
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

31

AVMCT: API Calls Visualization based Malware Classification using

Transfer Learning

1
Manish Goyal,

1`Department of Computer Science and Engineering, I K Gujral Punjab Technical University,

Kapurthala,Punjab,India.Email-id: er.manishgoyal.ghudda@gmail.com

2Raman Kumar

2Department of Computer Science and Engineering, I K Gujral Punjab Technical University,

Kapurthala, Punjab,India.Email-id: er.ramankumar@aol.in

Received 2022 March 15; Revised 2022 April 20; Accepted 2022 May 10.

ABSTRACT:The exponential growth of the internet and high-speed data transmission has also increased the

security threat of data.The antivirus companies are providing security to this data. Cybercriminals are in

continuous efforts to break security barriers to steal sensitive information and to have unauthorized access or

corrupt the victim’s system. There is a never-ending cycle between antivirus companies and cybercriminals.

There are two ways to detect malware by using static analysis and dynamic analysis. Although static analysis

provides fast results,zero-day malware can’t be detected as there is a predefined set of signatures in this

technique. By using obfuscation techniques malware writers can evade this technique while in dynamic analysis

malware detection is based on malware behavior. So, dynamic analysis is capable of detecting new and unseen

malware. Machine learning and deep learning techniques are quite effective in the classification of malware on

the extracted feature set by using static or dynamic analysis. In a recent study, the malware classification is

performed by using transfer learning inConvolution Neural Network (CNN) architectures based on API Call

visualization. API Call visualization means converting API Calls in the form of images to detect patterns of

different families of malware. After converting API Callimages,the transfer learning is performed on two

customized CNN models to enhance feature vectors and made a combined set of feature vectors. The results of

thisframework are compared with pre-trained models like VGG-16, ResNet-50 and AlexNet which shows that

our suggested approach outperforms pre-trained models.

KEYWORDS: CNN, Deep Learning, Transfer Learning, Malware classification, API Calls

1. INTRODUCTION

The internet and recent technological advancements in computer systems have made the human lifestyle easier

and more convenient. These days everything could be done on the Internet, namely socialization, financial

transactions, and the assessment of human bodily changes, among other things. All of these improvements

encourage cyber thieves to conduct attacks online rather than physically. Malware threats have become one of

the most serious dangers to Internet security in recent years. According to McAfee's study 2021[1], there has

been a massive growth in malware production recently, with an average of 588 cyber threats each minute. Anti-

malware companies are trying to capture this malware. But to avoid detection, malware writers are frequently

mutating malware into variants. Also, many tools can build malware in very less time. As a result, malware

classification has become a very essential study area. Anti-malware solutions are used to keep malware from

infiltrating the system. In this scenario, anti-virus companies must classify malware[2].

Static analysis or dynamic analysis are the most used methods for detecting malware[3]. In general, static and

dynamic feature extraction-based algorithms are used to meet the issue of malware classification[4]. The static

malware classification method looks for registered signatures in files[5]–[8]. Malware signatures are used to

recognize malicious activities using this approach, which is based on virus data produced without the malware

being executed. However, when it comes to detecting zero-day malware, signature-based malware detection is

ineffective. Dynamic analysis, on the other hand, executes the malware sample in anisolated environment[9]–

[13]. So, the behavior of malware is analyzed in this case. So, this method is capable of detecting both disguised

and fresh malware.

about:blank

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

32

Recently, Deep Learning (DL), a subfield of artificial intelligence, has attained remarkable performance in

various fields[14]. Traditional machine learning methods are not enough to detect all types of malware. The

working of deep learning techniquesis different from machine learning techniques hence can prove beneficial in

the detection of malware samples[15].

Transfer learning refers to the learning outcome of one CNN model to repurposing another CNN model. The

CNN model used in transfer learning can be pre-trained models or customized models. In the present paper, we

have combined feature vectors of two CNN models. The proposed model is compared with pre-trained models

like VGG-16, ResNet-50 and DenseNet-50. The results show that AVMCToutperformed existing models. The

significantcontributions of this paper are:

1. Collection of malware samples from various websites and analyzing their behavior in an isolated

environment of Cuckoo Sandbox.

