every n ∈ N, it induces a ring isomorphism

R(c,n) = K[xi, j | (i, j) ∈ [c]× [n]] −→ K[xi, j | (i, j) ∈ [c]× [n]] = R′n,

xi, j 7−→ xψ(i), j .

This isomorphism maps every ideal IM(1,n) corresponding to the model M(1, (c, n)) onto an Sn-invariant
ideal In . In particular, the rings R(c,n)/IM(1,n) and R′n/In have the same Hilbert series and the family
(In)n∈N is an S∞-invariant filtration. Thus, its equivariant Hilbert series is rational by [14, Theorem 7.8]
or [11, Theorem 4.3]. �

Our main result in this section describes further cases in which the answer to Question 3.3 is affirmative.

Theorem 3.5. The equivariant Hilbert series of I1,r[m]\T is a rational function with rational coefficients if

(1) Fi ∩ Fj =∅ for any distinct Fi , Fj ∈1, and

(2) |F ∩ T | ≤ 1 for any F ∈1.

This results applies in particular to the independence model, where it takes an attractive form.

Example 3.6. A hierarchical model describing m independent parameters is called independence model.
Its collection of facets is 1= {{1}, {2}, . . . , {m}}. Thus, we may apply Theorem 3.5 with any subset T
of [m]. Using T = [m], we show in Example 5.5 below that

equivHI1,r[m]\T
(s1, s2, . . . , sm, t)=

∑
n∈Nm

HRn/IM(1,n)(t) · s
n1
1 · · · s

nm
m =

s1 · · · sm

(1− s1) · · · (1− sm)− t
.
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The proof of Theorem 3.5 will be given in two steps. First we show that it is enough to prove the result
in a special case where every facet consists of two elements. Second, we use regular languages to show
the desired rationality in the following section.

In the remainder of this section we establish the reduction step.

Lemma 3.7. Consider a collection 1= {F1, . . . , Fq} on vertex set [m] and a subset T of [m] satisfying

(1) Fi ∩ Fj =∅ for any Fi , Fj ∈1, and

(2) |F ∩ T | = 1 for any F ∈1.

Then there is a collection 1′ = {F ′1, . . . , F ′q} on vertex set [m′] consisting of two element facets and also
satisfying conditions (1) and (2) with the property that for every c ∈ Nm−#T there is some c′ ∈ Nm′−#T

such that the filtrations corresponding to the models M(1, (c, n)) and M(1′, (c′, n)) with n ∈N#T have
the same equivariant Hilbert series.

Proof. The assumptions imply that T must have q elements. We may assume that every facet in 1 has at
least two elements. Indeed, if F ∈1 has only one element then we may replace F by the union F ′ of F
and a new vertex. Assigning to the parameter corresponding to the new vertex exactly one possible state
gives a new model whose coordinate ring has the same Hilbert series as the original model.

Given such a hierarchical model Mn =M(1, (c, n)) on vertex set [m], we will construct a new
hierarchical model M′

n =M(1′, (c′, n)) on m′ = 2q vertices that has the same Hilbert series. The new
vertex set is the disjoint union of the q vertices in Fj ∩ T with j ∈ [q] and a set V of q other vertices, say
V = [q]. For j ∈ [q], set F ′j = { j}∪ (Fj ∩ T ). Thus, the sets F ′j are pairwise disjoint because F1, . . . , Fq

have this property, and each F ′j has exactly two elements. In particular, 1′ = {F ′1, . . . , F ′q} and T satisfy
conditions (1) and (2).

Now let c′j =
∏

e∈Fj\T ce = #[cFj\T ] be the number of states of the parameter corresponding to the
vertex j ∈ F ′j . Furthermore, for every j ∈ [q], let the parameter corresponding to the vertex F ′j ∩ T have
the same number of states as Fj ∩T has in Mn. This completes the definition of a new hierarchical model
M′

n =M(1′, (c′, n)). The passage from Mn to M′
n is illustrated in the example below:

n1 n2

c2c1

n3

c3

−→

n1

c′1=c1c2

n2

c′2 = 1

n3

c′3=c3

1= {124, 5, 36}, r = (c1, c2, c3, n1, n2, n3) −→ 1′ = {14, 25, 36}, r ′ = (c′1, 1, c′3, n1, n2, n3).

Varying n ∈ Nq, the ideals IM′
n form an Sq

∞-invariant filtration. Thus, to establish the assertion it is
enough to prove that for every n ∈ Nq , the quotient rings Rn/IMn and R′n/IM′

n are isomorphic.
For every Fj ∈1, the sets [cFj\T ] and [c′j ] have the same finite cardinality. Choose a bijection

ψ j : [cFj\T ] −→ [c
′

j ].
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These choices determine two further bijections

(ψ1, . . . , ψq , id[n]) : [cF1\T ]× · · · × [cFq\T ]× [n] −→ [c
′

1]× · · · × [c
′

q ]× [n], (3-1)

(ψ j , id[n j ]) : [cFj\T ]× [n j ] −→ [c′j ]× [n j ]. (3-2)

Bijection (3-1) induces the isomorphism of polynomial rings

9 : R(c,n) = K[xiF1\T ,...,iFq \T ,k | iFq\T ∈ [cFq\T ], k ∈ [n]] −→ K[xi1,...,iq ,k | i j ∈ [c′j ], k ∈ [n]] = R′n,

xiF1\T ,...,iFq \T ,k 7−→ xψ1(iF1\T ),...,ψq (iFq \T ),k.

