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ABSTRACT

In this paper, we determine some stability results concerning the Jensen functional equation
2f((x +y)/2) = f(x) + f(y) in Neutrosophic Normed Spaces (NNS). We define the Neutrosophic Continuity
of the Jensen mappings and prove that the existence of a solution for any approximately Jensen mapping implies
the completeness of NNS.
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1. Introduction

Fuzzy set theory is a powerful hand set for modeling uncertainty and vagueness in various problems arising in
the field of science and engineering. It has also very useful applications in various fields. Stability problem of a
functional equation was first posed by Ulam [20] which was answered by Hyers [6] and then generalized by Aoki [1] and
Rassias [15] for additive mappings and linear mappings, respectively. Since then several stability problems for various
functional equations have been investigated in [7] and [16] and various fuzzy stability results concerning Jensen
functional equations were discussed. Furthermore some stability results concerning Jensen, cubic, mixed-type additive
and cubic functional equations were investigated in the spirit of intuitionistic fuzzy normed spaces, while the idea of
intuitionistic fuzzy normed space was introduced and further studied.

After a while, Smarandache [17] introduced the notion of Neutrosophic Sets [NS], which is the different kind of
the notation of the classical set theory by adding an intermediate membership function. This set is a formal setting trying
to measure the truth, indeterminacy and falsehood. Later on, the concepts of statistical convergence of double sequences
have been analyzed in IFNS by Mursaleen and Mohiuddin [13]. Quite recently, Kirisci and Simsek [19] introduced the
notion of Neutrosophic normed space and statistical convergence. Since Neutrosophic Normed Space [NNS] is a natural
generalization of IFNS and statistical convergence.

In this paper, we determine some stability results concerning the Jensen functional equation 2f((x +y)/2) = f(x) +
f(y) in NNS. We define the Neutrosophic Continuity of the Jensen mappings and prove that the existence of a solution
for any approximately Jensen mapping implies the completeness of NNS.

2. Preliminaries
Definition 2.1:

A binary operation *:[0,1] x [0,1] — [0,1] is said to be continuous t-norm if it satisfies the
following conditions;
i * IS associative and commutative,
ii. * is continuous,
iii. ax1=a, forall a €[0,1],
iv. axb <cx*d whenever a<c and b <d,
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foreach a,b,c,d € [0,1].
Definition 2.2:
A binary operation ¢:[0,1] X [0,1] — [0,1] is said to be a continuous t-conorm if it satisfies the
following conditions;
i. ¢ is associative and commutative,
ii. $ is continuous,
iii. a$0=a, forall a €[0,1],
iv. a$b<c<$d whenever a<c and b <d
foreach a,b,c,d € [0,1].
Definition 2.3:

The seven-tuple (X, 4,9, w,*,¢,©) is said to be Neutrosophic Normed Space (NNS) if X is a vector space, * is a
continuous t-norm, <% and © are continuous t-conorm and u,9,w are fuzzy sets on X X R satisfying the following
conditions; For every x,y € Xands,t > 0

i ule, t) +9(x,t) + w(x, t) <3,

ii. 0<ul,t)<1,0<9(x,t) <1,0 <w(xt) <1,
iii. u(x,t) >0,
iv. ulx,t) =1 iff x =0,

V. ulax,t) =u (xﬁ) , foreach a # 0,
vi.  ult) xu(y,s) Sp(x+y,t+s),

vii. u(x,”): (0,00) — [0,1] is continuous,
Viii. tlim u(lx,t) =1 and ltirr(},u(x, t) =0,

iX. I(x,t) <1

X. I(x,t) =0iffx =0,

xi. I(ax,t) =9 (xﬁ) , foreacha # 0,
Xii. 90, )¢9 (y,8) =2I9(x +y,t+5),

xiii. 9(x,): (0,0) — [0,1] is continuous,
Xiv. tlim I(x,t) = 0and ltin(‘)lﬁ(x, t) =1.

