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ABSTRACT 

The 𝐹-average eccentric graph 𝐴𝐸𝐹(𝐺) of a graph 𝐺 has the vertex set as in 𝐺 and any two vertices 𝑢 and 

𝑣 are adjacent in 𝐴𝐸𝐹(𝐺) if either they are at a distance ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ while 𝐺 is connected or they are in 

different components while 𝐺  is disconnected. A graph 𝐺  is called a 𝐹 -average eccentric graph if 

𝐴𝐸𝐹(𝐻) ≅ 𝐺 for some graph 𝐻. The main aim of this paper is to find a necessary and sufficient condition for 

a graph to be a 𝐹-average eccentric graph. 
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1   Introduction 

 Throughout this paper, a graph means a non trivial simple graph. For other graph theoretic notation and 
terminology, we follow [7,8]. Let 𝐺 be a graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). 𝑑(𝑣) denotes the 
degree of a vertex 𝑣 ∈ 𝑉(𝐺), the order of 𝐺 is |𝑉(𝐺)| and the size is |𝐸(𝐺)|. The distance 𝑑(𝑢, 𝑣) between a 
pair of vertices 𝑢 and 𝑣 is the length of a shortest path joining them. The eccentricity 𝑒(𝑢) of a vertex 𝑢 is the 
distance to a vertex farthest from 𝑢. The radius 𝑟(𝐺) of 𝐺 is the minimum eccentricity among the eccentricities 
of the vertices of 𝐺 and the diameter 𝑑(𝐺) of 𝐺 is the maximum eccentricity among the eccentricities of the 
vertices of 𝐺. Nestled in between is the average eccentricity; this was introduced by [7] (as eccentric mean). A 
graph 𝐺 for which 𝑟(𝐺) = 𝑑(𝐺) is called a self-centered graph of radius 𝑟(𝐺). Double star 𝑆(𝑛,𝑚) was 
introduced by Grossman et al., [6]. The double star 𝑆(𝑛,𝑚), where 𝑛 ≥ 𝑚 ≥ 0, is the graph consisting of the 
union of two stars 𝐾1,𝑛 and 𝐾1,𝑚 together with a line joinig their centers. A vertex 𝑣 is called an eccentric 

vertex of a vertex 𝑢 if 𝑑(𝑢, 𝑣) = 𝑒(𝑢). A vertex 𝑣 of 𝐺 is called an eccentric vertex of 𝐺 if it is the eccentric 
vertex of some vertex of 𝐺. Let 𝑆𝑖(𝐺) denote a subset of the vertex set of 𝐺 such that 𝑒(𝑢) = 𝑖 for all 𝑢 ∈
𝑉(𝐺). The eccentric graph [2] based on 𝐺 is denoted by 𝐺𝑒 whose vertex set is 𝑉(𝐺) and two vertices 𝑢 and 
𝑣 are adjacent in 𝐺𝑒 if 𝑑(𝑢, 𝑣) = 𝑚𝑖𝑛{𝑒(𝑢), 𝑒(𝑣)}. In [5], the radial graph 𝑅(𝐺) based on 𝐺 has the vertex set 
as in 𝐺 and two vertices are adjacent if the distance between them is equal to the radius of 𝐺 when 𝐺 is 
connected. If 𝐺 is disconnected, then two vertices are adjacent in 𝑅(𝐺) if they are in different components of 
𝐺. A graph 𝐺 is called a radial graph if 𝑅(𝐻) = 𝐺 for some graph 𝐻. In this paper, we introduce a new graph 
called 𝐹-average eccentric graph. Two vertices 𝑢 and 𝑣 of a graph are said to be 𝐹-average eccentric to each 

other if 𝑑(𝑢, 𝑣) = ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋. The 𝐹-average eccentric graph of a graph 𝐺, denoted by 𝐴𝐸𝐹(𝐺), has the vertex 

set as in 𝐺 and any two vertices 𝑢 and 𝑣 are adjacent in 𝐴𝐸𝐹(𝐺) if either they are at a distance 𝑑(𝑢, 𝑣) =

⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ while 𝐺 is connected or they are in different components while 𝐺 is disconnected. A graph 𝐺 is 

called a 𝐹-average eccentric graph if 𝐴𝐸𝐹(𝐻) ≅ 𝐺 for some graph 𝐻. The notion of 𝐹-average eccentric graph 
is different from antipodal graph, eccentric graph and radial graph, since 𝑆(2,1) is a 𝐹-average eccentric graph 
but not an antipodal graph, 𝑃4 ∪ 𝐾1 is a 𝐹-average eccentric graph but not an eccentric graph and 𝑃4 is a 
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𝐹-average eccentric graph but not a radial graph. In this paper, we obtain a necessary and sufficient condition for 
a graph to be a 𝐹-average eccentric graph. 
 

Theorem A[8] If 𝑑(𝐺) ≥ 3, then 𝑑(𝐺) ≤ 3. 
                                 

Theorem B[8] If 𝑑(𝐺) ≥ 4, then 𝑑(𝐺) ≤ 2.  

                                 

Theorem C[8] If 𝑟(𝐺) ≥ 3, then 𝑟(𝐺) ≤ 2. 
                                 

Theorem D[7] If 𝑟(𝐺) = 𝑑(𝐺) ≥ 3, then 𝑟(𝐺) = 𝑑(𝐺) = 2. 

                                 

Theorem E[5] For cycle 𝐶𝑛, 𝑛 ≥ 4, 𝑅(𝐶𝑛) =
𝑛

2
𝐾2 if n is even and 𝑅(𝐶𝑛) ≅ 𝐶𝑛 if n is odd. 

                                 

Theorem F[5] Let 𝐺 be a graph of order 𝑛. Then 𝑅(𝐺) = 𝐺 if and only if either 𝑆2(𝐺) = 𝑉(𝐺) or 𝐺 is the 
union of complete graphs. 

 
Let 𝐹11, 𝐹12, 𝐹22, 𝐹23, 𝐹24, 𝐹3 be the set of all connected graphs 𝐺 for which 𝑟(𝐺) = 𝑑(𝐺) = 1, 𝑟(𝐺) =

1  and 𝑑(𝐺) = 2,  𝑟(𝐺) = 𝑑(𝐺) = 2,  𝑟(𝐺) = 2  and 𝑑(𝐺) = 3,  𝑟(𝐺) = 2  and 𝑑(𝐺) = 4,  𝑟(𝐺) ≥ 3 
respectively and 𝐹4 be the set of all disconnected graphs. 

 

                                2   
𝑭-average eccentric graph of some classes of graphs 

 

Observation 2.1. If 𝐺 is either a self centered graph or a disconnected graph, then 𝐴𝐸𝐹(𝐺) = 𝑅(𝐺) = 𝐴(𝐺) =
𝐺𝑒. 
 
Proposition 2.2. Let 𝑃𝑛 be any path on 𝑛 ≥ 1 vertices. Then  

 𝐴𝐸𝐹(𝑃𝑛) = {

𝑃𝑛 , if  𝑛 = 1,2
𝐶𝑛, if  𝑛 = 3

𝑃4 ∪ 𝐾𝑛−4, if  𝑛 ≥ 4.

