
JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

178

New Techniques for Protection of IoT Devices from Malicious Behavior

Using Working Set Based System Call Whitelisting and Argument

Clustering

Lakshmi Eswari Ponnapu Reddy Sarat Chandra Babu Nelaturu

Centre For Development Of Advanced Computing (C-Dac)

Hyderabad, India

Society For Electronic Transactions And Security (Sets)

Chennai, India

prleswari@cdac.in sarat@setsindia.net

Received 2022 March 15; Revised 2022 April 20; Accepted 2022 May 10.

Abstract - The rapid evolution of Industry 4.0 and the spread of Internet of Things (IoT), is supporting the growth of

cyber-physical systems for societal applications. It is challenging to design secure IoT devices, due to constrained

computational and storage resources. The vulnerabilities in the deployed IoT devices are exploited by the attackers for

carrying out malicious activities. Various anomaly detection approaches are proposed in literature for detecting malicious

behavior at runtime. However they are not suitable for resource constrained IoT devices. In this paper, we propose new

techniques for detecting runtime intrusions and protecting IoT devices using working set based system call whitelisting

and argument clustering. Proposed system call whitelisting technique separates system call whitelists of initialization and

service phases of field deployed IoT device, resulting in the reduced attack surface. We evaluated the proposed technique

on Tenda AC15 version 15.03.05.19 for Telnet service. The experimental results show that the proposed working set

based system call whitelisting successfully reduced 44% of system calls during the initialization phase and 40% of system

calls during service phase. In addition to this, we used system call argument clustering technique, to augment the

detection of malicious behavior which is injected at runtime through modifying the arguments of whitelisted system calls.

Index Terms - IoT Security, Malicious Behavior, Whitelisting, Working Set, Argument Clustering, Attack Surface

I. INTRODUCTION

The rapid spread of Internet of Things (IoT), is resulting in the phenomenal growth in the design of cyber-physical

systems for societal application domains, such as Smart Cities, Healthcare, Smart homes, Transportation, Communication

and Agriculture as depicted in Fig. 1.

It is predicted that 152200 IoT devices would be connected every minute by 2025 [1]. These IoT devices vary from

home routers, IP cameras to Industrial Control Systems. At the same time, it is becoming difficult to enable secure

operation of IoT applications due to unauthorized access by attackers and injected malicious behaviour. Details of IoT

security threats are depicted in Fig. 2. As per the report [2], 57% of IoT devices are vulnerable to medium/ high-severity

attacks. Further, 41% of attacks exploit IoT device vulnerabilities. Attackers use hardware, firmware, application

software and connections of the IoT devices as attack surface. As these devices are connected to the Internet, attacker can

scan them through the attack surface looking for open ports, vulnerabilities in the web interface, active network services

(Telnet, SSH) and so on. Sophisticated attacks are also launched by exploiting the vulnerabilities in software such as

buffer overflow and SQL injection.

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

179

When the IoT device is compromised and malicious behavior is introduced, it can cause significant impact on the

functioning of the device and network. Some of the widely known malware in IoT networks include Mirai, IoT Reaper,

PNScan, Gafgyt and Hajime. In Oct 2016, Mirai botnet was used to launch DDoS attack on Dyn, DNS Provider, infecting

1.2 million IoT devices, which brought down GitHub and Twitter and made them inaccessible for hours [3]. IoT Reaper

is a botnet which is more dangerous than Mirai, spreading and damaging millions of vulnerable IoT devices. Reaper

targets devices with unpatched vulnerabilities [4]. The scale at which botnets that depend on IoT devices are spreading is

multifold.

 Furthermore, over the last few years the malware threat landscape in IoT devices has evolved from traditional file-

based malware to sophisticated and file-less malware [5]. Traditional file-based malware leverages executable files to

carry out malicious activities, whereas file-less malware does not create any entry in the file system and is capable of

evading any anti-virus solutions. File-less malware attacks on IoT devices are also increasing [6]. As in today’s cyber

physical systems the IoT devices are important endpoints, their security has become essential.

Generally while designing the IoT based applications, focus is on core application functionality due to constrained

resources of the devices, short time to market and also looking for affordable end product, ignoring the security aspects.