Similarly, bijection (3-2) induces the isomorphism of polynomial rings

9 ′ : Sn = K[y j,iFj \T ,k j | 1≤ j ≤ q, iFj\T ∈ [cFj\T ], k j ∈ [n j ]]

−→ K[y j,i j ,k j | 1≤ j ≤ q, i j ∈ [c j ], k j ∈ [n j ]] = S′n,

y j,iFj \T ,k j 7−→ y j,ψ j (iFj \T ),k j .

We claim that the following diagram is commutative:

R(c,n) Sn

R′n S′n

8M

9 9 ′

8M′

(3-3)

Indeed, it suffices to check this for variables. In this case commutativity is shown by the following diagram:

xiF1\T ,...,iFq \T ,k
∏q

j=1 y j,iFj \T ,k j

xψ1(iF1\T ),...,ψq (iFq \T ),k
∏q

j=1 y j,ψ1(iFq \T ),k j

8M

9 9 ′

8M′

Since 9 and 9 ′ are isomorphisms, the commutativity of diagram (3-3) implies that im(8) ∼= im(8′),
which concludes the proof. �

We also need the following result.

Proposition 3.8. Let I = {In}n∈Nq be the Sq
∞-invariant filtration corresponding to hierarchical models

M(1, (c, n)) with 1 consisting of q 2-element disjoint facets F1, . . . , Fq , each meeting T in exactly
one vertex. Then the equivariant Hilbert series of I is a rational function in s1, . . . , sq , t with rational
coefficients.

This will be shown in the following section. Assuming the result, we complete the argument for
establishing Theorem 3.5.

Proof of Theorem 3.5. Let ν be the number of facets in 1 whose intersection with T is empty. We use
induction on ν ≥ 0. If ν = 0, the claimed rationality follows by combining Lemma 3.7 and Proposition 3.8.

Let ν≥1. We may assume that F1∩T =∅ and that vertex 1 is in F1. By assumption, it has c1 states. Set
ñ= (n1, n), c̃= (c2, . . . , c#T ) and T̃ = T ∪{1}. Then the hierarchical models M̃(1, (c̃, ñ)) give rise to a
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filtration Ĩ =I1,r
[m]\T̃

. By induction on ν, it has a rational equivariant Hilbert series. By definition, it is

equivHĨ (s1, s2, . . . , sq−ν+1, t)=
∑
n1≥1

sn1
1 · equivHI (s2, . . . , sq−ν+1, t).

Hence equivHI is obtained by evaluating (1/c1!)(∂
c1 equivHĨ /∂sc1

1 ) at s1 = 0. It follows that also
equivHI is rational. �

4. Regular languages

The goal of this section is to establish Proposition 3.8. We adopt its notation.
Fix c ∈ Nq. As above, we write xi,k for xi1,...,iq ,k1,...,kq , where (i, k) = (i1, . . . , iq , k1, . . . , kq) ∈

[c]× [n] ⊂ N2q. Thus, y j,iFj ,kFj
is simply y j,i j ,k j . For any n ∈ Nq , the homomorphism associated to the

model Mn =M(1, (c, n)) is

8n : Rn = K[xi,k | (i, k) ∈ [c]× [n]] −→ K[y j,i j ,k j | j ∈ [q], i j ∈ [c j ], k j ∈ [n j ]] = Sn,

xi,k 7−→

q∏
j=1

y j,i j ,k j .

Set

An = im8n = K

[ q∏
j=1

y j,i j ,k j

∣∣∣∣ i j ∈ [c j ], k j ∈ [n j ]

]
.

We denote the sets of monomials in An and Sn by Mon(An) and Mon(Sn), respectively. Define Mon(A)
as the disjoint union of the sets Mon(An) with n ∈Nq and similarly define Mon(S), where S =K[y j,i j ,k |

j ∈ [q], i j ∈ [c j ], k ∈ N]. Our next goal is to show that the elements of Mon(A) are in bijection to the
words of a suitable formal language.

Consider a set
6 = {ζi , τ j | i ∈ [c], j ∈ [q]}

with q +
∏q

j=1 c j elements. Let 6∗ be the free monoid on 6. A formal language with words in the
alphabet 6 is a subset of 6∗. We refer to the elements of 6 as letters. The empty word is denoted by ε.

In order to compare subsets of 6∗ with Mon(A) we need suitable maps. For j ∈ [q], define a shift
operator T j :Mon(S)→Mon(S) by

T j (yl,i,k)=

{
yl,i,k+1 if l = j,
yl,i,k if l 6= j,

extended multiplicatively to Mon(S). Define a map m :6?→Mon(S) inductively using the three rules

(a) m(ε)= 1,

(b) m(ζiw)=
∏q

j=1 y j,i j ,1m(w),

(c) m(τ jw)= T j (m(w)),

where w ∈6∗. In particular, this gives m(ζi )=8n(xi,1) for any n ∈ Nq, where 1 is the q-tuple whose
entries are all equal to 1.
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Example 4.1. If c1 = c2 = q = 2, one has 6 = {ζ1,1, ζ1,2, ζ2,1, ζ2,2, τ1, τ2}, and, for any n ≥ (2, 3),

m(τ1τ2ζ1,2τ2ζ1,1τ1)= T1(T2(y1,1,1 y2,2,1T2(y1,1,1 y2,1,1T1(1))))

= T1(T2(y1,1,1 y2,2,1 y1,1,1 y2,1,2))

= y1,1,2 y2,2,2 y1,1,2 y2,1,3

=8n(x(1,2),(2,2))8n(x(1,1),(2,3)).