 

 

Proof. When 𝑛 = 1,2, 𝐴𝐸𝐹(𝑃𝑛) = 𝑃𝑛 and 𝐴𝐸𝐹(𝑃𝑛) = 𝐶𝑛 if 𝑛 = 3. Let 𝐺 be a path 𝑣1𝑣2𝑣3. . . 𝑣𝑛 with 𝑛 ≥ 4 

vertices. Then 𝑒(𝑣𝑖) = 𝑛 − 𝑖  for 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑒(𝑣𝑖) = 𝑖 − 1  for ⌈

𝑛

2
⌉ + 1 ≤ 𝑖 ≤ 𝑛  and 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑗 − 𝑖  for 

1 ≤ 𝑖, 𝑗 ≤ 𝑛. This implies that 𝑑(𝑣1, 𝑣𝑛) = 𝑛 − 1 = ⌊
𝑒(𝑣1)+𝑒(𝑣𝑛)

2
⌋, 𝑑(𝑣1, 𝑣𝑛−1) = 𝑛 − 2 = ⌊

𝑒(𝑣1)+𝑒(𝑣𝑛−1)

2
⌋. Assume 

that 𝑖 < 𝑗. If 1 ≤ 𝑖, 𝑗 ≤ ⌈
𝑛

2
⌉, then 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑗 − 𝑖 = (𝑛 − 𝑖) − (𝑛 − 𝑗) < ⌊

𝑒(𝑣𝑖)+𝑒(𝑣𝑗)

2
⌋. If 2 ≤ 𝑖 ≤ ⌈

𝑛

2
⌉ and ⌈

𝑛

2
⌉ +

1 ≤ 𝑗 ≤ 𝑛 − 1 , then ⌊
𝑒(𝑣𝑖)+𝑒(𝑣𝑗)

2
⌋ = ⌊

(𝑛−𝑖)+(𝑗−1)

2
⌋ > 𝑗 − 𝑖 = 𝑑(𝑣𝑖 , 𝑣𝑗) . If 𝑗 ≠ 𝑛 − 1 , then 𝑑(𝑣1, 𝑣𝑗) = 𝑗 − 1 <

⌊
(𝑛−1)+(𝑗−1)

2
⌋ = ⌊

𝑒(𝑣1)+𝑒(𝑣𝑗)

2
⌋. By graph symmetry, the 𝐹-average eccentric pairs in 𝐺 are (𝑣𝑛−1, 𝑣1), (𝑣1, 𝑣𝑛), (𝑣𝑛, 

𝑣2) and the remaining pairs are not 𝐹-average eccentric pairs in 𝐺. These 𝐹-average eccentric pairs of vertices 

form the graph 𝐴𝐸𝐹(𝐺). In 𝐴𝐸𝐹(𝐺), 𝑣2𝑣𝑛𝑣1𝑣𝑛−1 is a path on 4 vertices and the remaining vertices form 𝐾𝑛−4.□        

 

When 𝑛 ≥ 6 and 𝑛 is even, 𝐴𝐸𝐹(𝑃𝑛) = 𝑃4 ∪ 𝐾𝑛−4 , 𝐴(𝑃𝑛) = 𝑃2 ∪ 𝐾𝑛−2  and (𝑃𝑛)𝑒 = 𝑆(
𝑛

2
− 1,

𝑛

2
− 1) 

and 𝑅(𝑃𝑛) =
𝑛

2
𝐾2. So 𝐴𝐸𝐹(𝐺) need not be isomorphic to 𝐴(𝐺), 𝐺𝑒 and 𝑅(𝐺).  

 
Proposition 2.3. Let 𝐶𝑛 be any cycle on 𝑛 ≥ 3 vertices. Then  

 𝐴𝐸𝐹(𝐶𝑛) ≅ {

𝑛

2
𝐾2, if  𝑛  iseven

𝐶𝑛, if  𝑛  isodd.
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Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the 𝑛 vertices of the cycle 𝐶𝑛. If 𝑛 = 3, then 𝑟(𝐶3) = 1 and 𝑒(𝑣𝑖) = 1 for 𝑖 =

1,2,3. Hence 𝐴𝐸𝐹(𝐶3) ≅ 𝐶3. If 𝑛 ≥ 4, then the result follows from Observation 2.1 and Theorem E.      □ 

 

Observation 2.4. Let 𝐺𝑖  be a connected graph with 𝑟𝑖  vertices for 𝑖 = 1,2, . . . , 𝑛 . If 𝐺  is the union of 
𝐺1, 𝐺2, . . . , 𝐺𝑛, then 𝐴𝐸𝐹(𝐺) = 𝐾𝑟1,𝑟2,...,𝑟𝑛 . 

 

Proposition 2.5. 𝐴𝐸𝐹(𝐾𝑟1,𝑟2,...,𝑟𝑛) = 𝐾𝑟1 ∪ 𝐾𝑟2 ∪. . .∪ 𝐾𝑟𝑛  where 𝑟1, 𝑟2, . . ., 𝑟𝑛 ≥ 2. 

Proof. Let 𝑉1, 𝑉2, . . . , 𝑉𝑛 be the 𝑛 partitions of 𝑉(𝐾𝑟1,𝑟2,...,𝑟𝑛) for which |𝑉1| = 𝑟1, |𝑉2| = 𝑟2, . . . , |𝑉𝑛| = 𝑟𝑛. Then 

𝑒(𝑢) = 2  for all 𝑢 ∈ 𝑉(𝐾𝑟1,𝑟2,...,𝑟𝑛) . Let 𝑢 ∈ 𝑉𝑖  for any 𝑖 = 1,2, . . . , 𝑛 . Then every vertex in 𝑉𝑖 − {𝑢}  is a 

𝐹-average eccentric vertex of 𝑢 and the remaining vertices of 𝐾𝑟1,𝑟2,...,𝑟𝑛  are the non 𝐹-average eccentric 

vertices of 𝑢. Hence 𝐴𝐸𝐹(𝐾𝑟1,𝑟2,...,𝑟𝑛) = 𝐾𝑟1 ∪ 𝐾𝑟2 ∪. . .∪ 𝐾𝑟𝑛.                                        □ 

 

Theorem 2.6. For any graph 𝐺 on 𝑛 vertices, a vertex is a full degree vertex in 𝐴𝐸𝐹(𝐺) if and only if either it is 
an isolated vertex or a full degree vertex or a non full degree vertex adjacent to the full degree vertices only in 𝐺. 
Proof. If 𝑣 is an isolated vertex in 𝐺, then 𝑣 is the full degree vertex in 𝐴𝐸𝐹(𝐺). If 𝑣 is a full degree vertex in 

𝐺, then for any 𝑢𝑣 ∈ 𝐸(𝐺), |𝑒(𝑢) − 𝑒(𝑣)| ≤ 1. This implies that ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ = 1 = 𝑑(𝑢, 𝑣) whenever 𝑢𝑣 ∈ 𝐸(𝐺). 