Hence, security by design and incorporating computationally intensive security measures is not a focus and also

standardization of IoT device security is not properly established. This leads to serious vulnerabilities in the deployed IoT

devices which can be targeted through Internet by attackers. These vulnerabilities in IoT devices are exploited by

attackers for carrying out various malicious activities. Considering the constrained resources and also the limitation in

incorporating update mechanism in IoT devices, we propose light-weight anomaly detection techniques using system

calls. Proposed techniques, working set based system call whitelisting and argument clustering found to be appropriate for

detecting runtime intrusions in IoT devices. We evaluated the proposed solution on Tenda AC15 version 15.03.05.19 and

the experimental results are promising.

 In this paper, Section 2 covers Background and Related Work. Details of Proposed Approach are presented in

Section 3. In Section 4, Design and Implementation aspects of the proposed solution are explained. Section 5 covers

details of Experimental Evaluation. Conclusions are given in Section 6 and references are provided at the end.

Fig. 1 IoT Application

Domains

Fig. 2 IoT Security Threats

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

180

II. BACKGROUND AND RELATED WORK

Traditionally antivirus solutions are developed to protect endpoints. They make use of Misuse detection approach,

where malware is detected and blocked by searching for patterns of malware signatures within the endpoint.

Unfortunately many of the IoT devices cannot run the antivirus software or other advanced security solutions used in

endpoints, such as desktops, laptops, due to their limited computing and storage resources. Additionally, antivirus

solutions require continuous updating of signatures/ rules/ behaviors, which is going to be a challenge in IoT devices.

In addition, application whitelisting approach is used in endpoint security solutions to complement antivirus

functionality towards detecting the malware penetrating through unknown files/ executables. Granularity of whitelisting

varies based on executable hash, path name, libraries and so on. However these solutions may not be able to protect from

intrusions/ attacks launched through vulnerabilities in whitelisted files/ executables at runtime. Malicious behavior can

reach the device by exploiting the vulnerabilities in firmware/ applications at runtime. Anomaly based approach is used to

detect the deviations from the normal behavior at runtime. Different anomaly based approaches using system calls are

proposed in literature for detecting intrusions/ attacks at runtime. However they are not suitable for resource constrained

IoT devices.

Furthermore, even though commercial security solutions such as McAfee Embedded Control, Trend Micro

OfficeScan, Kaspersky Embedded Systems Security and Symantec Critical System Protection are available for embedded

systems, they are not suitable for the resource constrained IoT devices. There are various research initiatives towards

using system call based anomaly detection approaches to the resource constrained IoT devices.

Wu et al. [7] proposed a light-weight whitelist based protection titled IoTProtect, which uses whitelist to check and

terminate the unknown processes at regular intervals of time. Breitenbacher et al. [8] proposed a host-based anomaly

detection system for IoT devices, which provides proactive detection and tamper-proof resistance. This solution is based

on whitelisting and utilizes system call interception, performed within the loadable kernel module (LKM), which monitors

and stops any unauthorized program before its execution.

Paleari et al. [9] proposed and discussed a method which extracts the behavior of applications through system calls

and monitors in emulator. They have also proposed a method to construct recovery procedures by using clustering the

behavior of malware approach. Tamiya et al. [10] proposed a method for disinfecting IoT devices by resetting or

rebooting the infected devices. However they have not proposed any detection method [10].

WhiteEgret [11] proposed a whitelisting-based execution control technique, which uses bprm_check_security hook

and the mmap_file hook to monitor the absolute path of executable files. Harada et al. [12] proposed secure Linux OS by

enforcing mandatory access control (MAC) using TOMOYO Linux and SELinux. Kernel space calls are used to check

the validity with predefined policies.

In [13], authors examined Mirai malware and its propagation in detail, proposed and implemented application

whitelisting to effectively combat IoT malware using fanotify feature of Linux kernel. In [14], authors proposed resource

clustering method for building model based on systems calls made by an application. This is implemented on Windows

using mini filter driver for capturing the application behavior.

We propose a light-weight anomaly detection solution using system calls to protect Linux based IoT devices from

malicious behavior. Details of proposed approach are covered in next section.