XV. w(x,t) <1,
XVi. w(x,t) =0 iffx =0,

XVil. w(ax,t) = w (x, ﬁ) Jforeacha # 0,
Xviil, wEt)OQws)zwx+yt+s),
Xix.  w(x,"):(0,0) - [0,1] is continuous,
XX. lim w(x,t) = 0and ltlrr(} w(x,t) =1.

t—oo

Example 2.4:

Let (X, ||-]|) be a normed space, a * b = ab, a ¢ b = min{a + b,1} and a © b = min{a + b, 1},

t .
for all a,b €[0,1]. For all x€X and every t >0, Consider u(x,t)= {t+llxll ift > 0}, I9(x,t) =
0 ift<0
e > 0 M ife > 0 :
{t+llxll } and w(x,t) = { t } Then (X, 4,9, w,*,%,0©) is NNS.
1 ift<o0 1 ift<0

3. Neutrosophic Stability of Jensen mapping

Let (X, pq, 91, w1,%,¢,O) and (Y, iy, 9,5, w4, *,4,O) be two NNSs and f: X — Y be a mapping. Then f is said to
be Neutrosophic Continuous at a point x, € X if for each sequence (x,) converging to x,, the sequence (f(x,))
converges to f(x,). If f is Neutrosophic Continuous at each point of x, € X then f is said to be Neutrosophic
Continuous on X. The Jensen functional equation is 2f((x + v)/2) = f(x) + f(y), where f is a mapping between
linear spaces. It is easy to see that a mapping f: X — Y between linear spaces with f(0) = 0 satisfies the Jensen equation
if and only if it is additive.
We begin with a generalized Hyers- Ulam- Rassias type theorem in NNS for the Jensen functional equation.

Theorem 3.1:
Let X be a linear space and f be a mapping from X to a Neutrosophic Banach Space (NBS) (Y, 1,9, w) such that
£(0) = 0. Suppose that ¢ is a function from X to a NNS (Z, 1,9, w") such that
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n(2f () = f@ = O t+5) 21 (@), ) * 1 (9(),9),
9(2f (2) = f@) - fo)t+5) <9 (9(x), 1) ¢ 9 (p(y),5) and (3.1.1)
0 (2f (2) - fF@ - fO)t+5) w0 (), 1) © 0 (9(B),5),

forall x,y € X\ {0}, t >0and s > 0. If 9(3x) = ap(x) for some real number a with 0 < |a| < 3, then there exists a
unique additive mapping T: X — Y such that T(x) = lim f(3"x)/3",
n—oo

(@) = f(0),6) = M(x, ¢ 6"‘”), I(T () — f(x),0) < N(x,@) and w(T(x) — f(x),t) < P(x,“‘T“”), where
M) = w (0, 2t) « w (w2, 2¢) « i (9(33),2¢),
N(x,t) = ﬁ’((p(x),zt) o9 (p(-2),2t) ¢ 9'(p(3x), 2 t) and

Pirt) =o' (p),2t) O w'(p(-0).2t) 0 ' (p(3x),2t).
Proof:

Without loss of generality we may assume that 0 < a < 3. Putting y = —x and s = t in (3.1.1), we get
u(=f(x) = f(=x),2t) 2 p'(p(x),t) * (@ (=x), 1), 9(=f (x) — f(=x),2t) <9 (p(x),t) ¢ 9'(¢(=x),t) and
w(—f(x) — f(—x),2t) < w'(p(x),t) © w'(p(—x),t), forall x € X and t > 0. Replacing x by —x, y by 3x and
s by tin (3.1.1), we get
12f(x) = f(=x) = f(3x), 2t) = w' (p(—x),t) * W' (¢(3x), 1),
9(2f (x) — f(=x) — f(3x),2t) < I'(p(—x),t) ¢ 9'(9(3x),t) and
w(2f(x) = f(=x) = f(3x),2t) < w'(p(—x),1) © ' (p(3x),t).

Thus, u(3f(x) — f(3x),46) = p' (p(x), t) * u'(p(—x),t) * W' (p(3x), 1),
IBf(x) — f(Bx),4t) < I9'(p(x),t) $ 9" (p(—x),t) & I¥'(p(3x),t) and
w(Bf(x) — f(3x),4t) < w'(p(x),t) © W' (p(—x),t) © w' (p(3x),t). It follows that

([ rGFG =37 FG0D 2w (900, 38) « 1 (9=, 2¢) x i (030, 5E), )
iﬁ(f(x) =377 @0, 1) <9 (000, 2t) 0 9" (p(=2),2t) ¢ 9’ ((3x),2¢) and (3.1.2)
w(f () =37 f(32),6) 2 ' (p(0).2t) O 0 (9(-2),2t) © 0’ (p(32),2¢).
Define, M(x,t) = ' ((p(x),%t) * ' ((p(—x),%t) * ((p(3x),%t),
NGt =9 (9).2t) 09" (9(=2),2t) ¢ 9" (9(Bx), 2 t) and
P(x,t) = ' ((p(x),%t) oxs ((p(—x),zt) 0o ((p(3x),2t).
Then by our assumption, {M(3x,t) = M(x,t/a), N(3x,t) = N(x,t/a) and P(3x,t) = P(x,t/a).} (3.1.3)
Replacing x by 3™x in (3.1.2) and using (3.1.3), we get
u(f 3™x)/3" — f 3™ x) /3™, amt/3™) = u(f(3"x) — 37 (3" x),a"t) = M(3"x, a™t) = M(x, t),
9(f (3"x)/3™ — f (3" 1x) /3™, a™t/3") = 9(f(3"x) — 371 f(3"*1x),a™t) < N(3"x,a™t) = N(x,t) and