The map m is certainly not injective because the variables y j,i,k commute. For example, if q= 2 one has
m(τ1τ2) = m(τ2τ1) and m(ζ2,1ζ1,2) = m(ζ1,2ζ2,1) = m(ζ1,1ζ2,2) and m(τ1ζ1,2τ2ζ2,1) = m(τ1ζ2,2τ2ζ1,1).
Thus, we introduce a suitable subset of 6∗.

Definition 4.2. Let L be the set of words in 6∗ that satisfy the following conditions:

(1) Every substring τiτ j has i ≤ j .

(2) In every substring with no τ j , if ζi occurs to the left of some ζi ′ , then the j-th entry of i is less than
or equal to the j-th entry of i ′.

To avoid triple subscripts below, we denote the j-th entry of a q-tuple kl by k(l, j); that is, we write

kl = (k(l,1), k(l,2), . . . , k(l,q)) ∈ Nq .

Using multi-indices, we write τ a for τ a1
1 τ

a2
2 . . . τ

aq
q with a = (a1, a2, . . . , aq). A string consisting only of

τ -letters can be written as τ k if and only if it satisfies condition (1) in Definition 4.2. With this notation,
one gets immediately the following explicit description of the words in L.

Lemma 4.3. The elements of the formal language L are precisely the words of the form

τ k1ζi1τ
k2ζi2 . . . τ

kd ζid τ
kd+1,

where i1, . . . , id ∈ [c], k1, . . . , kd+1 ∈ N
q
0 , and i(l−1, j) ≤ i(l, j) whenever k(l, j) = 0 for some (l, j) with

2≤ l ≤ d and j ∈ [q].

The following elementary observation is useful.

Lemma 4.4. Every monomial in Mon(A) can be uniquely written as a string of variables such that one
has the variable in any position l is of the form y j,i j ,k j with j = l mod q and, for each j ∈ [q], if a
variable y j,i j ,k j appears to the left of y j,i ′j ,k

′

j
, then either k j < k ′j or k j = k ′j and i j ≤ i ′j .

Proof. If for some j , two variables y j,i j ,k j and y j,i ′j ,k
′

j
appearing in a monomial do not satisfy the stated

condition, then swap their positions. Repeating this step as long as needed results in a string meeting
the requirement. It is unique, because the given condition induces an order on the variables y j,i,k with
fixed j . In the desired string, for each fixed j , the variables y j,i,k occur in this order when one reads the
string from left to right. �

We illustrate the above argument.
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Example 4.5. Let q = 2. To simplify notation write y jk instead of y1, j,k and z jk instead of y2, j,k . Then
one gets, for example,

y22z21 y14z11 y31z21

y22 y14 y31

z21z11z21

y31 y22 y14

z11z21z21

y31z11 y22z21 y14z21.

We observed above that the map m sends each letter ζi to the monomial 8n(xi,1). It follows that
m(6∗) is a subset of Mon(A). In fact, one has the following result.

Proposition 4.6. For any n ∈ N
q
0 , denote by Ln the set of words in L in which, for each j ∈ [q], the

letter τ j occurs precisely n j times. Then m induces for every n ∈ N
q
0 a bijection

mn : Ln→Mon(An+1), w 7→ m(w).

Proof. The definition of m readily implies m(w) ∈Mon(An+1) if w ∈ Ln.
First we show that mn is surjective. Let m ∈Mon(An+1) be any monomial. Its degree is dq for some

d ∈ N0. By Lemma 4.4, m can be written as

m =
d∏

l=1

( q∏
j=1

y j,i(l, j),k(l, j)

)
=

d∏
l=1

8n(xil ,kl )

such that, for each j ∈ [q], one has

1≤ k(1, j) ≤ · · · ≤ k(d, j) ≤ n j + 1,

i(l−1, j) ≤ i(l, j) if k(l, j) = 0 for some l.

The first condition implies that all the q-tuples k1− 1, k2− k1, . . . , kd − kd−1 and n+ 1− kd are in N
q
0 .

Hence the string
w = τ k1−1ζi1τ

k2−k1ζi2 · · · τ
kd−kd−1ζid τ

n+1−kd

is defined. The two conditions together combined with Lemma 4.3 show that in fact m is in Ln. Hence
m(w)= m proves the claimed surjectivity.

Second, we establish that mn is injective. Consider any two words w,w′ ∈ Ln with m(w)= m(w′).
We will show w = w′.

Write w and w′ as in Lemma 4.3:

w = τ k1ζi1τ
k2ζi2 · · · τ

kd ζid τ
kd+1, w′ = τ k′1ζi ′1τ

k′2ζi ′2 · · · τ
k′d′ ζi ′d′

τ
k′d′+1 .

Since m(w) has degree dq and m(w′) has degree d ′q, we conclude d = d ′. Evaluating m we obtain
d∏

l=1

( q∏
j=1

y j,i(l, j), f(l, j)

)
=

d∏
e=1

( q∏
j=1

y j,i ′(l, j), f ′(l, j)

)
, (4-1)

where f(l, j) = k(1, j)+· · ·+ k(l, j)+1 and f ′(l, j) = k ′(1, j)+· · ·+ k ′(l, j)+1. Fix any j ∈ [q]. Comparing the
third indices of the variables whose first index equals j and using that every index is nonnegative, we get
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for each l ∈ [d]
k(1, j)+ · · ·+ k(l, j) = k ′(1, j)+ · · ·+ k ′(l, j).