Therefore 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) whenever 𝑢𝑣 ∈ 𝐸(𝐺). Hence 𝑣 is the full degree vertex in 𝐴𝐸𝐹(𝐺). Let 𝐺 be a 
connected graph having full degree vertices. If 𝑤 is a non full degree vertex adjacent to any of full degree vertices 

in 𝐺, then 𝑑(𝑤, 𝑢) = 2 = ⌊
𝑒(𝑤)+𝑒(𝑢)

2
⌋ for each non full degree vertex 𝑢 in 𝐺 and 𝑑(𝑤, 𝑣) = 1 = ⌊

𝑒(𝑤)+𝑒(𝑣)

2
⌋ 

for each full degree vertex 𝑣 in 𝐺. Then 𝑤 is a full degree vertex in 𝐴𝐸𝐹(𝐺) 
Suppose 𝑣 is a full degree vertex in 𝐴𝐸𝐹(𝐺). If 𝐺 is a disconnected graph having 𝑚 components say 

𝐻1, 𝐻2, . . . , 𝐻𝑚  with |𝐻𝑖| = 𝑛𝑖 > 1  for 𝑖 = 1,2, . . . , 𝑚 , then by Observation 2.4, 𝐴𝐸𝐹(𝐺) = 𝐾𝑛1,𝑛2,...,𝑛𝑚 , a 

contracdiction. Hence 𝑣 is an isolated vertex in 𝐺. Let 𝐺 be a connected graph with no full degree vertex. Then 
𝑒(𝑢) ≥ 2 for all 𝑢 ∈ 𝑉(𝐺). Therefore 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) whenever 𝑢𝑣 ∈ 𝐸(𝐺). Thus 𝐴𝐸𝐹(𝐺) has no full degree 
vertex, a contradiction. Hence 𝐺 should have a full degree vertex. Let 𝑤 be a full degree vertex in 𝐺. Suppose 𝑣 
is not a full degree vertex in 𝐺. Then 𝑣𝑤 ∈ 𝐸(𝐺). If 𝑣 is adjacent to at least one non full degree vertex 𝑢 in 𝐺, 
then 𝑣𝑢 ∈ 𝐸(𝐴𝐸𝐹(𝐺)), a contradiction to the fact that 𝑣 is a full degree vertex in 𝐴𝐸𝐹(𝐺). Thus 𝑣 is adjacent 

to the full degree vertices only in 𝐺.       □          

  

Theorem 2.7. Let 𝐺 be a graph on 𝑛 vertices. If 𝐺 has 𝑟 ≥ 1 number of full degree vertices 𝑣1, 𝑣2, . . . , 𝑣𝑟 , 

then 𝐴𝐸𝐹(𝐺) = 𝐾𝑟 + (𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}). 
Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 , 𝑣𝑟+1, . . . , 𝑣𝑛  be the vertices of 𝐺  and let 𝑤𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) . If either 𝑤  or 𝑣 ∈
{𝑣1, 𝑣2, . . . , 𝑣𝑟}, then 𝑤𝑣 = 𝑤𝑣𝑗 ∈ 𝐸(𝐺) for some 𝑗. If none of 𝑤 and 𝑣 is in {𝑣1, 𝑣2, . . . , 𝑣𝑟}, then 𝑒(𝑤) =

𝑒(𝑣) = 2 . Since 𝑤𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)), 𝑤𝑣 ∈ 𝐸(𝐺) . Therefore 𝑤𝑣 ∈ 𝐸(𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟})  and hence 𝑤𝑣 ∈

𝐸(𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}) 

Suppose 𝑤𝑣 ∈ 𝐸(𝐾𝑟 + (𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟})) = 𝐸(𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}) ∪ {𝑢𝑣𝑗 ∈ 𝐸(𝐺): 𝑢 ∈ 𝑉(𝐺),1 ≤ 𝑗 ≤

𝑟} . If 𝑤𝑣 = 𝑢𝑣𝑖  for 𝑢 ∈ 𝑉(𝐺)  and 𝑣𝑖 ∈ {𝑣1, 𝑣2, . . . , 𝑣𝑟} , then 𝑑(𝑢, 𝑣𝑖) = 1 = ⌊
𝑒(𝑢)+𝑒(𝑣𝑖)

2
⌋  and hence 𝑤𝑣 ∈

𝐸(𝐴𝐸𝐹(𝐺)). If 𝑤𝑣 ∈ 𝐸(𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}), then 𝑤𝑣 ∈ 𝐸(𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}). This implies that 𝑤𝑣 ∈ 𝐸(𝐺). 

Then 𝑑(𝑤, 𝑣) = 2 = ⌊
𝑒(𝑤)+𝑒(𝑣)

2
⌋ and hence 𝑤𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)). Thus 𝐴𝐸𝐹(𝐺) = 𝐾𝑟 + (𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑟}).    □ 

 

Corollary 2.8. If 𝐹𝑚,𝑛 = 𝐾𝑚 + 𝑃𝑛 is a fan graph on 𝑚+ 𝑛 ≥ 2 vertices for any positive integers 𝑚 and 𝑛, then  

 𝐴𝐸𝐹(𝐹𝑚,𝑛) =

{
 
 

 
 
𝐾𝑛+1, if  𝑛 = 1,2,3 and 𝑚 = 1

𝐾1 + 𝑃𝑛 , if  𝑛 > 3 and 𝑚 = 1
𝐾𝑚+𝑛, if  𝑛 = 1,2 and 𝑚 > 1
(𝐾𝑚 ∪ 𝑃2) + 𝐾1, if  𝑛 = 3 and 𝑚 > 1

𝐾𝑚 ∪ 𝑃𝑛 , if  𝑛 > 3 and 𝑚 > 1.
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Proof. Follows from Theorem 2.7.                                                 □ 

 

Corollary 2.9. Let 𝑊𝑛 = 𝐾1 + 𝐶𝑛 be a wheel graph on 𝑛 ≥ 3 vertices. Then 𝐴𝐸𝐹(𝑊𝑛) = 𝐾1 + 𝐶𝑛. 

Proof. If 𝑟 = 1, then by Theorem 2.7, 𝐴𝐸𝐹(𝑊𝑛) = 𝐾1 + 𝐶𝑛.                          □ 

 

Theorem 2.10. Let 𝐺 be a graph. Then 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑟1,𝑟2,...,𝑟𝑙  for any positive integers 𝑚, 𝑙, 𝑟𝑖  and 1 ≤ 𝑖 ≤

𝑙 if and only if any one of the following holds 

(1) 𝐺 is disconnected with exactly 𝑙 + 𝑚 components and it has at least 𝑚 isolated vertices 

(2) 𝐺 is connected and it has 𝑚 full degree vertices so that the deletion of these full degree vertices in 𝐺 forms 
a disconnected graph with 𝑙 components in which each component is complete. 
Proof. If (1) holds, then by Observation 2.4, 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑟1,𝑟2,...,𝑟𝑙  for any positive integers 𝑚, 𝑙, 𝑟𝑖  and 1 ≤

𝑖 ≤ 𝑙. Suppose (2) holds. Let {𝑣1, 𝑣2, . . . , 𝑣𝑠} be the set of all full degree vertices of 𝐺 where 𝑠 ≥ 𝑚. Then 𝐺 −
{𝑣1, 𝑣2, . . . , 𝑣𝑠} has at most 𝑙 complete components, say 𝐾𝑟1 , 𝐾𝑟2 , . . . , 𝐾𝑟𝑙. By Theorem 2.6, each 𝑣𝑖  is a full 

degree vertex in 𝐴𝐸𝐹(𝐺). Let 𝑥, 𝑦 ∈ 𝑉(𝐾𝑟𝑖) and 𝑧 ∈ 𝑉(𝐾𝑟𝑗)(𝑗 ≠ 𝑖). Then 𝑒(𝑥) = 𝑒(𝑦) = 𝑒(𝑧) = 2. Since 𝑥𝑦 ∈

𝐸(𝐾𝑟𝑖)  and 𝑥𝑧 ∈ 𝐸(𝐺) , 𝑥𝑦 ∈ 𝐸(𝐴𝐸𝐹(𝐺))  and 𝑥𝑧 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) . Hence 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑟1,𝑟2,...,𝑟𝑙  for any 

positive integers 𝑚, 𝑙, 𝑟𝑖  and 1 ≤ 𝑖 ≤ 𝑙. 
Suppose 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑟1,𝑟2,...,𝑟𝑙  for any positive integers 𝑚, 𝑙, 𝑟𝑖  and 1 ≤ 𝑖 ≤ 𝑙. Assume that 𝑟1 ≤