w(f (3"x)/3™ — f (3"1x) /3™, a™t/3™) = w(f(3"x) — 37! f(3"*1x),a™t) < P(3"x, a™t) = P(x,t).
Thus for each n > m, we have

g (f G073 = G073, Z _> (Z £330 [3 - f341) [34, Z ";_k>
fe=m k=m
2 ﬁu(f@"x) /3% = £ 310 [344, Z “;f) > M(x,0),
k=m
19(}‘ (3™x)/3™ — f (3"x)/3", kz ) (Z £(3*x) /3k F(3%*1x) /3k+1' kz 2_’?) .
i K n-1 -m 3.1.4
< Uﬁ (f(3kx)/3k —f(3k+1x)/3k+1, Z 2’;15) < N(x,t) and
k=m k=m
w (f (3™Mx)/3™ = f (3"x)/3", Z ﬁ) =w (Z f(Skx)/gk f(3k+1x)/3k+1 nz C;_’:f)
fe=m k=m
< ﬁ g (f(?»"x)/3" - f(3k+1x)/3"“, nz 2—?) < P(x,1),
k=m k=m
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where [Ti_;aj = a; xap * .. xay, [jo1aqs =a; ¢ a; ¢ . ¥ apand [[}.104:=a; 0O a, © ..Oa, . Lete >0and § >
0 be given. Since lim M(x,t) =1, lim N(x,t) =0 and lim P(x,t) = 0 there exists some t, > 0 such that M(x, ty) >

1—¢ N(x,ty) < € and P(x,t,) < . Slnce Yo o t0/3" < oo, there exists some n, € N such that Y21 a*t,/3% < &
forall n > m > n,. It follows that

W(f (32) /37 — £ (37)/3",8) = u (F(3™2) /37 — F(3"0) /3", Thoh Sr0) = MCx,tg) 2 1~
9(f (3mx)/3™ — f (3"x)/3",8) < O (f(3mx)/3m £(3mx) /3", X0z }n“§;°) < N(x,t,) < ¢ and

O(f (3"x)/3™ — f (3"0)/3",6) <  (F(37x) /3™ — F(3"x) /3", Tk 500) < P(x, ) < e,

This shows that (f (3"x)/3™) is a Cauchy Sequence in (Y,u,9,w). Since (Y,u,9,w) is complete, (f (3"x)/3™)
converges to some T(x) €Y.

Thus, we define a mapping T: X — Y such that T(x) = (¢, 9, w) — Tllggf (3"x)/3™.

Moreover, if we put m = 0 in (3.1.4),
we get u(f (3M0)/3" - £00, TR %) = M), (£ (370/3" - £(x), TR %) < NCx,©) and

< akt
) (f (3™x)/3™ — f(x),z 3—k> < P(x,t). Therefore
K (30)/3" = £, 0) = M (0 et
I(f (3"x)/3" — f(x),t) <N (x,W) and (3.1.5)

w(f 3"x)/3" = f(x), t)<P( m)

Now, we will show that T is additive. Let x,y € X. Then
er(32) o) = o{ar(12)-ar (25 )
w(F @73 =160.2) ek (f B/3 - T07)

culor (P2 far - pamsz - @),
19(2T< ery) T(x) = T(y), t) <z9<2T( ery> f(w>/3 'Z)
09 (r 3m0/3" = 1(,5) 99 (F /3" = TO).) (3.16)

69 <2f (yl(’;—+”) / 3" _ £ (3"x)/3" — f (3"y)/3" 2) and

o) 7ne) 2o (52 -or (2522 )

O (f@)/3" ~T0.7) O (f B/3" = T0).5)

ou(2r(F52) 3= p @z - p @),

and by using(3.1.1),
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u(or (P2 fa - e - g
> (oGm0, 5 e (o), 5 = <<p<x), &y g) o (<p(y>, &y g) ,
o2 (ZE2) [ rasa - sy
oo )ov o) - 0 &) o (0. 0

w <2f (@) /3" = F@/3" - (3" /3" i)