It follows that kl = k′l for each l ∈ [d]. Since w and w′ are in Ln, we have kd+1= n− (k1+ k2+· · ·+ kd)

and an analogous equation for k′d+1, which gives kd+1 = k′d+1.
It remains to show il = i ′l for every l ∈ [d]. Fix any j ∈ [q]. If for some l there is only one variable of

the form y j,µ, f(l, j) with µ ∈ [c j ] that divides m(w), this implies i(l, j) = i ′(l, j) = µ, as desired. Otherwise,
there is a maximal interval of consecutive indices k(l, j) that are equal to zero; that is, there are integers
a, b such that 1≤ a ≤ b ≤ d and

• k(l, j) = 0 if a ≤ l ≤ b,

• k(a−1, j) > 0, unless a = 1, and

• k(b+1, j) > 0, unless b = d .

Thus, the number of variables of the form y j,µ, f(l, j) that divide m(w) is b− a+ 2 if a ≥ 2 and b− a+ 1
if a = 1. Considering these variables, Lemma 4.3 gives

i(a−1, j) ≤ i(a, j) ≤ · · · ≤ i(b, j) and i ′(a−1, j) ≤ i ′(a, j) ≤ · · · ≤ i ′(b, j),

where i(a−1, j) and i ′(a−1, j) are omitted if a = 1. Using (4-1), it now follows that i(l, j) = i ′(l, j) whenever
a− 1≤ l ≤ b, unless a = 1. If a = 1, the latter equality is true whenever a ≤ l ≤ b.

Applying the latter argument to any interval of consecutive zero indices k(l, j), we conclude i(l, j) = i ′(l, j)
for every l ∈ [d]. This completes the argument. �

Our next goal is to show that L is a regular language. By [10, Theorems 3.4 and 3.7], this is equivalent
to proving that L is recognizable by a finite automaton. Recall that a deterministic finite automaton on
an alphabet 6 is a 5-tuple A = (P, 6, δ, p0, F) consisting of a finite set P of states, an initial state
p0 ∈ P, a set F ⊂ P of accepting states and a transition map δ : D→ P, where D is some subset of
P ×6. We refer to A simply as a finite automaton because we will consider only deterministic automata.
The automaton A recognizes or accepts a word w = a1a2 · · · as ∈ 6

∗ if there is a sequence of states
r0, r1, . . . , rs satisfying r0 = p0, rs ∈ F and

r j+1 = δ(r j , a j+1) whenever 0≤ j < s.

In words, the automaton starts in state p0 and transitions from state r j to a state r j+1 based on the
input a j+1. The word w is accepted if rs is an accepting state. If δ(p, a) is not defined the machine halts.
The automaton A recognizes a formal language L⊂6∗ if L is precisely the set of words in 6∗ that are
accepted by A.

Returning to the formal language L specified in Definition 4.2, we are ready to show:

Proposition 4.7. The language L is recognized by a finite automaton.

Proof. We need some further notation. We say that a sequence C of l ≥ 0 integers j1, j2, . . . , jl is an
increasing chain in [q] if 1≤ j1 < j2 < · · ·< jl ≤ q . Define max(C) as the largest element jl of C. We
put max(∅)= 0. We denote the set of increasing chains in [q] by C. Thus, the cardinality of C is 2q. We
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write j ∈ C if j occurs in the chain C. For any k ∈ N
q
0 , we define the sequence of indices j with k j > 0

as its support Supp(k). It is an element of C. For example, one has Supp(7, 0, 1, 5, 0)= (1, 3, 4).
Now we define an automaton A as follows: Let

P = {pj , pi , pi,C,k | 0≤ j ≤ q, i ∈ [c], C ∈ C, k ∈ C}

be the set of states, where p0 is the initial state of A. Let

F = {pj , pi , pi,C,k | 0≤ j ≤ q, i ∈ [c], C ∈ C, k =max(C)}

be the set of accepting states. Furthermore, define transitions

δ(pj , τ j ′)= pj ′ if j = 0< j ′ ≤ q or 1≤ j ≤ j ′ ≤ q, (4-2)

δ(pj , ζi )= pi if 0≤ j ≤ q, i ∈ [c], (4-3)

δ(pi , τ j )= pi,C, j if i ∈ [c], C ∈ C, j ∈ C, (4-4)

δ(pi , ζi ′)= pi ′ if i, i ′ ∈ [c], i ≤ i ′, (4-5)

δ(pi,C, j , τk)= pi,C,k if i ∈ [c], C ∈ C, j ∈ C, k directly follows j in C or k = j, (4-6)

δ(pi,C, j , ζi ′)= pi ′ if i, i ′ ∈ [c], j =max(C), ik ≤ i ′k whenever k /∈ C. (4-7)

If an element of P ×6 does not satisfy any of the above six conditions then it is not in the domain of δ.
We claim that A recognizes L. Indeed, let w ∈6∗ be a word with exactly d ≥ 0 ζ -letters. We show by

induction on d that w is recognized by A if w ∈ L, but any word in 6∗ \L is not accepted by A. It turns
out that w ∈ L is accepted

• at a state pj for some 0≤ j ≤ q if d = 0,

• at a state pi for some i ∈ [c] if d ≥ 1 and w ends with a ζ -letter, and

• at a state pi,C, j for some i ∈ [c], C ∈ C, j =max(C) if d ≥ 1 and w ends with a τ -letter.