2. A data set of API Call Images has been created.

3. The transfer learning of two CNN models is used on this data set.

4. Comparison of the proposed model is done with previously existing models like VGG-16, ResNet and

AlexNet.

The organization of the present study is as Section 1presents in the introduction. It includes the introduction of

malwareand present work. A literature review of related work is presented in Section 2. It includes the work

done by various authors in the area of malware detection. Section 3 presentsthe proposed work. It includes the

introduction of a dataset, architecture of proposed work and background of deep learning. Section 4 presents

implementation details. This section includes parameters used for implementation. Section 5 includes evaluation

metrics while section 6 includes results and discussion. At last, the conclusion of the paper is added in Section 7.

2. RELATED WORK

In the initial phase malware were developed just to make prank but with the evolution of time and the growth of

the internet, it has taken a serious form. So, it is necessary to detect malware at an early stage. The work done by

various researchers in the field of malware detection is listed in this section.

Malware is becoming more prevalent in terms of volume, type, and intelligence. Different deep learning models

are being developed by researchers to detect and classify malware. IMCFN technique based on malware image

has been developed by Vasan et al.[16] using CNN Fine-tuned deep learning model. This method transforms the

malware binaries into colored images which are further passed to Fine-tuned CNN model to classify the

malware families. This method works well for detecting hidden code[16]. They have used the MalImg dataset

[17]for their research.One more image-based technique (IMCEC) has been developed by Vasan et al.[18] to

classify the malware using an ensemble of different CNN models. They considered that deeper architecture

based on different CNN architectures shows different semantic representations of malware images. This model

achieves 99% accuracy over unpacked malware with a low false alarm rate. This model takes 1.18 seconds to

detect a new sample of malware[18]. Another fine-tuned CNN-based model has been developed by W. El-

Shafai et al.[19]to classify malware that uses the advantages of both fine-tuning and transfer-learning with

simple feature extraction techniques. This method has a framework of eight different FT CNN models including

AlexNet, Places365-GoogleNet, VGG16, Inception-V3, DarkNet-53, MobileNet-V2, DenseNet-201, and

ResNet-50. This technique has been tested on the benchmark MalImg dataset[17]. This technique has achieved

an accuracy of 99.97%[19].G.Xiao et al.[20]showed that combining deep CNN with an entropy graph improves

malware classification. This model contains an automated feature extraction technique. For this purpose, the

authors firstly visualize binaries of malware based on entropy, then CNN was implemented to extract patterns

and finally SVM was implemented on extracted features to classify malware.

Asam et al. [2] proposed two frameworks namely DFS-MC and DBFS-MC. In the case of DFS-MC, customized

CNN models are used to extract features and are provided to SVM for malware classification, whereas in

DBFS-MC customized CNN model is made by combining two pre-trained networks namely ResNet-18 and

DenseNet -201. The enhanced features are provided to SVM. The MalImg dataset is used for research.

Furthermore, a hybrid model classifies the malware by integrating two pre-trained models AlexNet and Resnet -

152 Net that is based on Transfer Learning. This model has been tested on the MalImg dataset and 97.78%

accuracy is achieved[15]. Another study classifies malware families using a DLMD strategy based on static

https://www.sciencedirect.com/science/article/abs/pii/S074373151930869X#!

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

33

methodologies. The DLMD approach classifies malware families by using byte and ASM files combination

extraction of feature extraction. Firstly, the authors used two CNN models to extract features from byte data.

Afterward, opcodes are used for wrapper class to extract distinctive and crucial features. The feature spaces are

combined and made into hybrid feature sets. Then ANN is implemented on this feature vector [21]. Kalash et al.

[22]used the CNN model to detect malware. Their method was tested on MalImg and Microsoft datasets. They

firstly converted malware binaries into images and provided these images to CNN as grayscale images. The

accuracy achieved by this method is 99.175% and 98.52 % on MalImg and Microsoft datasets respectively[22].