𝑟2 ≤. . . ≤ 𝑟𝑙. If 𝐺 is disconnected having no isolated vertex, by Observation 2.4, 𝐴𝐸𝐹(𝐺) is a complete 𝑡(≥
2)-partite graph having no full degree vertex, a contradiction. If 𝐺 is disconnected with at most 𝑚 − 1 isolated 
vertices, then by Theorem 2.6, 𝐴𝐸𝐹(𝐺) has at most 𝑚 − 1 full degree vertices, a contradiction. So 𝐺 should 
have at least 𝑚 isolated vertices. Let 𝐻1, 𝐻2, . . . , 𝐻𝑚 , 𝐻𝑚+1, . . . , 𝐻𝑡 be the components of 𝐺 so that |𝐻𝑖| = 1 
for 1 ≤ 𝑖 ≤ 𝑚 , |𝐻𝑚+𝑖| = 𝑠𝑖  for 1 ≤ 𝑖 ≤ 𝑡 −𝑚  and 𝑠1 ≤ 𝑠2 ≤. . . ≤ 𝑠𝑡−𝑚 . If 𝑡 > 𝑚 + 𝑙  (< 𝑚 + 𝑙) , then by 
Observation 2.4, 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑠1,𝑠2,...,𝑠𝑚+𝑙,𝑠𝑚+𝑙+1,...,𝑠𝑡 (𝐾𝑚 + 𝐾𝑠1,𝑠2,...,𝑠𝑡−𝑚), a contradiction to the assumption of 

𝐴𝐸𝐹(𝐺). In 𝐺, if 𝑡 = 𝑚 + 𝑙 and 𝑟𝑗 ≠ 𝑠𝑗  for some 𝑗, then it arises a contradiction to the assumption of 𝐴𝐸𝐹(𝐺). 

If 𝐺 is connected with no full degree vertex, then by Theorem 2.6, 𝐴𝐸𝐹(𝐺) has no full degree vertex, a 
contradiction. If the number of full degree vertices in 𝐺 is fewer than 𝑚, then by Theorem 2.6, 𝐴𝐸𝐹(𝐺) has at 
most 𝑚 − 1 full degree vertices, a contradiction. Therefore 𝐺 should have at least 𝑚 full degree vertices. Let 
{𝑣1, 𝑣2, . . . , 𝑣𝑠} be the set of all full degree vertices of 𝐺 where 𝑠 ≥ 𝑚. Take 𝐺0 = 𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑠}. If 𝐺0 is 
complete, then all the vertices of 𝐺  are full degree vertices, by Theorem 2.7, 𝐴𝐸𝐹(𝐺)  is complete, a 

contradiction. If 𝐺0 is connected and non complete, by Theorem 2.7, 𝐴𝐸𝐹(𝐺) = 𝐾𝑠 + 𝐺0, a contradiction. So 𝐺0 

is disconnected. If 𝐺0  has a non complete component 𝐻 , then by Theorem 2.7, 𝐸(𝐻) ⊆ 𝐸(𝐴𝐸𝐹(𝐺)), a 
contradiction. Hence each component of 𝐺0 is complete. Let 𝐻1, 𝐻2, . . . , 𝐻𝑡(𝑡 > 𝑙) be the complete components 
of 𝐺0 with |𝐻𝑖| = 𝑟𝑖  for 1 ≤ 𝑖 ≤ 𝑡. Since eccentricity of each vertex in 𝐻𝑖  is 2, 𝑥𝑦 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) for all 𝑥 ∈
𝑉(𝐻𝑖), 𝑦 ∈ 𝑉(𝐻𝑗), 𝑖 ≠ 𝑗 and 1 ≤ 𝑖, 𝑗 ≤ 𝑡. Therefore 𝐾𝑟1,𝑟2,...,𝑟𝑙,𝑟𝑙+1,...,𝑟𝑡 is a subgraph of 𝐴𝐸𝐹(𝐺), a contradiction. 

Thus 𝐺0 has at most 𝑙 components in which each component is complete.      □ 

 

Proposition 2.11. Let 𝐿𝑛 = 𝑃𝑛 × 𝑃2 be a ladder with 𝑛 ≥ 1 steps. Then  

 𝐴𝐸𝐹(𝐿𝑛) ≅

{
 
 

 
 𝐾2, if  𝑛 = 1
2𝐾2, if  𝑛 = 2
𝐶6, if  𝑛 = 3

2𝑃4 ∪ 𝐾2(𝑛−4), if  𝑛 ≥ 4.

 

 

Proof. Let 𝑢1, 𝑢2, . . . , 𝑢𝑛 and 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the vertices on the path in 𝐿𝑛 of length 𝑛 − 1. If 𝑛 = 1, then 
𝐿1 = 𝐾2  and 𝐴𝐸𝐹(𝐿1) ≅ 𝐾2 . If 𝑛 = 2 , then 𝐿2 = 𝐶4  and 𝐴𝐸𝐹(𝐿2) ≅ 2𝐾2 . If 𝑛 = 3 , then the 𝐹 -average 
eccentric pairs in 𝐿3 are (𝑢1, 𝑣3), (𝑣3, 𝑢2), (𝑢2, 𝑣1), (𝑣1, 𝑢3), (𝑢3, 𝑣2) and (𝑣2, 𝑢1). Hence 𝐴𝐸𝐹(𝐿3) ≅ 𝐶6. Let 𝐺 

be a ladder with 𝑛 ≥ 4 steps. Then 𝑒(𝑢𝑖) = 𝑒(𝑣𝑖) = 𝑛 + 1 − 𝑖 for 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑒(𝑢𝑖) = 𝑒(𝑣𝑖) = 𝑖 for ⌈

𝑛

2
⌉ +

1 ≤ 𝑖 ≤ 𝑛 , 𝑑(𝑢𝑖, 𝑢𝑗) = 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑗 − 𝑖  and 𝑑(𝑢𝑖 , 𝑣𝑗) = |𝑗 − 𝑖| + 1 . This implies that 𝑑(𝑢1, 𝑣𝑛) = 𝑛 =
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⌊
𝑒(𝑢1)+𝑒(𝑣𝑛)

2
⌋ and 𝑑(𝑢1, 𝑣𝑛−1) = 𝑛 − 1 = ⌊

𝑒(𝑢1)+𝑒(𝑣𝑛−1)

2
⌋. Assume that 𝑖 < 𝑗. If 1 ≤ 𝑖, 𝑗 ≤ ⌈

𝑛

2
⌉, then 𝑑(𝑢𝑖 , 𝑢𝑗) =

𝑗 − 𝑖 < ⌊
(𝑛+1−𝑖)+(𝑛+1−𝑗)

2
⌋ = ⌊

𝑒(𝑢𝑖)+𝑒(𝑢𝑗)

2
⌋ and 𝑑(𝑢𝑖, 𝑣𝑗) = |𝑗 − 𝑖| + 1 < ⌊

(𝑛+1−𝑖)+(𝑛+1−𝑗)

2
⌋ = ⌊

𝑒(𝑢𝑖)+𝑒(𝑣𝑗)

2
⌋. If 2 ≤ 𝑖 ≤

⌈
𝑛

2
⌉  and ⌈

𝑛

2
⌉ + 1 ≤ 𝑗 ≤ 𝑛 − 1, then 𝑑(𝑢𝑖 , 𝑢𝑗) = 𝑗 − 𝑖 < ⌊

(𝑛+1−𝑖)+𝑗

2
⌋ = ⌊

𝑒(𝑢𝑖)+𝑒(𝑢𝑗)