In particular, this explains the set of accepting states.
Consider any word w ∈6∗ with exactly d ≥ 0 ζ -letters. Assume d = 0, that is, w = τl1τl2 · · · τlt . By

transition rule (4-2), A transitions from state p0 to any state pj with j ∈ [q] using input τ j . From any pj

with j ∈ [q] the automaton can transition to any state pj ′ with j ≤ j ′ ≤ q by using input τ j ′ . Thus, w is
accepted by A if and only if l1 ≤ l2 ≤ · · · ≤ lt , that is, w ∈ L (see Lemma 4.3).

Assume now that d ≥ 1. We proceed in several steps.

(I) Assume d = 1 and w ends with a ζ -letter, that is,

w = τl1τl2 · · · τlt ζi

for some t ≥ 0. The argument for d = 0 shows that τl1τl2 · · · τlt is accepted if and only if it can be written
as some τ k. Processing input τ k, the automaton arrives at state pj with j =max(Supp(k)). Using input ζi ,
it then transitions to pi ∈ F by rule (4-3). Hence w is accepted if and only if w ∈ L.

(II) Let d ≥ 1 and assume w ends with a τ -letter, that is, w can be written as

w = w′ζiτl1τl2 · · · τlt ,
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with t ≥ 1. Furthermore assume that w′ζi is accepted by A in state pi . We show that w is accepted by A
if and only if w = w′ζiτ

k for some k ∈ N
q
0 . If w is recognized, it is accepted in state pi,C,max(C), where

C = Supp(k).
Indeed, let C ∈ C be the chain corresponding to the set {l1, . . . , lt }. Processing input τl1 , rule (4-3)

yields that A transitions to state pi,C,l1 . If t = 1, then l1 =max(C) and w is accepted in pi,C,l1 ∈ F, as
claimed. If t ≥ 2, rule (4-6) shows that A can transition from pi,C,l1 using input τl2 precisely if l2 ≥ l1. If
transition is possible, A gets to state pi,C,l2 . Hence rule (4-6) guarantees that τl1τl2 · · · τlt can be processed
by A if and only if τl1τl2 · · · τlt = τ

k for some nonzero k ∈N
q
0 . In this case w =w′ζiτ

k is accepted by A
in state pi,C,max(C), where C = Supp(k).

(III) Assume now w ∈6∗ ends with a ζ -letter; that is, w is of the form

w = w′τl1τl2 · · · τlt ζi ,

where w′ ∈ L is either empty or ends with a ζ -letter and t ≥ 0. We show by induction on d ≥ 1 that w is
recognized by A if and only if w ∈ L. In this case, w is accepted in a state pi .

Indeed, if d = 1, i.e., w′ is the empty word, this has been shown in step (I). If d ≥ 2 write w′ = w′′ζi ′ .
If w′ is not accepted by A, then neither is w. Furthermore, the induction hypothesis gives w′ /∈ L, which
implies w /∈ L.

If w′ =w′′ζi ′ is recognized by A the induction hypothesis yields w′ ∈ L and w′ is accepted in state pi ′ .
Step (II) shows that w′′ζi ′τl1τl2 · · · τlt is accepted by A if and only if it can be written as w′′ζi ′τ

k for some
k ∈ N

q
0 , and so

w = w′′ζi ′τ
kζi .

We consider two cases.

Case 1: Suppose k is zero, i.e., Supp(k) = ∅. Thus, A accepts w′′ζi ′ ∈ L in state pi ′ . Using input ζi ,
rule (4-5) shows that A does not halt in pi ′ if and only if i ′ ≤ i . By Lemma 4.3, this is equivalent to
w = w′′ζi ′ζi ∈ L. Furthermore, if w is in L it is accepted in state pi , as claimed.

Case 2: Suppose Supp(k) 6=∅. Set C = Supp(k). By step (II), w′′ζi ′τ
k is accepted in state pi ′,C, j , where

j =max(C). Hence rule (4-7) gives that input ζi can be processed if and only if i ′l ≤ il whenever l /∈ C.
By Lemma 4.3, this is equivalent to w = w′′ζi ′τ

kζi ∈ L. Moreover, if w is recognized it is accepted in
state pi , as claimed.

(IV) By steps (I) and (III) it remains to consider the case where w ends with a τ -letter, i.e., w =
w′ζiτl1τl2 · · · τlt with t ≥ 1. By step (III), w′ζi is recognized by A if and only if w′ζi ∈ L. Furthermore,
if w′ζi ∈ L then it is accepted in state pi . Hence, the assumption in step (II) is satisfied and we conclude
that w is accepted if and only if w = w′ζiτ

k. The latter is equivalent to w′ζiτ
k
∈ L because w′ζi is in L.

This completes the argument. �

Remark 4.8. Any finite automaton A= (P, 6, δ, p0, F) can be represented by a labeled directed graph
whose vertex set is the set of states P. Accepting states are indicated by double circles. There is an edge
from vertex p to vertex p′ if there is a transition δ(p, a) = p′. In that case, the edge is labeled by all
a ∈6 such that δ(p, a)= p′.
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Figure 1. The automaton for c= (1, 1, 1) and T = [3].

We illustrate the automata constructed in Proposition 4.7 using such a graphical representation.