As observed from related work done by various authors, we have noted that traditionally static analysis was

done to detect malware but that was incapable to detect new malware. Then research was shifted to machine

learning classifiers and then towards deep learning schemes. Nowadays, research has taken a new direction in

which a hybrid feature vector is used by combining feature spaces of two or more CNN models. Due to this,

results have increased extensively. But the major problem lies in the dataset used by researchers is based on the

visualization of malware binary files like MalImg [17]and Big Data[23].These data sets are based on images

created from binaries of malware and are prone to obfuscation. In this paper, we have worked on a combination

of CNNmodels to make a hybrid feature vector on the API Call dataset to cover the research gap of previous

research.

3. PROPOSED WORK

Effective detection of malware families is necessary as soon as possible, to minimize the damage done by

malware. Rather than employing traditional static features to detect malware or usinga machine or deep learning

techniques we have used a hybrid of two CNN models to detect malware. In this paper hybrid deep learning

model is introduced which can classify malware families efficiently using visualization of API calls. For this

work firstly dataset is created.

To create the dataset the malware samples are picked from various websites like VirusTotal[24], VirusShare[25]

and MalShare[26]. Then these malware samples were executed on an isolated environment of Cuckoo

Sandbox[27] and 1482 API Calls were extracted from Cuckoo reports. Figure 1 depicts the process of extraction

of API Calls.

Figure 1:Procedure to extract API Calls

The dataset consists of 15217 malware samples from 14 malware families which are listed in Figure 2.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

34

Figure 2: Number of malware samples of each family

3.1. Visualization of API Calls into Images

Application Programming Interface (API) calls allows two software’s to talk as it acts as a communicator with

the operating system[28]. When applications run on the Windows platform, these applications need an interface

to talk to the operating system. API Calls offer this service as whenever any work has to be done by a process,

calls are made to the operating system, which is known as API Calls. Consider an example when a process has

to delete a file, DeleteFileA,API Call is initiated [29]. As a result, examining these API Calls reveals crucial

information about the application’s activity.

Visualization of API Calls means converting API Calls into a grayscale image. As deep learning provides the

best results on images so there arises a need to convert API Calls into images. As 1489 API Calls were extracted

for each sample of malware maximum size of the image which can be obtained is 38 × 39. The distinct API

Calls extracted are 264. Hence are indexed from 0 to 263. The value of the pixel in the grayscale image lies

between 0-255. To convert the API Calls value into 0-255 each value of the API Call is divided by the

maximum value and multiplied by 255. Then 15217 samples of 1482 size are reshaped into 15217 × 39 × 38.

The visualization of API Calls of different malware families is shown in Figure 3.

To reshape data from one dimension to two dimensions, for one sample, firstly, the first 38 values of linear data

are taken and the next 38 values are added in the 2
nd

 row, the next 38 values are added in the 3
rd

 row and so on.

By adopting this procedure, we converted one linear dataset of 1482 feature vectors into two-dimensional data

with 39 rows and 38 columns. Then the grayscale images are plotted on this dataset.

While plotting it is observed that the images of different classes show a different pattern and that of the same

class provides the same pattern. It can be seen from these images that there are different patterns in each

malware family. On behalf of these patterns, deep learning can be implemented.

3.2. Proposed Model of AVMCT

In the proposed model two customized CNN models are combined to utilize their features and to combine

features to enlarge the feature vector. In the aforementioned AVMCT technique, we have used a filter size of 5

× 5 in one CNN model and in another CNN model we have used a filter size of 3 × 3 with strides. These

different kinds of features are extracted from both CNN models and both kinds of features are combined. The

overview of the architecture used for AVMCT is shown in Figure 4.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

35

Figure 3: API Call visualization from malware families

Figure 4: The overview of the architecture of AVMCT

As shown in Figure 4 the API Calls extracted from the dataset are organized into a 2D array then the values of

API Calls are scaled from 0 to 255. Then this 2D array is converted into grayscale. After that color mapping is

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

36

applied to this image so that we can have a clear distinction of patterns. Afterward, these two customized CNN

models were combined to make a hybrid feature vector. Then on this combined feature vector fully connected

layers are implemented. The algorithm for AVMCT is given in Algorithm 1.