Fig. 3 System Architecture

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

181

III. PROPOSED APPROACH

 When compared with general purpose computing devices such as desktops and workstations, IoT devices have

predefined and stable functionality. Considering these aspects of IoT devices and also the growing trends in IoT malware,

we propose light-weight anomaly detection techniques. We propose working set based system call Whitelisting and

argument clustering. These techniques are proposed for Linux based IoT devices, as it is one of the preferred operating

system in those devices. Proposed technique separates the system call whitelists used during initialization and service

phases of the IoT device in operation, which reduces the attack surface. System call argument clustering helps to detect

the runtime intrusions made by modifying the arguments of whitelisted system calls. Next section covers Design and

Implementation details of proposed approach.

IV. DESIGN AND IMPLEMENTATION

 System calls are the entry points for applications/ firmware to access the kernel functionality. Even attackers also

depends on systems calls to carry out the malicious activities by exploiting the vulnerabilities and injecting the code at

runtime. In order to detect intrusions at runtime, various system call based anomaly detection techniques are proposed in

literature. We propose light-weight working set based system call whitelisting and system call argument clustering

techniques which are found to be appropriate for detecting intrusions at runtime in IoT devices.

A. System Architecture

 System architecture of proposed Working Set based System Call Whitelisting and Argument Clustering solution is

given in Fig. 3. Every IoT device has two major phases in execution, initialization phase (I) and service phase (S).

Initialization phase includes booting of the IoT device and initialization of various services such as telnet and http. Once

initialized, during service phase, IoT device offers services based on its predefined functionality, by accepting the

requests and responding accordingly. As, IoT device has limited and predefined functionality, system call based

whitelisting is a promising approach to detect runtime malicious injections in IoT devices. Further by applying working

set based system call whitelisting, system call whitelists can be separated for initialization and service phases, which helps

to restrict phase-wise whitelists and reduce the attack surface.

Proposed solution works in two modes, profiling and enforcement modes. During profiling mode of an IoT device,

system call traces TI and TS are captured for initialization and service phases respectively. These traces are fed to system

call parser, which parses the system call names and arguments and gives the details to working set whitelist generation

and System call argument clustering modules. These modules would generate the working set based whitelists

(WS_WL(I) and WS_WL(S)) and system call argument clusters (Sys_Arg_Clusters(I) and Sys_Arg_Clusters(S)) for

Initialization and Service phases, which are stored in the database. When an IoT device is in the field, it would be enabled

in enforcement mode with working set based whitelists and system call argument clusters enforced during the

initialization and service phases. Details of Working Set based System Call Whitelisting and System Call Argument

Clustering approaches are described in the next sub sections.

B. Working Set based System Call Whitelisting

 Considering the constrained resources of an IoT device with predefined functionality, we propose Working Set based

System call Whitelisting as depicted in Fig. 4. This technique maintains separate whitelists corresponding to the different

phases of execution of an IoT device. Due to the specific functionality of initialization and service phases, there is a

requirement of separate system call working set whitelists, WS_WL(I) and WS_WL(S). These are generated and

maintained separately, which are enforced during the corresponding phases at runtime. Some of the system calls of

initialization phase which are accessed during the booting and initialization of an IoT device, are not required during the

service phase of an IoT device. Similarly some of the system calls accessed during the service phase may not be relevant

during initialization phase. Phase wise enablement of system call whitelists helps to avoid misuse of system calls, which

results in reducing the attack surface.

 Note that S is the system call set {s1, s2, s3, ….., sn}, supported by the operating system kernel (Linux) and n is

the number of system calls. For process P, we denote TI and TS as the system call traces captured for Initialization and

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

182

Service phases. Each trace includes all system calls along with arguments accessed by binary/ executable in that specific

phase.

 SI and SS are the system call sets derived from the TI and TS traces respectively. SI and SS are the subsets of S and

there can be some common system calls present in both SI and SS. SI and SS sets are the working set whitelists,

WS_WL(I) and WS_WL(S), for Initialization and Service phases.

 During profiling mode, by using dynamic program analysis, system call traces for initialization and service phases of

IoT device are captured and Working Set Whitelists WS_WL(I) and WS_WL(S) are generated and stored in the database

for runtime enforcement of the whitelists during enforcement mode.

C. System Call Argument Clustering

 Working set based system call whitelisting helps to reduce the attack surface, by restricting the system call whitelists

specific to phases as mentioned before. However by changing the arguments to whitelisted system calls, mimicry attacks

can be launched to carry out malicious activity. For example, new binaries can be introduced and executed using

whitelisted execve system call. Similarly, it is possible to carry out malicious activity by introducing different arguments

to open system call for opening new files or change the file contents/ permissions without introducing new files in file

system. Therefore the same system call can be part of normal behavior as well as malicious behavior. To complement the

working set based whitelisting and address the above mentioned challenges, we propose system call argument based

clustering technique for the critical system calls such as open and execve.