(o ) 0w (o0 ) = (s 0 ) 0 (o0 ) 5)
Letting n — o in (3.1.6) and (3.1.7), we get

w(2r (32) -1 -TO),t) = 1,9 (27 (22) = T7(@) = T(),t) =0 and w (27 (2) = T(x) - T(),t) = 0, for
all x,y € X and t > 0. This means that T satisfies the Jensen equation and so it is additive.
Now, we approximate the difference between f and T in a Neutrosophic sense. By (3.1.5), we have

u(T(x) = f(x),t) = u(T(x) — £ 3"x)/3™,t/2) * u(f 3"x)/3"™ — f(x),t/2)
>M (x, S — ) =M (x, (3‘“”),

239 o(a/3)k 6

I(T(x) = f(x),t) <I(T(x) = f B"x)/3",¢/2) $ I(f B"x)/3" = f(x),t/2)

t GB-a)t
SN(X,W):N(X )ad
o(Tx) - f(x),0) <) —f (3nx)/3n t/2) © w(f 3"x)/3" — f(x),t/2)

t _ GB-a)t ..
<P (x, zz;’f:(,(a/s)k) =P (x, — ) for every x € X, t > 0 and sufficiently large n.

To prove the uniqueness of T, assume that T’ be another additive mapping from X into Y, which satisfies the required
inequality. Then

W(TG) = T'GO), 8) 2 w(T' () = (), £/2) » w(T" () = £ (), £/2) 2 M (3, 25%),

9T () = T'(x), 1) S V(T () — £, £/2) ¢ (T (x) = £(x),£/2) < N (6,2 and

W(Tx) =T'(x),t) < w(Tx) = f(x),t/2) © o(T'(x) — f(x),t/2) < P( G- a)t),

forallx e Xandt > 0andn € N. Since 0 < a < 3, lim (3/a)™ = o and we get
n—oo

N(ia_ N(q_ Ney_
lim M (x, M) =1, lim N (x’ M) — 0and lim P (x, M) = 0.
12 12 12

n—-oo n—-oo n—oo
Therefore u(T(x) —T'(x),t) =1, 9(T(x) = T'(x),t) = 0and w(T(x) —T'(x),t) =0, forallx € Xand t > 0.
Hence T(x) = T'(x) forall x € X.
Remark 3.2:

We can also prove Theorem (3.1) for the case when |a| > 3. In this case, the additive mapping T is defined by
TC) = lim f(37)/37".
Theorem 3.3:

Let X be a Linear Space (LS) and (Y, u',9',w") be a NBS. Let f: X — Y be a mapping with f(0) = 0. Suppose
that § > 0 is a positive real number and z, is a fixed vector of a NNS (Z, u"’, 9", w'") such that

w(2f (" 2 )= FO) — fOt+5) = W (670, 6) + W' (620,),
(Zf( ) fO) = fO),t+ s) < 9"(82,t) ¢ 9" (82, 5)and

o (2f (F52) = 0O — fOLE+5) < 0" (570,0) © (620,
forall x,y e X —{0},t >0and s > 0 Then there exists a unique additive mapping T: X — Y such that
W@ = F),0) 2 1" (20,5), 9" (T() = £(),6) < 0" (20,) and o' (T(x) = f(2),£) < 0" (zo,=). Moreover,
T is continuous on X provided (X, u, 9, w) isa NNS and f is continuous at a point.

Proof :
Using Theorem (3.1) with ¢ (x) = &z, we deduce the existence of the required additive mapping T.

(3.1.7)
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Letusputg = é. Suppose that f is continuous at a point x,. Let T be not continuous at a point.
Then there exists a sequence (x,) such that (u,9,w) —limx, =0 and (u',9',w") —limx, # 0. By passing to a
n n
subsequence if necessary, we may assume that (u,9,w) —limx, = 0 and there exist € > 0 and t, > 0 such that
n

w(Txy, ty) <1—¢69(Tx,, ty) > eand w'(Txy,, ty) > € forall n.
Since }im u'(zy, Bt) =1, tlim 9" (z,B8t) =0 and tlim w'' (zy, Bt) = 0, there exists t; such that u''(z,, Bt;) =1—
£,9" (2, Bt1) < e and w" (zy, ft1) < €. Take a positive integer k such that t, /k < t,.
Then, we have