Example 4.9. Let A be the automaton constructed in Proposition 4.7 if q = 3 and c= (1, 1, 1). Note the
only element in [c] is 1= (1, 1, 1). To simplify notation, we write ζ for ζ1,1,1 and p1 for p(1,1,1). We denote
the nonempty increasing chains in the interval [3] by C1={1}, C2={2}, C3={3}, C4={1, 2}, C5={1, 3},
C6={2, 3}, C7={1, 2, 3} and write pi, j instead of p1,Ci , j . Using this notation, the constructed automaton
A is represented by the graph in Figure 1.

Remark 4.10. The automaton constructed in Proposition 4.7 is often not the smallest automaton that
recognizes the language L. Using the minimization technique described in [10, Theorem 4.26], one can
obtain an automaton with fewer states that also recognizes L. For example, if c= (1, 1, 1), this produces
an automaton with only four states, shown in Figure 2.

In order to relate a language L on an alphabet 6 to a Hilbert series we need a suitable weight function.
Let T = K[s1, . . . , sk] be a polynomial ring in k variables and denote by Mon(T ) the set of monomials
in T. A weight function is a monoid homomorphism ρ :6?→Mon(T ) such that ρ(w)= 1 only if w is
the empty word. The corresponding generating function is a formal power series in variables s1, . . . , sk :

PL,ρ(s1, . . . , sk)=
∑
w∈L

ρ(w).
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Figure 2. The reduced automaton for c= (1, 1, 1) and T = [3].

We will use the following result; see, e.g., [9] or [16, Theorem 4.7.2].

Theorem 4.11. If ρ is any weight function on a regular language L then PL,ρ is a rational function in
Q(s1, . . . , sk).

We are ready to establish the ingredient of the proof of Theorem 3.5 whose proof we had postponed.

Proof of Proposition 3.8. Since In = ker8n and 8n is a homomorphism of degree q , we get Rn/In ∼= An

and, for each d ∈ Z,

dimK[Rn/In]d = dimK[An]dq .

Recall that the algebra An is generated by monomials. Hence, every graded component has a K-basis
consisting of monomials. It follows that dimK[An]dq = # Mon([An]dq). Therefore we get for the
equivariant Hilbert series of the filtration I

equivHI (s1, . . . , sq , t)=
∑
n∈Nq

∑
d≥0

# Mon([An]dq) · sntd ,

where sn
= sn1

1 · · · s
nq
q if n= (n1, . . . , nq).

Consider now the language L described in Definition 4.2. Define a weight function ρ : 6∗ →
Mon(K[s1, . . . , sq , t]) by ρ(τ j )= s j and ρ(ζi )= t for i ∈ [c]. Thus, for w ∈L, one obtains ρ(w)= sntd

if d is the number of ζ -letters occurring in w and n j is the number of appearances of τ j in w. Hence
Proposition 4.6 gives that the number of words w ∈ Ln with ρ(w)= sntd is precisely # Mon([An+1]dq).
Since L is the disjoint union of all Ln, it follows

s1 · · · sq · equivHI (s1, . . . , sq , t)=
∑
n∈N

q
0

∑
w∈Ln

ρ(w)= PL,ρ(s1, . . . , sq , t). (4-8)

As the right-hand side is rational by Theorem 4.11, the claim follows. �

Remark 4.12. The method of proof for Theorem 3.5 is rather general and can also be used in other
situations. An easy generalization is obtained as follows. Fix (a1, . . . , aq) ∈Nq. For n ∈Nq, consider the
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homomorphism

8̃n : Rn = K[xi,k | (i, k) ∈ [c]× [n]] −→ K[y j,i j ,k j | j ∈ [q], i j ∈ [c j ], k j ∈ [n j ]] = Sn,

xi,k 7−→

q∏
j=1

ya j
j,i j ,k j

,

and set

Ãn = im8n = K

[ q∏
j=1

ya j
j,i j ,k j

∣∣∣∣ i j ∈ [c j ], k j ∈ [n j ]

]
,

Ĩn = ker 8̃n.

Then Ĩ = { Ĩn}n∈Nq also is an Sq
∞-invariant filtration whose equivariant Hilbert series is rational. Indeed,

this follows using the language L as above with the following modifications. In the definition of
the map m change rule (b) to m̃(ζiw) =

∏q
j=1 ya j

j,i j ,1m̃(w), but keep rules (a) and (c) to obtain a
map m̃ : 6?→ Mon(S). It induces bijections Ln → Mon( Ãn+1) as in Proposition 4.6. Observe that
[Rn/ Ĩn]d ∼= [ Ãn]da , where a = a1+· · ·+aq . Thus, using the same weight function ρ as above, we obtain
s1 · · · sq · equivHI (s1, . . . , sq , t)= PL,ρ(s1, . . . , sq , t).

A systematic study of substantial generalizations will be presented in [13].

5. Explicit formulas

We provide explicit formulas for the Hilbert series of hierarchical models considered in Theorem 3.5.
It is useful to begin by discussing Segre products more generally. To this end we temporarily use some

new notation.

Lemma 5.1. Let A=K[a1, . . . , as] ⊂ R and B =K[b1, . . . , bt ] ⊂ S be subalgebras of polynomial rings
R = K[x1, . . . , xm] and S = K[y1, . . . , yn] that are generated by monomials a1, . . . , as of degree d1 and
monomials b1, . . . , bt of degree d2, respectively. Let C be the subalgebra of K[x1, . . . , xm, y1, . . . , yn]

that is generated by all monomials ai b j with i ∈ [s] and j ∈ [t]. Using the gradings induced from the
corresponding polynomials rings one has, for all k ∈ Z,

dimK[C]k(d1+d2) = dimK[A]kd1 · dimK[B]kd2 .