 During profiling mode, while generating the working set based system call whitelists (WS_WL(I) and WS_WL(S)),

critical system calls such as open, execve are selected from TI and TS.

 The system call argument clusters Sys_Arg_Clusters(I) and Sys_Arg_Clusters(S) are created for those system calls.

This involves capturing the arguments of the identified system calls in the entire process flow and generating clusters for

the same. Considering the limited and predefined functionality of IoT device, this approach is practical to implement in

effectively capturing all system calls and arguments.

 We consider that, si and sj from S are identified as critical system calls of a process P for capturing the system call

argument clusters.

Initialization Phase

 We denote TIci and TIcj defined as TIci = {Ici1, Ici2, ….., Icim1} TIcj = {Icj1, Icj2, …., Icjm2} as the clusters for si

and sj system calls generated during Initialization Phase, which includes all the references of si and sj in TI. m1 and m2 are

the number of references to si and sj system calls in TI.

Next Icij = <arg1, arg2,…, argm>, Icij gives the details of jth cluster of si in TI and m is the number of arguments of si

system call.

Fig. 3 Working Set based System call Whitelisting

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

183

During Initialization Phase, Sys_Arg_Clusters(I) defined Sys_Arg_Clusters(I)= {TIci,TIcj,…,TIcp}, is generated which

includes clusters for all the identified system calls. These are captured during the Initialization phase in profiling mode for

all identified critical system calls.

Service Phase

We also denote TSci and TScj defined as TSci = {Sci1, Sci2,….., Scim1} TScj = {Scj1, Scj2,…., Scjm2}

TSci and TScj are the clusters for si and sj system calls generated during Service Phase which includes all the references of

si and sj in TS. m1 and m2 are the number of references to si and sj system calls in TS.

Scij = <arg1,arg2,….argm>, Scij gives the details of jth cluster of si in TS and m is the number of arguments of si system

call.

During Service phase, Sys_Arg_Clusters(S) defined as Sys_Arg_Clusters(S)= {TSci, TScj,…, TScp}, is generated which

includes clusters for all the identified system calls. These are captured during the Service phase in profiling mode for all

identified critical system calls.

Enforcement Mode

System call arguments clusters for critical system calls which are captured during profiling mode are later enforced during

the enforcement mode. In case of any new cluster traced during runtime with different file name or change in permissions,

which is not there in Sys_Arg_Clusters(I) and Sys_Arg_Clusters(S), it would be detected and blocked.

D. Implementation

 We have applied the proposed techniques on system call traces captured using strace utility on Linux to detect the

intrusions at runtime. However, to implement the proposed techniques in enforcement mode, we can use Seccomp-BPF

of Linux to restrict the system calls allowed for the firmware/ application of IoT device during Initialization and Service

phases. This helps to prevent the malware behavior at runtime. In case if the proposed techniques have to be used for

detecting the deviations, we can depend on Falco and AuditD functionality integrated with Linux. Both depend on system

call based policies for detection on intrusions.

 Another approach for designing the solution is using Edge based detection of intrusions. Working Set Whitelists and

System call argument clusters of Initialization and Service phases of IoT devices are maintained at Edge Server. Behavior

profiles of IoT devices in terms of system calls are logged and periodically sent to Edge Server. This helps to offload all

the computationally intensive activities to edge server towards detection of runtime intrusions in IoT devices.

V. EXPERIMENTATION EVALUATION

 Experimentation is carried out on Tenda AC15 router with firmware version 15.03.05.19 which is based on Linux.

To avoid the recompilation of the firmware with the required software for capturing the system calls, ARMX (currently

EMUX) an emulation framework is used. For working with the firmware images, one has to make device entry in the

ARMX framework. Advantage of ARMX is that files and binaries can be added to the filesystem without recompilation.

strace utility compiled for ARM platform is added to the Tenda AC15 firmware image through ARMX and system call

traces of telnet initialization and service are captured.