Algorithm 1: AVMCT

Input: API Image Dataset (API_Img)

Output:Trained Data

1. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑋 ∈ 𝐴𝑃𝐼𝐼𝑚𝑔

2. 𝑌 ← 𝑋[′𝐿𝑎𝑏𝑒𝑙′]
3. 𝑋 ← 𝑋. 𝑑𝑟𝑜𝑝([′𝐿𝑎𝑏𝑒𝑙′])

4. 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑒𝑠𝑡 ← 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 𝑋, 𝑌, 0.7, 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑎𝑡𝑒 = 4

#70% data is selected as training while 30% data is selected as testing

5. 𝑆𝑒𝑡 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 ← 64, 𝑒𝑝𝑜𝑐ℎ𝑠 ← 20
6. Convert labels into categorical data

𝑌𝑡𝑟𝑎𝑖 𝑛𝑐𝑎𝑡
← 𝑛𝑝𝑢𝑡𝑖𝑙𝑠 . 𝑡𝑜𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑌𝑡𝑟𝑎𝑖𝑛

𝑌𝑡𝑒𝑠 𝑡𝑐𝑎𝑡 ← 𝑛𝑝𝑢𝑡𝑖𝑙𝑠 . 𝑡𝑜𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑌𝑡𝑒𝑠𝑡

7. 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝐶𝑁𝑁 𝑚𝑜𝑑𝑒𝑙 1 𝑏𝑦 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘

8. 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝐶𝑁𝑁 𝑚𝑜𝑑𝑒𝑙 2 𝑏𝑦 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑙𝑜𝑐𝑘

9. 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑙𝑎𝑦𝑒𝑟

10. 𝐴𝑝𝑝𝑙𝑦 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠

11. 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

3.3. Background of Deep Learning used in AVMCT

Different deep learning models are used in the proposed AVMCT technique to improve the input feature

representation. CNN is a sort of artificial neural network that operates on the notion of local connection. As a

result, they can take advantage of local correlation by guaranteeing that neurons in neighboring layers are

connected locally. CNN's foundation is made up of convolutional layers. In convolution layers filters of fixed

sizes are used these filters convolve across the whole image and thus extract features and make a new output

matrix. Kernels are automatically evolved during training using the backpropagation technique. As a result, for

each place in the input matrix, the output is the result of the convolved kernel.

The major steps in any generic CNN architecture are as follows[30], [31]

1) Apply convolution layers to extract features

2) Apply pool or activation or batch normalization layers to fasten the training process

3) Apply fully connected layers to train the model

Another key element in CNN architecture is pooling. Min, max, and average are all different variations of the

pooling layer.Pooling layers are used to reduce the size of the dataset by choosing minimum, maximum and

average values chosen out of the window frame used for a min, max and average pooling respectively[32]. To

avoid much loss of data pool size is generally taken as 2 × 2. Because of its low computational cost and

transition invariance, maximum pooling is often employed. The fully connected layer is utilized in the end after

stacking many convolutional and pooling layers. The features are taken from several convolutions and pooling

layers. These extracted features are mapped to the output by a fully connected layer. This also adds multilayer

perceptron capability to the CNN, but instead of working directly on the input, it applies kernels to the extracted

features.

4. IMPLEMENTATION DETAILS

While executing samples on Cuckoo Sandbox Ubuntu is installed on the host machine while the guest machine

was installed with windows 7. The firewall of the guest machine was turned off so that malicious samples can

perform their activities. The implementation of the CNN of the proposed work is done using the Keras library

on google Colab by setting up GPU as runtime.

Two distinct versions of CNN are employed as feature extractors in the proposed AVMCTapproach. As a result,

a five-layer deep CNN was trained from the ground up on image representation API requests from 14 different

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

37

malware classes in this regard. Table 1 shows the parameters that are optimized throughout training. In contrast,

Table 2 discusses the design of CNN in greater depth.