2
⌋  and 𝑑(𝑢𝑖 , 𝑣𝑗) = |𝑗 − 𝑖| + 1 <

⌊
(𝑛+1−𝑖)+𝑗

2
⌋ = ⌊

𝑒(𝑢𝑖)+𝑒(𝑣𝑗)

2
⌋. If 𝑗 ≠ 𝑛 − 1, then 𝑑(𝑢1, 𝑢𝑗) = 𝑗 − 1 < ⌊

𝑛+𝑗

2
⌋ = ⌊

𝑒(𝑢1)+𝑒(𝑢𝑗)

2
⌋, 𝑑(𝑢1, 𝑣𝑗) = 𝑗 < ⌊

𝑛+𝑗

2
⌋ =

⌊
𝑒(𝑢1)+𝑒(𝑣𝑗)

2
⌋. If 𝑖 = 𝑗, then 𝑑(𝑢𝑖 , 𝑣𝑗) < ⌊

𝑒(𝑢𝑖)+𝑒(𝑣𝑗)

2
⌋. By graph symmetry, the 𝐹-average eccentric pairs in 𝐺 are 

(𝑣𝑛−1, 𝑢1), (𝑢1, 𝑣𝑛), (𝑣𝑛 , 𝑢2), (𝑢𝑛−1, 𝑣1), (𝑣1, 𝑢𝑛), (𝑢𝑛 , 𝑣2)  and the remaining pairs in 𝐺  are not 𝐹 -average 
eccentric pairs in 𝐺. Let 𝑃1: 𝑣𝑛−1𝑢1𝑣𝑛𝑢2 and 𝑃2: 𝑢𝑛−1𝑣1𝑢𝑛𝑣2 be two paths. Thus 𝐴𝐸𝐹(𝐺) is the union of 𝑃1, 𝑃2 

and 𝐾2(𝑛−4).           □  

 

 

3   𝑭-average eccentric graphs 
 

Proposition 3.1. If 𝑟(𝐺) ≥ 2, then 𝐴𝐸𝐹(𝐺) ⊆ 𝐺. 

Proof. By the definition, 𝑉(𝐴𝐸𝐹(𝐺)) = 𝑉(𝐺) = 𝑉(𝐺). If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) but does not belong to 𝐸(𝐺), 
then 𝑢𝑣 ∈ 𝐸(𝐺) and by the definition, either 𝑒(𝑢) = 1 or 𝑒(𝑣) = 1, a contradiction. Therefore 𝐸(𝐴𝐸𝐹(𝐺)) ⊆

𝐸(𝐺) and hence 𝐴𝐸𝐹(𝐺) ⊆ 𝐺.                   □ 

   
Theorem 3.2. For any graph 𝐺 on 𝑛 vertices, 𝐴𝐸𝐹(𝐺) = 𝐺 if and only if 𝐺 ∈ 𝐹11. 
Proof. Suppose 𝐴𝐸𝐹(𝐺) = 𝐺. If 𝐺 is disconnected with 𝑟 ≥ 2 components, then by Observation 2.4, 𝐴𝐸𝐹(𝐺) 
is a complete 𝑟 partite graph, a contradiction. So 𝐺  is connected. If 𝑟(𝐺) ≥ 2, then by Proposition 3.1, 

𝐴𝐸𝐹(𝐺) ⊆ 𝐺, a contradiction. If 𝐺 ∈ 𝐹12, then by Theorem 2.7, 𝐴𝐸𝐹(𝐺) ≠ 𝐺, a contradiction. 

Suppose 𝐺 ∈ 𝐹11. Then by Theorem 2.10, 𝐴𝐸𝐹(𝐺) = 𝐾𝑛 = 𝐺.                   □ 

   

Proposition 3.3. For any graph 𝐺 ∈ 𝐹22, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Proof. Follows from Observation 2.1 and Theorem F.                                 □ 

   
Proposition 3.4. Every complete graph 𝐺 of order 𝑛 ≥ 1, is a 𝐹-average eccentric graph. 

Proof. Follows from Theorem 2.10.                                               □ 

 

Proposition 3.5. 𝐾𝑙 + 𝐾𝑛 is a 𝐹-average eccentric graph, for any positive integers 𝑙 and 𝑛. 

Proof. Follows from Theorem 2.10.                                               □ 

 

Proposition 3.6. 𝐴𝐸𝐹(𝐺) = 𝐾𝑚 + 𝐾𝑟1,𝑟2,...,𝑟𝑙  is a 𝐹-average eccentric graph, for any positive integers 𝑚, 𝑙, 𝑟𝑖  and 

1 ≤ 𝑖 ≤ 𝑙. 

Proof. Follows from Theorem 2.10.                                               □ 

 

Proposition 3.7. Every path 𝑃𝑛 is a 𝐹-average eccentric graph, for any positive integer 𝑛. 
Proof. When 𝑛 = 1,2, 𝑃𝑛  is a 𝐹 -average eccentric graph of itself. When 𝑛 = 3, 𝐴𝐸𝐹(𝐾1 ∪ 𝐾2) = 𝑃3.  Let 
𝑣1𝑣2𝑣3𝑣4  be a 𝑃4  path. Then the eccentricities of 𝑣1, 𝑣2, 𝑣3, 𝑣4  in 𝑃4  are 3,2,2,3  respectively and the 

eccentricities of 𝑣1, 𝑣2, 𝑣3, 𝑣4  in 𝑃4  are 2,3,3,2  respectively. The non adjacent pairs in 𝑃4  are 

(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4)  and 𝑃4 = 𝑣2𝑣4𝑣1𝑣3.  The 𝐹 -average eccentric pairs in 𝑃4  are 

(𝑣2, 𝑣3), (𝑣1, 𝑣2), (𝑣3, 𝑣4). Hence 𝐴𝐸𝐹(𝑃4) = 𝑃4. Assume that 𝑛 ≥ 5. Let 𝑣1𝑣2. . . 𝑣𝑛  be a path 𝑃𝑛 . For each 

𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑣𝑖  is non adjacent to 𝑣𝑖−1 and 𝑣𝑖+1 in 𝑃𝑛 and it is adjacent to all other vertices in 𝑃𝑛 . Since 

𝑑(𝑃𝑛) = 𝑛 − 1, by Theorem B, 𝑑(𝑃𝑛) ≤ 2. Also 𝑃𝑛 has no full degree vertex. So 𝑃𝑛 ∈ 𝐹22 and by Proposition 

3.3, 𝐴𝐸𝐹(𝑃𝑛) = 𝑃𝑛.                                           □ 
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Proposition 3.8. Every cycle 𝐶𝑛 is a 𝐹-average eccentric graph, for any positive integer 𝑛 ≥ 3. 