 The working set based system call whitelist for telnet initialization phase in Tenda AC15 version 15.03.05.19 is as

follows

WS_WL(telnet_init) = {execve, mmap2, open, listen, fstat, stat, read, close, munmap, mprotect, ioctl, getuid32, fork,

exit}

Similarly the working set based system call whitelist for telnet service phase in tenda AC15 version 15.03.05.19 is given

as

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

184

WS_WL(telnet_service) = {select, accept, fcntl64, brk, open, ioctl, setsockopt, write, vfork, read, access, fcntl,

gettimeofday, lseek, close}

Working Set based Whitelists of Telnet is given in Fig. 5. From the Whitelists of Telnet, WS_WL(telnet_init)

WS_WL(telnet_service) obtained during the Initialization and Service phases, it is very clear that system calls common to

both phases are limited. By separating the system call whitelists of initialization and service phases, attack surface is

reduced. System calls relevant to only the initialization phase can be removed in service phase and vice versa, thus

reducing the risk as these system calls can be misused by attackers in other phase.

 From the experimental results on Tenda AC15 version 15.03.05.19 for telnet service, the system calls accessed

during initialization phase are 14. Similarly the system calls accessed during service phase are 15. System calls common

to both the phases are 4. From these results, it is observed that the proposed approach successfully reduced 44% of system

calls during the initialization phase and 40% of system calls during service phase.

 From the telnet results, execve system call is accessed only during Initialization Phase. Note that if execve system call

is allowed during Service Phase, it can be misused by attackers to carry out malicious activities, such as creating a shell.

Similarly, listen system call used to open a network service during initialization phase can be misused to open

unauthorized network service if allowed in the whitelist of service phase. A hard-coded telnet credential in the

tenda_login binary of Tenda AC15 AC1900 version 15.03.05.19 allowed unauthenticated remote users to restart telnetd

during service phase, which is detected through the working set whitelisting technique. Further, execution of any

malicious binaries such as bots dropped during the service phase can be detected. From the experimental results of telnet,

it is very clear that by separating the whitelists for initialization and service phases, attack surface is reduced, thus

avoiding the exploitation of unused system calls.

 However by using the separate whitelists, it is still possible to carry out attacks through whitelisted system calls of

that phase, therefore System call argument clusters for system calls such as execve and open is proposed where argument

clusters would be whitelisted and maintained in the database.

Sys_Arg_Clusters(telnet_init) for execve and open system calls are as follows:

Clusters_execve – Cluster1</usr/sbin/telnetd>

Clusters_open – Cluster1</.armx/tenda_hooks.so, O_RDONLY>, Cluster2</.armx/libnvram-armx.so, O_RDONLY>,

Cluster3</lib/libcrypt.so.0, O_RDONLY>, Cluster4</lib/libm.so.0, O_RDONLY>, Cluster5</lib/libc.so.0,

O_RDONLY>, Cluster6</dev/urandom, O_RDONLY >, Cluster7</dev/null, O_RDWR|O_LARGEFILE>

Sys_Arg_Clusters(telnet_service) for execve and open system calls are as follows:

From the experimental results of telnet, there are no clusters for execve in service phase.

Fig. 4 Working Set based Whitelists of Telnet

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

185

Clusters_open - Cluster1/dev/ptmx, O_RDWR|O_LARGEFILE>, Cluster2</var/run/utmp, O_RDWR|O_CLOEXEC >,

Cluster3</var/log/wtmp, O_WRONLY|O_APPEND>, Cluster4</dev/ptmx, O_RDWR|O_LARGEFILE>,

Cluster5</var/run/utmp, R_OK|W_OK>, Cluster6<var/run/utmp,O_RDWR|O_CLOEXEC>, Cluster7</var/log/wtmp,

O_WRONLY|O_APPEND >

 By using the system call argument clusters, runtime intrusions through whitelisted system calls are detected. Opening

or execution of any files/ binaries which are deviating from the system call argument clusters identified during the

profiling mode are detected in the field during the service phase of IoT device in enforcement mode.

VI. CONCLUSIONS

 In this paper, we proposed light-weight working set based system call whitelisting and argument clustering

techniques, which are found to be appropriate for protecting IoT devices from malicious behavior. By separating the

system call whitelists of initialization and service phases, we can reduce the attack surface. We evaluated the proposed

solution on tenda AC15 version 15.03.05.19 for telnet service by using the strace utility for capturing the system calls.