Table1: Parameters of CNN

Parameters Value

Convolution layer 2

Number of epochs 20

Batch_size 64

Number of classes 14

Table 2: List of filters used and summary of CNN models

Layers Number and size of

filters

Input Output

Parameters of CNN model 1

Conv 2D 32, 5 × 5 39 × 38 × 1 35 × 34 × 32

Batch

Normalization

 35 × 34 × 32 35 × 34 × 32

Activation 35 × 34 × 32 35 × 34 × 32

Dropout 35 × 34 × 32 35 × 34 × 32

Flatten 35 × 34 × 32 38080

Parameters of CNN model 2

Conv 2D 32, 3 × 3

(with strides)

39 × 38 × 1 13 × 12 × 32

Batch

Normalization

 13 × 12 × 32 13 × 12 × 32

Activation 13 × 12 × 32 13 × 12 × 32

Dropout 13 × 12 × 32 13 × 12 × 32

Flatten 13 × 12 × 32 4992

Concatenation [CNN1, CNN2]

Batch

Normalization

 43072 43072

Dense 43072 256

Batch

Normalization

 256 256

Activation 256 256

Dense 256 128

Dropout 128 128

Dense 128 64

Output 64 14

5. PERFORMANCE EVALUATION MEASURES

Log loss is employed as an assessment measure in the proposed AVMCT approach. The cross-entropy between

correct and anticipated labels is known as log loss. Equation 1 shows the precise method for calculating the log

loss [21].

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
 𝑦𝑖𝑗 log(𝜌𝑖𝑗)𝑀

𝑗=1
𝑁
𝑖=1 (1)

In the above equation, the total number of samples of malware is represented by N, while M represents a number

of classes which is 14 in our case. 𝜌𝑖𝑗 represents the probability of i
th

 sample of the j
th

 class. The log function

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

38

mentioned in the aforementioned formula is Natural Logarithm. Another measure to evaluate the performance of

AVMCT is accuracy which can be defined using equation 2 [21].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2)

Here, TP and TN are the number of samples that are correctly classified by model while FN and FP are samples

that are incorrectly classified by classifiers.

6. RESULTS AND DISCUSSION

This section includes the results of the proposed AVMCTalgorithm. Also, the comparison of the purposed

AVMCTis done with pre-trained models like ResNet-50, AlexNet and VGG-16. The proposed model was

executed 10 times and, on each run, the log loss and accuracy in percentage are shown in Table 3.

Table 3: Performance of proposed AVMCT

Sr. No. Log loss (in %age) Accuracy (in %age)

1 0.71 98.31

2 0.58 98.61

3 0.45 98.79

4 0.41 98.96

5 0.40 98.96

6 0.39 98.94

7 0.37 99.03

8 0.32 99.08

9 0.34 99.01

10 0.31 99.16

 0.9888 ± 0.0057

Figure 5: Log loss on each execution

As depicted in Table 3 that the log loss is decreasing and accuracy is almost increasing at each run which states

that the model is improving with each run. The execution of CNN takes place it adjusts its weights according to

previous output. Therefore, there is a continuous improvement but after a certain point to time validation

accuracy becomes high than training accuracy which means the model becomes over-fitted. While training, we

continuously monitored the results so that model don’t become over-fitted. Therefore, we have taken 20 epochs

and executed them 10 times. The graphical representation of log loss and accuracy on each run of epoch forthe

proposed work is shown in Figure 5 and Figure 6 respectively.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

39

Figure 6: Accuracy of proposed work on execution of each epoch

To check the performance of the model the dataset is fed to pre-trained models like VGG16 [33], Resnet-50 [34]

and AlexNet [35]. The accuracy achieved by AVMCT is compared with these pre-trained models is shown in

Table 4.

Table 4: The accuracy achieved by various CNN models

CNN Models Accuracy Achieved (in %age)

VGG16 94

Resnet-50 98.13

Alexnet 98.75

AVMCT (Proposed Work) 98.88

The graphical representation of accuracy achieved by pre-trained CNN models and the proposed hybrid CNN

model (AVMCT) is shown in Figure 7.