Proof. If 𝑛 = 3  and 𝐻 = 𝐾3  or 𝑃3  or 𝐶3,  then by Theorem 2.10, Proposition 2.2 and Proposition 2.3, 

𝐴𝐸𝐹(𝐻) = 𝐶3. If 𝑛 = 4, then 𝐴𝐸𝐹(𝑃2 ∪ 𝑃2) = 𝐴𝐸𝐹(𝐶4) = 𝐶4. Assume that 𝑛 > 4. For a cycle 𝐶𝑛, 𝑒(𝑢) = 2 for 

all 𝑢 ∈ 𝑉(𝐶𝑛). By Proposition 3.3, 𝐴𝐸𝐹(𝐶𝑛) = 𝐶𝑛. Hence 𝐶𝑛 is a 𝐹-average eccentric graph.              □ 

 

Proposition 3.9. Every ladder 𝐿𝑛 with 𝑛 steps is a 𝐹-average eccentric graph, for any positive integer 𝑛. 
Proof. When 𝑛 = 1, 𝐴𝐸𝐹(𝐿𝑛) = 𝐿𝑛 . Asseume that 𝐿𝑛  is a ladder with 𝑛 ≥ 2 steps. Let 𝑢1, 𝑢2, . . . , 𝑢𝑛  and 

𝑣1, 𝑣2, . . . , 𝑣𝑛  be the vertices of the paths of length 𝑛 − 1 in 𝐿𝑛 . Then the non adjacent pairs in 𝐿𝑛  are 

(𝑢1, 𝑣1), (𝑢𝑛, 𝑣𝑛), (𝑢𝑖−1, 𝑢𝑖), (𝑢𝑖, 𝑢𝑖+1), (𝑢𝑖 , 𝑣𝑖), (𝑣𝑖−1, 𝑣𝑖), (𝑣𝑖 , 𝑣𝑖+1) for all 𝑖 = 2,3, . . . , 𝑛 − 1. Then 𝐿𝑛 ∈ 𝐹22 and 

by Proposition 3.3, 𝐴𝐸𝐹(𝐿𝑛) = 𝐿𝑛. Hence 𝐿𝑛 is a 𝐹-average eccentric graph.                           □ 

 

Proposition 3.10. Every wheel graph 𝑊𝑛 on 𝑛 + 1 vertices is a 𝐹-average eccentric graph, for any positive 
integer 𝑛 ≥ 3. 

Proof. Consider the graph 𝐻 = 𝐾1 + 𝐶𝑛. Let 𝑢 be the vertex of 𝐾1 and let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the vertices of 𝐶𝑛. 

Then 𝑒(𝑢) = 1  and 𝑒(𝑣𝑖) = 2  in 𝐻  for all 𝑖 = 1,2, . . . , 𝑛.  Since 𝑑(𝑢, 𝑣𝑖) = 1 = ⌊
𝑒(𝑢)+𝑒(𝑣𝑖)

2
⌋ , 𝑢𝑣𝑖 ∈ 𝐴𝐸𝐹(𝐻), 

for 𝑖 = 1,2, . . . , 𝑛. Since 𝑒(𝑣𝑖) = 2 for each 𝑖, 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) if and only if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐻) for all 𝑖 ≠ 𝑗 and 

1 ≤ 𝑖, 𝑗 ≤ 𝑛. Thus 𝐴𝐸𝐹(𝐻) = 𝐾1 + 𝐶𝑛 = 𝑊𝑛.                                                     □ 

 

Proposition 3.11. Every fan graph 𝐹𝑚,𝑛 = 𝐾𝑚 + 𝑃𝑛 is a 𝐹-average eccentric graph, for any positive integers 𝑚 

and 𝑛 = 1,2. 

Proof. Follows from Theorem 2.10.                                               □ 

 

Proposition 3.12. Every complete 𝑛-partite graph is a 𝐹-average eccentric graph, for any positive integer 𝑛 ≥ 2. 

Proof. Follows from Observation 2.4.                                             □ 

 

 

4   A necessary and sufficient condition for a graph to be a 𝑭-average eccentric graph 
 

Theorem 4.1. Let 𝐺 be a graph and let 𝑆3(𝐺) be the set of all vertices of 𝑉(𝐺) whose eccentricities are 3. Then 

𝐴𝐸𝐹(𝐺) = 𝐺 if and only if any one of the following conditions hold  

(1) 𝐺 ∈ 𝐹22  

(2) 𝐺 ∈ 𝐹23 and there is no vertex adjacent to atleast two non adjacent vertices in 𝑆3(𝐺)  

(3) 𝐺 is disconnected having no non-complete component. 

Proof. If (1) holds, then by Proposition 3.3, 𝐴𝐸𝐹(𝐺) = 𝐺. Suppose (2) holds. Since 𝑟(𝐺) = 2, by Proposition 3.1, 

𝐴𝐸𝐹(𝐺) ⊆ 𝐺. Let 𝑢𝑣 ∈ 𝐸(𝐺). where 𝑢, 𝑣 ∈ 𝑆3(𝐺). By hypothesis, 𝑑𝐺(𝑢, 𝑣) = 3 = ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ and hence 𝑢𝑣 ∈

𝐸(𝐴𝐸𝐹(𝐺)). Therefore 𝐴𝐸𝐹(𝐺) = 𝐺. Suppose (3) holds. If 𝐺 is totally disconnected, then by the definition, 

𝐴𝐸𝐹(𝐺) = 𝐾𝑛 = 𝐺. Suppose 𝐺 has at least one component 𝐻 with |𝐻| ≥ 2. Then by Observation 2.1 and 

Theorem F, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Suppose 𝐴𝐸𝐹(𝐺) = 𝐺. If 𝐺 ∈ 𝐹11 ∪ 𝐹12. Then by Theorem 2.7 and Theorem 3.2, 𝐴𝐸𝐹(𝐺) ≠ 𝐺. Suppose 
𝐺 ∈ 𝐹23 and there is a vertex 𝑢 ∈ 𝑉(𝐺) in which it is adjacent to the non adjacent pair of vertices 𝑣 and 𝑤 ∈

𝑆3(𝐺). Since 𝑑(𝑣, 𝑤) = 2 and ⌊
𝑒(𝑣)+𝑒(𝑤)

2
⌋ = 3, 𝑣𝑤 ∈ 𝐸(𝐴𝐸𝐹(𝐺)), a contradiction. If 𝐺 ∈ 𝐹24, then there exists 

two vertices 𝑢  and 𝑣  such that 𝑒(𝑢) = 2  and 𝑒(𝑣) = 4. But 𝑑(𝑢, 𝑣) = 2  and ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ = 3.  Therefore 

𝑢𝑣 ∈ 𝐸(𝐺) but 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)), a contradiction. If 𝐺 ∈ 𝐹3, 𝑒(𝑢) ≥ 3 for all 𝑢 ∈ 𝑉(𝐺). Then there is a pair of 

vertices 𝑣 and 𝑤 such that 𝑑(𝑣, 𝑤) = 2 but ⌊
𝑒(𝑣)+𝑒(𝑤)

2
⌋ ≥ 3. Therefore 𝑣𝑤 ∈ 𝐸(𝐺) but 𝑣𝑤 ∈ 𝐸(𝐴𝐸𝐹(𝐺)), a 

contradiction. If 𝐺 is disconnected with at least one non complete component 𝐻, then every pair of non adjacent 

vertices 𝑢  and 𝑣  in 𝐻  are adjacent in 𝐺 . But by the definition, 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐺)) , a contradiction.                             
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  □ 

 

Corollary 4.2. If 𝐺 and 𝐺 ∈ 𝐹22, then 𝐺 and 𝐺 are 𝐹-average eccentric graphs. 

Proof. By theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺. and 𝐴𝐸𝐹(𝐺) = 𝐺.                              □ 

 

Corollary 4.3. Let 𝐺 be any graph such that 𝐺 ∈ 𝐹23. If there is no vertex adjacent to at least two non adjacent 

vertices in 𝑆3(𝐺), then 𝐴𝐸𝐹(𝐺) = 𝐺. 

Proof. By theorem 4.1, the result follows.                                          □ 

 

Corollary 4.4. If 𝑟(𝐺) > 1 and 𝐺 is disconnected with each component complete, then 𝐺 is a 𝐹 average 
eccentric graph. 