Experimental results show that the proposed solution successfully reduced 44% of system calls during the initialization

phase and 40% of system calls during service phase. System call argument clustering technique supplemented the

working set based whitelisting. As IoT devices are having limited functionality and implementing update mechanism is

challenging, proposed techniques help to effectively restrict the attacks on IoT devices in the field.

REFERENCES

[1] Newsroom, “Gartner Identifies Top 10 Strategic IoT Technologies and Trends,” Gartner, Barcelona, Spain, November 7,

2018. Accessed on: December 10, 2021. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2018-

11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends.

[2] Unit 42, “IoT Threat Report,” Paloalto Networks, March 10, 2020. Accessed on: December 10, 2021. [Online].

Available: https://unit42.paloaltonetworks.com/iot-threat-report-2020/ .

[3] R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona, “IoDDoS - The Internet of Distributed Denial of

Sevice Attacks - A Case Study of the Mirai Malware and IoT-Based Botnets,” 2nd International Conference on Internet

of Things, Big Data and Security (IoTBDS 2017), Pages 47-58.

[4] Joe Curtis, “IoT Reaper 'will be worse than Mirai',” ITPro, October 23, 2017. Accessed on: December 10, 2021. [Online].

Available: https://www.itpro.co.uk/malware/29783/iot-reaper-will-be-worse-than-mirai.

[5] Avira Protection Labs, “Malware Threat Report: Q3 2020 Statistics and Trends,” 10 November 2020. Accessed on:

December 12, 2021. [Online]. Available: https://www.avira.com/en/blog/malware-threat-report-q3-2020-statistics-and-

trends.

[6] Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen, Tianyin Xu, Yan Chen, and Jingyu Yang,

“Understanding Fileless Attacks on Linux-based IoT Devices with HoneyCloud,” in proceedings of the 17th Annual

International Conference on Mobile Systems, Applications, and Services, June 2019 Pages 482–493.

[7] Chun-Jung Wu, Ying Tie, Santoshi Hara, Kazuki Tamiya, Akira Fujita, Katsunari Yoshioka, and Tsutomu Matsumoto,

“IoT Protect: Highly Deployable Whitelist-based Protection for Low-cost Internet-of-Things Devices,” Journal of

Information Processing, Vol-26, pp 662-672, Sep. 2018.

[8] Dominik Breitenbacher, Ivan Homoliak, Yan Lin Aung, Nils Ole Tippenhauer, and Yuval Elovici, “HADES-IoT: A

Practical Host-Based Anomaly Detection System for IoT Devices (Extended Version),” in proceedings of the 2019 ACM

Asia Conference on Computer and Communications Security., July 2019, Pages. 479–484.

[9] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrikson, J.T. Giffin, and S. Jha, “Automatic Generation of

Remediation Procedures for Malware Infections,” USENIX Security Symposium., pp.419-434 (2010).

[10] K. Tamiya, S. Nakayama, Y. Ezawa, Y. Tie, C. Wu, D. Yang, K. Yoshioka, and T. Matsumoto, “Experiment on removal

and Prevention of IoT malware using real devices,” Symposium on Cryptography and Information Security 2017, Session

3E1-5 (2017).

[11] M. Kioke, N. Ogura, S. Takumi, Y. Hanatani, and H. Haruki, “Development of WhiteEgret: A Whitelisting-type

Execution Control on Linux,” Computer Security Symposium 2017, Session 3D3-4 (2017).

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 1, 2022, p. 178-186

https://publishoa.com

ISSN: 1309-3452

186

[12] T. Harada, T. Horie, and K. Tanaka, “Task Oriented Management Obviates Your Onus on Linux,” Linux Conference,

Vol.3, p.23 (2004).

[13] Tatikayala Sai Gopal, Meerolla Mallesh, G Jyostna, P Reddy Lakshmi Eswari and E Magesh, “Mitigating Mirai Malware

Spreading in IoT Environment,” International Conference on Advances in Computing, Communications and Informatics

(ICACCI), Sep 2018.

[14] Grandhi Jyostna, Himanshu Pareek, and P. R. L. Eswari, “Detecting Anomalous Application Behaviors using a System

call clustering Method over Critical Resources,” Advances in Network Security and Applications. CNSA 2011.

Communications in Computer and Information Science, Vol 196. Springer.