Figure 7:Comparison of Accuracy achieved bya proposed model with pre-trained models

.

As depicted in Table 4 and Figure 7 the accuracy of the proposed AVMCT is higher than pre-trained models.

The accuracy achieved by the proposed AVMCT is 4.93% higher than VGG-16, 0.75% higher than ResNet-50

and 0.13% higher than AlexNet.

7. CONCLUSION AND FUTURE SCOPE OF WORK

With the mushroom growth of the internet, malware has also grown tremendously. It has caused security a

major concern for cyber security providers.Many antivirus companies have developed signature-based detection

methods to detect malware. But malware writers use obfuscation techniques like dead code insertion, insertion

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

40

of jump statements or reordering of code to prevent their malware code from being detected. Moreover, there

are many tools available in the market with can make new malware and obfuscate previous build malware

within a few minutes. This has caused the detection of malware at an early stage to minimize the damage. The

machine learning and deep learning techniques are highly effective for malware detection on extracted features

of malware. In the present paper, the work is done on transfer learning by combining two customized CNN

models. To accomplish this task firstly malware samples of 14 malware familieswere collected from various

websites, then these samples were executed in an isolated environment of Cuckoo Sandbox. After that, API Call

features were extracted from the JSON file of the cuckoo report. Then these API Calls were converted into

images. Afterward, two CNN models were implemented on these API Call images and their features are

combined to make a combined feature vector. Then training is provided on this combined feature vector. The

proposed work is compared with pre-trained models like VGG-16, ResNet-50 and AlexNet and the results show

that our proposed work outperforms the existing techniques. In the future, more features will be extracted apart

from API Calls only. Moreover, work can be extended tothe advanced form of malware that can recognize that

it is being executed in an isolated environment.

ACKNOWLEDGMENT

The authors wish to thank many anonymous referees for their suggestions to improve the paper. Manish Goyal

would like to thank I.K. Gujral Punjab Technical University for offering the Ph.D. course in Computer Science

& Engineering and providing support to access the resources for research.

REFERENCES

[1] “McAfee Labs Threats Reports – Threat Research | McAfee.” https://www.mcafee.com/enterprise/en-us/threat-

center/mcafee-labs/reports.html (accessed Mar. 28, 2022).

[2] M. Asam et al., “Detection of exceptional malware variants using deep boosted feature spaces and machine

learning,” Appl. Sci., vol. 11, no. 21, p. 10464, 2021.

[3] I. Almomani and A. Khayer, “Android applications scanning: The guide,” in 2019 International Conference on

Computer and Information Sciences (ICCIS), 2019, pp. 1–5.

[4] M. Goyal and R. Kumar, “The Pipeline Process of Signature-based and Behavior-based Malware Detection,” in

2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 2020, pp.

497–502.

[5] C. Yang et al., “DeepMal: maliciousness-Preserving adversarial instruction learning against static malware

detection,” Cybersecurity, vol. 4, no. 1, pp. 1–14, 2021.

[6] U. Baldangombo, N. Jambaljav, and S.-J. Horng, “A static malware detection system using data mining

methods,” ArXiv Prepr. ArXiv13082831, 2013.

[7] H. V. Nath and B. M. Mehtre, “Static malware analysis using machine learning methods,” in International

Conference on Security in Computer Networks and Distributed Systems, 2014, pp. 440–450.

[8] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” J. Syst.

Archit., vol. 112, p. 101861, 2021.

[9] U. Urooj, B. A. S. Al-rimy, A. Zainal, F. A. Ghaleb, and M. A. Rassam, “Ransomware Detection Using the

Dynamic Analysis and Machine Learning: A Survey and Research Directions,” Appl. Sci., vol. 12, no. 1, p. 172,

2021.

[10] E. Amer, I. Zelinka, and S. El-Sappagh, “A Multi-Perspective malware detection approach through behavioral

fusion of API call sequence,” Comput. Secur., vol. 110, p. 102449, 2021.