Proof. By theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺.                                             □ 

 

Lemma 4.5. If 𝐺 is disconnected, then 𝐴𝐸𝐹(𝐺) is also a disconnected graph with each component complete. 

Proof. By Observation 2.4, the result follows.                                       □ 

 

Theorem 4.6. If 𝑟(𝐺) ≥ 2 and 𝐺 is disconnected with at least one non complete component, then 𝐺 is not a 
𝐹-average eccentric graph. 
Proof. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, then by Lemma 4.5, 

𝐴𝐸𝐹(𝐻) is disconnected in which each component is complete, a contradiction to the fact that 𝐺 is connected 
with at least one non complete component. Hence 𝐻 must be connected. If 𝑟(𝐻) = 1 and 𝑑(𝐻) = 1, then 
𝐴𝐸𝐹(𝐻) = 𝐻 = 𝐺,  a contradiction to 𝑟(𝐺) > 1.  If 𝑟(𝐻) = 1  and 𝑑(𝐻) = 2,  then by the definition of 
𝐹-average eccentric graph, 𝑟(𝐴𝐸𝐹(𝐻)) = 1, a contradiction to 𝑟(𝐺) > 1. So 𝑟(𝐻) > 1. By Proposition 3.1, 

𝐴𝐸𝐹(𝐻) ⊆ 𝐻.  Hence 𝐻  is isomorphic to a spanning subgraph of 𝐺.  Since 𝐺  is disconnected, 𝐻  is 
disconnected, a contradiction to 𝑟(𝐺) ≥ 2. From these, we conclude that 𝐴𝐸𝐹(𝐻) is not equal to 𝐺, a 

contradiction.                                                    □ 

  

Theorem 4.7. If 𝐺 ∈ 𝐹22 and 𝐺 ∈ 𝐹23 in which there is a vertex 𝑤 such that 𝑤 is adjacent to at least two non 

adjacent pairs of vertices 𝑢 and 𝑣 in 𝑆3(𝐺), then 𝐺 is not a 𝐹-average eccentric graph. 
Proof. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, then by Lemma 4.5, 

𝐴𝐸𝐹(𝐻) is disconnected, a contradiction to 𝐺 is connected. Hence 𝐻 must be connected. If 𝑟(𝐻) = 1 and 
𝑑(𝐻) = 1,  then 𝐴𝐸𝐹(𝐻) = 𝐻 = 𝐺,  a contradiction to 𝑟(𝐺) > 1.  If 𝑟(𝐻) = 1  and 𝑑(𝐻) = 2,  then by the 
definition of 𝐹 -average eccentric graph, 𝑟(𝐴𝐸𝐹(𝐻)) = 1,  a contradiction to 𝑟(𝐺) > 1.  So 𝑟(𝐻) > 1.  By 

Proposition 3.1, 𝐴𝐸𝐹(𝐻) ⊆ 𝐻. Hence 𝐻  is isomorphic to a spanning subgraph of 𝐺. Since 𝑟(𝐺) = 2 and 

𝑑(𝐺) = 3, 𝑟(𝐻) ≥ 2 and 𝑑(𝐻) ≥ 3. If 𝑤  is a vertex adjacent to two non adjacent pairs 𝑢 and 𝑣  having 

eccentricities 3 in 𝐺,  then 𝑒(𝑤) ≥ 2, 𝑒(𝑢), 𝑒(𝑣) ≥ 3  in 𝐻  and 𝑑𝐺(𝑢, 𝑣) = 2.  Since 𝐻  is connected, 

𝑑(𝑢, 𝑣) = 2 < ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ in 𝐻 and hence 𝑢 and 𝑣 are non adjacent in 𝐴𝐸𝐹(𝐻). From these, we conclude 

that 𝐴𝐸𝐹(𝐻) is not equal to 𝐺, a contradiction.         □        

 

Theorem 4.8. If 𝐺 ∈ 𝐹22 and 𝐺 ∈ 𝐹24, then 𝐺 is not a 𝐹-average eccentric graph. 
Proof. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, then by Lemma 4.5, 

𝐴𝐸𝐹(𝐻) is disconnected, a contradiction to 𝐺 is connected. Hence 𝐻 must be connected. If 𝑟(𝐻) = 1 and 
𝑑(𝐻) = 1,  then 𝐴𝐸𝐹(𝐻) = 𝐻 = 𝐺,  a contradiction to 𝑟(𝐺) > 1.  If 𝑟(𝐻) = 1  and 𝑑(𝐻) = 2,  then by the 
definition of 𝐹 -average eccentric graph, 𝑟(𝐴𝐸𝐹(𝐻)) = 1,  a contradiction to 𝑟(𝐺) > 1.  So 𝑟(𝐻) > 1.  By 

Proposition 3.1, 𝐴𝐸𝐹(𝐻) ⊆ 𝐻. Hence 𝐻  is isomorphic to a spanning subgraph of 𝐺. Since 𝑟(𝐺) = 2 and 

𝑑(𝐺) = 4, 𝑟(𝐻) ≥ 2 and 𝑑(𝐻) ≥ 4. Let 𝑢 ∈ 𝑉(𝐻). Then 𝑢 is adjacent to all the vertices 𝑣 in 𝐺 such that 
𝑑𝐺(𝑢, 𝑣) ≥ 2.  𝑑𝐻(𝑢, 𝑣) ≥ 2  whenever 𝑑𝐺(𝑢, 𝑣) ≥ 2.  But 𝑢  is not adjacent to a vertex 𝑣  in 𝐴𝐸𝐹(𝐻)  if 



JOURNAL OF ALGEBRAIC STATISTICS 
Volume 13, No. 3, 2022, p. 1239-1247 
https://publishoa.com 
ISSN: 1309-3452 

 

1246 
 

𝑑(𝑢, 𝑣) < ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ in 𝐻. That is, for some pair of non adjacent vertices 𝑢 and 𝑣 in 𝐻, 𝑢𝑣 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a 

contradiction to 𝑢𝑣 ∈ 𝐸(𝐺). From these, we conclude that 𝐴𝐸𝐹(𝐻) is not equal to 𝐺, a contradiction.       □ 

 
Using the same proof technique used in Theorem 4.8, we prove the following propositions 

Proposition 4.9. If 𝐺 ∈ 𝐹22 and 𝐺 ∈ 𝐹3, then 𝐺 is not a 𝐹-average eccentric graph. 
 

Proposition 4.10. If 𝐺 ∈ 𝐹23 and 𝐺 ∈ 𝐹23 in which there is a vertex 𝑤 such that 𝑤 is adjacent to atleast two 

non adjacent pairs of vertices 𝑢 and 𝑣 in 𝑆3(𝐺), then 𝐺 is not a 𝐹-average eccentric graph.                                                                  

 

Corollary 4.11. If 𝐺 ∈ 𝐹23 and 𝐺 ∈ 𝐹23 in which there is no vertex adjacent to atleast two non adjacent vertices 

in 𝑆3(𝐺), then 𝐺 is a 𝐹-average eccentric graph. 

Proof. By Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺.                                             □ 

 

Corollary 4.12. If 𝐺 ∈ 𝐹24, then 𝐺 is a 𝐹-average eccentric graph. 

Proof. By Theorem B, 𝐺 ∈ 𝐹22. Then by Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺.                    □ 
 

Corollary 4.13. If 𝐺 ∈ 𝐹3, then 𝐺 is a 𝐹-average eccentric graph. 