Proof. This follows from the fact that the nontrivial degree components of the algebras A, B,C have
K-bases generated by monomials in the respective algebra generators of suitable degrees. �

It is customary to consider the algebras occurring in Lemma 5.1 as standard graded algebras that are
generated in degree 1 by redefining their grading. In the new gradings, the degree k elements of A are
elements that have degree kd1, considered as polynomials in R, and similarly the degree-k elements
of C have degree k(d1+ d2) when considered as elements of K[x1, . . . , xm, y1, . . . , yn]. Using this new
grading, the statement in the above lemma reads

dimK[C]d = dimK[A]d · dimK[B]d . (5-1)

This justifies calling C the Segre product of the algebras A and B. We denote it by A� B.
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Iterating the above construction we get the following consequence.

Corollary 5.2. Let A1, . . . , Ak be subalgebras of polynomial rings and assume every Ai is generated
by finitely many monomials of degree di . Regrade such that every Ai is an algebra that is generated in
degree 1. Then one has

dimK[A1 � · · ·� Ak]d =

k∏
i=1

dimK[Ai ]d .

We need an elementary observation.

Lemma 5.3. Let ω ∈ C be a primitive k-th root of unity. If

f (t)=
∞∑

n=0

cntn

is a formal power series in t with complex coefficients, then
∞∑

n=0

cknxkn
=

1
k
[ f (t)+ f (ωt)+ · · ·+ f (ωk−1t)].

Proof. Using geometric sums one gets, for every n ∈ N0,

k−1∑
j=0

(ω j )n =

{
k if k divides n,
0 otherwise.

The claim follows. �

Proposition 5.4. Fix any q ∈ N and let I be the Sq
∞-invariant filtration considered in Proposition 3.8.

For j ∈ [q], let ω j be a c j -th primitive root of unity. Then the equivariant Hilbert series of I is

equivHI (s1, . . . , sq , t)=
1

c1 · · · cq

∑
m1∈[c1],...,mq∈[cq ]

ω
m1
1 s1/c1

1 · · ·ω
mq
q s1/cq

q

(1−ωm1
1 s1/c1

1 ) · · · (1−ωmq
q s1/cq

q )− t
.

Proof. By definition of the map 8Mn , its image is isomorphic to the Segre product of polynomial rings
of dimension c j n j with j = 1, . . . , q . Hence Corollary 5.2 gives for the equivariant Hilbert series

equivHI (s1, . . . , sq , t)=
∑

d≥0,n∈Nq

(c1n1+d−1
d

)
· · ·

(cqnq+d−1
d

)
sn1

1 . . . snq
q td

=

∑
d≥0

{ q∏
j=1

[∑
n j∈N

(c j n j+d−1
d

)
sn j

j

]}
td . (5-2)

For any integer d ≥ 0, one computes∑
n∈N

(n+d−1
d

)
sn
= s

∑
n∈N0

(d+n
n

)
sn
=

s
(1− s)d+1 .
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Combined with Lemma 5.3 and using a c-th primitive root of unity ω ∈C, we obtain, for any integer c> 0,∑
n∈N

(cn+d−1
d

)
sn
=

1
c

∑
m∈[c]

ωms1/c

(1−ωms1/c)d+1 .

Applying the last formula to the inner sums in (5-2) we get

equivHI (s1, . . . , sq , t)=
∑
d≥0

{ q∏
j=1

[
1
c j

ωm
j s1/c j

j

(1−ωm
j s1/c j

j )d+1

]}
td

=

∑
d≥0

1
c1 · · · cq

{ ∑
m1∈[c1],...,mq∈[cq ]

ω
m1
1 s1/c1

1

(1−ωm1
1 s1/c1

1 )d+1
· · ·

ω
mq
q s1/cq

q

(1−ωmq
q s1/cq

q )d+1

}
td

=
1

c1 · · · cq

∑
m1∈[c1],...,mq∈[cq ]

ω
m1
1 s1/c1

1 · · ·ω
mq
q s1/cq

q

(1−ωm1
1 s1/c1

1 ) · · · (1−ωmq
q s1/cq

q )− t
,

as claimed. �

By Theorem 3.5, the above formula for the equivariant Hilbert series can be rewritten as a rational
function with rational coefficients.

Example 5.5. (i) Let c1 = · · · = cq = 1. Then Proposition 5.4 gives

equivHI (s1, s2, . . . , sq , t)=
s1 . . . sq

(1− s1) · · · (1− sq)− t
.

By the argument at the beginning of the proof of Lemma 3.7, this model has the same equivariant Hilbert
series as the corresponding independence model (see Example 3.6).

(ii) Let q = c1 = c2 = 2. Then Proposition 5.4 yields

4 · equivHI (s1, s2, t)=
√

s1s2

(1−
√

s1)(1−
√

s2)− t
−

√
s1s2

(1−
√

s1)(1+
√

s2)− t

−

√
s1s2

(1+
√

s1)(1−
√

s2)− t
+

√
s1s2

(1+
√

s1)(1+
√

s2)− t
.

Now a straightforward computation gives

equivHI (s1, s2, t)=
s1s2(s1s2− s1− s2− t2)

f
,

where

f = s1s2(s1− 2)(s2− 2)+ s1(s1− 2)+ s2(s2− 2)− 2t2(s1s2+ s1+ s2)− 4t (s1s2− s1− s2)+ (1− t)4.