[11] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son, “De-lady: Deep learning based android malware

detection using dynamic features,” J. Internet Serv. Inf. Secur. JISIS, vol. 11, no. 2, pp. 34–45, 2021.

[12] X. Huang, L. Ma, W. Yang, and Y. Zhong, “A method for windows malware detection based on deep learning,”

J. Signal Process. Syst., vol. 93, no. 2, pp. 265–273, 2021.

[13] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, “Data augmentation based malware detection using

convolutional neural networks,” PeerJ Comput. Sci., vol. 7, p. e346, 2021.

[14] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification of malware:

Research developments, trends and challenges,” J. Netw. Comput. Appl., vol. 153, p. 102526, 2020.

[15] Ö. Aslan and A. A. Yilmaz, “A new malware classification framework based on deep learning algorithms,” Ieee

Access, vol. 9, pp. 87936–87951, 2021.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p.31-41

https://publishoa.com

ISSN: 1309-3452

41

[16] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng, “IMCFN: Image-based malware

classification using fine-tuned convolutional neural network architecture,” Comput. Netw., vol. 171, p. 107138,

2020.

[17] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images: visualization and automatic

classification,” in Proceedings of the 8th international symposium on visualization for cyber security, 2011, pp.

1–7.

[18] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-Based malware classification using ensemble

of CNN architectures (IMCEC),” Comput. Secur., vol. 92, p. 101748, 2020.

[19] W. El-Shafai, I. Almomani, and A. AlKhayer, “Visualized malware multi-classification framework using fine-

tuned CNN-based transfer learning models,” Appl. Sci., vol. 11, no. 14, p. 6446, 2021.

[20] G. Xiao, J. Li, Y. Chen, and K. Li, “MalFCS: An effective malware classification framework with automated

feature extraction based on deep convolutional neural networks,” J. Parallel Distrib. Comput., vol. 141, pp. 49–

58, 2020.

[21] M. F. Rafique, M. Ali, A. S. Qureshi, A. Khan, and A. M. Mirza, “Malware classification using deep learning

based feature extraction and wrapper based feature selection technique,” ArXiv Prepr. ArXiv191010958, 2019.

[22] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F. Iqbal, “Malware classification with deep

convolutional neural networks,” in 2018 9th IFIP international conference on new technologies, mobility and

security (NTMS), 2018, pp. 1–5.

[23] “Microsoft Malware Classification Challenge (BIG 2015).” https://kaggle.com/competitions/malware-

classification (accessed Mar. 28, 2022).

[24] “VirusTotal - Home.” https://www.virustotal.com/gui/home/upload (accessed Mar. 29, 2022).

[25] “VirusShare.com.” https://virusshare.com/ (accessed Mar. 29, 2022).

[26] “MalShare.” https://www.malshare.com/ (accessed Mar. 29, 2022).

[27] “Cuckoo Sandbox - Automated Malware Analysis.” https://cuckoosandbox.org/ (accessed Mar. 29, 2022).

[28] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural analysis on windows platforms,” J. Inf. Secur.

Appl., vol. 40, pp. 44–51, 2018.

[29] mikben, “DeleteFileA function (fileapi.h) - Win32 apps.” https://docs.microsoft.com/en-

us/windows/win32/api/fileapi/nf-fileapi-deletefilea (accessed Mar. 27, 2022).

[30] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep convolutional

neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

[31] H. H. Aghdam and E. J. Heravi, “Guide to convolutional neural networks,” N. Y. NY Springer, vol. 10, no. 978–

973, p. 51, 2017.

[32] M. Goyal and R. Kumar, “A Survey on Malware Classification Using Machine Learning and Deep Learning,”

Int. J. Comput. Netw. Appl., vol. 8, no. 6, pp. 758–775, 2021.

[33] A. Zisserman and K. Simonyan, Very Deep Convolutional Neural Network for Large-Scale Image Recognition.

ICLR, 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012.