Proof. Since 𝐺 ∈ 𝐹3, 𝑟(𝐺) ≥ 3 and 𝑑(𝐺) ≥ 3. If 𝑟(𝐺) = 𝑑(𝐺) = 3, then by Theorem C, 𝐺 ∈ 𝐹22. If 𝑟(𝐺) = 3 

and 𝑑(𝐺) > 3 or 𝑟(𝐺) > 3  and 𝑑(𝐺) > 3,  then by Theorems B and C, 𝐺 ∈ 𝐹22.  Then by Theorem 4.1, 

𝐴𝐸𝐹(𝐺) = 𝐺.                                     □        

 

Theorem 4.14. If 𝐺 is a totally disconnected graph on 𝑛 ≥ 2 vertices, then 𝐺 is not a 𝐹-average eccentric 
graph. 
Proof. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is a disconnected graph, then by Lemma 4.5, 

𝐴𝐸𝐹(𝐻) is disconnected, a contradiction to 𝐺 ∈ 𝐹11. So 𝐻 must be connected. If 𝐻 ∈ 𝐹11, then by Theorem 
3.2, 𝐴𝐸𝐹(𝐻) = 𝐻 = 𝐺, a contradiction to 𝐺 ∈ 𝐹4. If 𝐻 ∈ 𝐹12, then by Theorem 2.6, 𝐴𝐸𝐹(𝐻) ∈ 𝐹11 ∪ 𝐹12, a 
contradiction to 𝐺 ∈ 𝐹4. So 𝑟(𝐻) ≥ 2. Then every pair of 𝐹-average eccentric vertices in 𝐺 are adjacent in 

𝐴𝐸𝐹(𝐻). Hence 𝐴𝐸𝐹(𝐻) has an edge, a contradiction. Thus 𝐺 is not a 𝐹-average eccentric graph.           □ 

 

Theorem 4.15. If either 𝐺 or 𝐺 ∈ 𝐹12, then 𝐺 is a 𝐹-average eccentric graph if and only if 𝐺 is a 𝐹-average 
eccentric graph of itself or its complement. 
Proof. Suppose either 𝐺 is a 𝐹-average eccentric graph of itself or its complement. Then by the definition, 𝐺 is 
a 𝐹-average eccentric graph. 

Suppose 𝐺 is a 𝐹-average eccentric graph. 

Case 1. 𝐺 is connected and 𝐺 is connected. 

Subcase 1.1. Suppose 𝐺 ∈ 𝐹22. Then by Theorem 4.8 and Proposition 4.9, 𝐺 ∈ 𝐹24 and 𝐺 ∈ 𝐹3. Therefore 𝐺 ∈

𝐹22 or 𝐺 ∈ 𝐹23. If 𝐺 ∈ 𝐹22, then by Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺. If 𝐺 ∈ 𝐹23, then by Theorem 4.7, 𝐺 has no 

vertex adjacent to at least two non adjacent vertices in 𝑆3(𝐺), then by Corollary 4.3, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Subcase 1.2. Suppose 𝐺 ∈ 𝐹23. Then 𝐺 ∈ 𝐹22 or 𝐺 ∈ 𝐹23. If 𝐺 ∈ 𝐹22, then by Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺. If 

𝐺 ∈ 𝐹23, then by Proposition 4.10, 𝐺 has no vertex adjacent to at least two non adjacent vertices in 𝑆3(𝐺), then 

by Corollary 4.3, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Subcase 1.3. Suppose 𝐺 ∈ 𝐹24. Then 𝐺 ∈ 𝐹22 and by Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Subcase 1.4. Suppose 𝐺 ∈ 𝐹3. Then 𝐺 ∈ 𝐹22 and by Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Case 2. 𝐺 is connected and 𝐺 is disconnected. 
Subcase 2.1. Suppose 𝐺 ∈ 𝐹11. Then by Theorem 3.2, 𝐴𝐸𝐹(𝐺) = 𝐺. 

Subcase 2.2. Suppose 𝑟(𝐺) ≥ 2. Then by Theorem 4.6, each component of 𝐺 is complete. By Theorem 4.1, 

𝐴𝐸𝐹(𝐺) = 𝐺. 
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Case 3. 𝐺  is disconnected. Then by assumption, either 𝐺 ∈ 𝐹11  or 𝐺 ∈ 𝐹22. If 𝐺 ∈ 𝐹11, then 𝐺  is totally 

disconnected and by Theorem 4.14, 𝐺 is not a 𝐹-average eccentric graph, a contradiction. Hence 𝐺 ∈ 𝐹22. By 

Theorem 4.1, 𝐴𝐸𝐹(𝐺) = 𝐺.                          □ 

 

Theorem 4.16. Let 𝐺 ∈ 𝐹12 be a graph on 𝑛 vertices. Then 𝐺 is not a 𝐹-average eccentric graph if and only if it 
has a triangle and a pendant vertex. 
Proof. Suppose 𝐺 is not a 𝐹-average eccentric graph. Assume that 𝐺 has no pendant vertex. Let 𝑢1, 𝑢2, . . . , 𝑢𝑟 
be the full degree vertices and 𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛 be the non full degree vertices. Then 𝑒(𝑣𝑖) = 1 for 1 ≤ 𝑖 ≤ 𝑟 
and 𝑒(𝑢𝑗) = 2 for 𝑟 + 1 ≤ 𝑗 ≤ 𝑛. Construct a graph 𝐻 from 𝐺 as follows. 𝐻 has a vertex set as in 𝐺. Let 

𝑢1, 𝑢2, . . . , 𝑢𝑟 be the full degree vertices in 𝐻. Every pair of the non full degree vertices 𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛 are 
adjacent in 𝐻 whenever they are non adjacent in 𝐺 and vice versa. Then by the definition, 𝐴𝐸𝐹(𝐻) = 𝐺, a 
contradiction. Suppose 𝐺 has no triangle. Then 𝐺 has only one full degree vertex and the remaining vertices are 
pendant vertices. Then the graph 𝐻 is 𝐾1 ∪ 𝐾𝑛−1 so that 𝐴𝐸𝐹(𝐻) ≅ 𝐺, a contradiction. 

Suppose 𝐺 has a triangle and a pendant vertex. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) =
𝐺. Let 𝑥 be a central vertex of 𝐺, 𝑢 be a pendant vertex and 𝑥𝑦𝑧 be a triangle in 𝐺. Then 𝑒(𝑢) = 2, 𝑒(𝑥) =
1  and 𝑒(𝑦) = 2 = 𝑒(𝑧).  If 𝑤 ≠ 𝑥  is another full degree vertex in 𝐺,  then 𝑤  is adjacent to 𝑢  in 𝐺.  a 
contradiction. Therefore 𝑥 is the only full degree vertex in 𝐴𝐸𝐹(𝐻). By Theorem 2.6, either 𝑥 is an isolated 
vertex or a full degree vertex or a non full degree vertex adjacent to the full degree vertices in 𝐻. If 𝑥 is an 
isolated vertex in 𝐻, then 𝑢 is adjacent to all the vertices other than 𝑥 in 𝐻. By the definition, 𝐺 = 𝐾1,𝑛−1, a 

contradiction. If 𝑥 is a full degree vertex in 𝐻, then 𝑢 is adjacent to 𝑥 as well as its eccentric vertices in 
𝐴𝐸𝐹(𝐻), a contradiction. If 𝑥 is a non full degree vertex adjacent to the full degree vertex 𝑣 in 𝐻, then 𝑢 is 

adjacent to both 𝑥 and 𝑣 in 𝐴𝐸𝐹(𝐻), a contradiction.                                   □ 
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