There is an alternative method to determine the equivariant Hilbert series whose rationality is guaranteed
by Proposition 3.8. It directly produces a rational function with rational coefficients. This approach
applies to any equivariant Hilbert series that is equal to the generating function PL,ρ determined by a
weight function ρ on a regular language L. Indeed, let A= (P, 6, δ, p0, F) be a finite automaton that
recognizes L. Suppose P has N elements p0, . . . , pN−1. For every letter a ∈6 define a 0-1 matrix MA,a
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of size N×N . Its entry at position (i, j) is 1 precisely if there is a transition δ(pj , a)= pi . Let ei ∈KN be
the canonical basis vector corresponding to state pi−1. Let u =

∑
pi−1∈F ei ∈ KN be the sum of the basis

vectors corresponding to the accepting states. Then, for any word w = w1 · · ·wd with wi ∈6, one has

uT MA,wd · · · AA,w1 e1 =

{
1 if A accepts w,
0 if A rejects w.

Let ρ : 6∗ → Mon(K[s1, . . . , sk]) be a weight function. Thus, ρ(w1w2) = ρ(w1) · ρ(w2) for any
w1, w2 ∈6

∗. It follows (see, e.g, [16, Section 4.7])

PL,ρ(s1, . . . , sk)=
∑
w∈L

ρ(w)

=

∑
d≥0

∑
w1,...,wd∈6

uT (ρ(w1 · · ·wd)MA,wd · · · AA,w1)e1

=

∑
d≥0

uT
(∑

a∈6

ρ(a)MA,a

)d

e1 = uT
(

idN −
∑
a∈6

ρ(a)MA,a

)−1

e1.

Thus, the generating function PL,ρ(s1, . . . , sk) is rational with rational coefficients and can be explicitly
computed from the automaton A using linear algebra.

In the proof of Proposition 3.8, we showed (see (4-8)) that the equivariant Hilbert series of a considered
filtration is, up to a degree shift, equal to a generating function. Hence, the above approach can be used to
compute directly this Hilbert series as a rational function with rational coefficients. We implemented the re-
sulting algorithm in Macaulay2 [6]. It is available at http://www.sites.google.com/view/aidamaraj/research.

Example 5.6. In Proposition 3.8, consider the case where c = (1, 1, . . . , 1) ∈ Nq. The automaton
constructed in Proposition 4.7 can be reduced to one with only q + 1 states (see Remark 4.10 if q = 3),
shown in Figure 3.

p1start p2 . . . pq

p1

τ1 τ2 τq

ζ

τ2

τq

τq

ζ

ζ

ζ

τ1

τ2
τq

Figure 3. The reduced automaton for c= (1, . . . , 1) and T = [q].
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Hence, listing p1 as the last state, we obtain for the equivariant Hilbert series of the filtration I

equivHI (s1, . . . , sq , t)= s1s2 · · · sq · uT
(

idq+1−
∑
a∈6

ρ(a)MA,w

)−1

e1

= s1s2 · · · sq


1
1
...

1


T



1− s1 0 0 . . . 0 0 −s1

−s2 1− s2 0 . . . 0 0 −s2

−s3 −s3 1− s3 . . . 0 0 −s3
...

...
...

. . .
...

...
...

−sq−1 −sq−1 −sq−1 . . . 1− sq−1 0 −sq−1

−sq −sq −sq . . . −sq 1− sq −sq

−t −t −t . . . −t −t 1− t



−1
1
0
...

0



=
s1 · · · sq

(1− s1) · · · (1− sq)− t
,

where the first column of the inverse matrix can be determined using suitable minors. Of course, the
result is the same as in Example 5.5.
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[8] S. Hoşten and S. Sullivant, “A finiteness theorem for Markov bases of hierarchical models”, J. Combin. Theory Ser. A 114:2
(2007), 311–321.

[9] J. Honkala, “A necessary condition for the rationality of the zeta function of a regular language”, Theoret. Comput. Sci.
66:3 (1989), 341–347.

[10] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley, Reading,
MA, 1979.

[11] R. Krone, A. Leykin, and A. Snowden, “Hilbert series of symmetric ideals in infinite polynomial rings via formal languages”,
J. Algebra 485 (2017), 353–362.

[12] L. Li and N. Yu, “FIm -modules over Noetherian rings”, J. Pure Appl. Algebra 223:8 (2019), 3436–3460.

[13] A. Maraj and U. Nagel, “Equivariant Hilbert series of OIq -algebras”, in preparation.

[14] U. Nagel and T. Römer, “Equivariant Hilbert series in non-noetherian polynomial rings”, J. Algebra 486 (2017), 204–245.

[15] U. Nagel and T. Römer, “FI- and OI-modules with varying coefficients”, J. Algebra 535 (2019), 286–322.

JOURNAL OF ALGEBRAIC STATISTICS 
Volume 12, No. 1, 2021, p.21-42 
https://publishoa.com 
ISSN: 1309-3452

41



[16] R. P. Stanley, Enumerative combinatorics, I, 2nd ed., Cambridge Studies in Advanced Mathematics 49, Cambridge
University Press, 2012.

[17] S. Sullivant, Algebraic statistics, Graduate Studies in Mathematics 194, Amer. Math. Soc., Providence, RI, 2018.

JOURNAL OF ALGEBRAIC STATISTICS 
Volume 12, No. 1, 2021, p.21-42 
https://publishoa.com 
ISSN: 1309-3452

42


	1. Introduction
	2. Symmetry and filtrations
	3. Equivariant Hilbert series
	4. Regular languages
	5. Explicit formulas
	References