w (T(kx, +xg) — Txg, t1) = p' (Txp, t1/k) S ' (Txg, tg) <1-—¢,

' (T(kx, + x0) — Txg, ty) = 9'(Txy, t,/k) =9 (Tx,, ty) > € and

3.3.1
W' (T(kx, + x9) — Txg, t1) = @' (Tx,, t1/k) = o' (Txy, ty) > &. ( )

On the other hand,
1 (T (kxn + x0) — Tx, t1)
= W(T(kxn + x0) — f(kxn + x0),t1/3) * W' (f (kxn + x0) — f(x0),t1/3)
* 1 (f (x0) — Txo, £1/3),
9'(T(kx, + x9) — Txg, t;)
{ S O'(T(kxn + x0) — fkxn + x0),t1/3) ¢ 9'(f (kxn + x0) — f(x0), t1/3) (3.3.2)
¢ 9'(f(x) — Txo, t1/3) and
' (T (kx, + xy) — Txp, t1)
< @' (T(kxy + x0) — f (ke + %), £1/3) © ' (f (kxy, + x0) — £ (x0),t1/3)
O @'(f(x0) — Txg, t1/3).
1 (f (xo) — Txo, t1/3) = " (20, ft;) and
W (T (kxy, + x0) — f(kxn + %0), t1/3) = p'' (20, Bt1),
O'(f (x0) — Txo,t1/3) < 9" (20, Bt;) and
O'(T (kxn + x0) — f(kxn + x0),t1/3) < 9" (2, Bt1)
o'(f (x9) — Txo,t1/3) < w"(20,Bt;) and
@' (T (kxn + x0) = f(kxn + x0), t1/3) < w" (20, ft1)
Letting limit n — oo in (3.3.2) and (3.3.3), we get
W (T (kxn + x0) — Txg, t1) = p"' (20, ft1) = 1 — ¢,
O'(T (kx, + x9) — Txo, t1) < 9" (20, Bt;) <€ and
' (T(kx, + x0) — Txo, t1) < w'' (24, Bty) < &, Which contradicts (3.3.1).

(3.3.3)

4. Neutrosophic Completeness

Definition 4.1:
Let (X,u,9,w) be NNS and a € (0,1). A mapping f,: N — (X, u, 9, w) is said to be a-approximately Jensen type if

pfa(x +y) — fo(2x) — fo(2y), B) = a, I2fo(x +y) — fo(2x) — fo(2y),f) <1—a and
I2f,(x +y) — f,(2x) — f,(2y),) <1 —a,forsome f > 0andall x,y € N.

Definition 4.2:

The NNS (X, i, 9, w) is called definite if
ulx,t) >0,9(x,t) <land w(x,t) <1, forallt > 0 impliesthat x = 0 (4.2.1)
holds. It is called pseudo-definite if for each « € (0,1) the following condition holds;
ule,t) >a,9(x,t) <1—aand w(x,t) <1—aforall t > 0 implies that x = 0. (4.2.2)
Obviously, a definite NNS is pseudo-definite.
Theorem 4.3:

Let (X,u, 9, w)be a pseudo-definite NNS. Suppose that for each a € (0,1) and each a-approximately Jensen
type mapping f,:N — (X, u,9, o), there exists numbers §, > 0,n, € N and an additive mapping T,: N — X such that
#(Ta(n) - fa(n)rsa) > a,ﬁ(Ta(n) - fa(n)rsa) <l-aand w(Ta(n) - fa(n)!sa) <l-a,
forall n = n,. Then (X, 4,9, ) isa NBS.

Proof:

Let (x,) be a Cauchy sequence in (X,u,9,w). Choose any fix value of a € (0,1). There is an increasing
sequence (n; ) of positive integers such that n, = k and u(x, — x,, 1/4k) = a, 9(x,, — %, 1/4k) <1 —a and
(X, — X, 1/4k) <1 — a, forall n,m = n,.

Put y, = x,, and define f: N - X by f, (k) = ky,, k € N. Then

1Q@faG + k) = fo(2)) = f(2K), 1) = pQ2G + K)Yjsre = 2jY2; — 2kY2p, 1)
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2 u(2j(yjer = ¥25) 1/2) * 2k (Ysr = y2u ) 1/2) 2 @,
I2fa( + k) — fo(2)) — fa(2K), 1) = IQ2G + K)Yjsr — 2)¥2j — 2ky2p, 1)
<92 (Vjsk — ¥27),1/2) ¢ 9(2k(¥jsk — Yax), 1/2) <1 — a and
w2faG+ k) — fu(2)) — f2(2k), 1) = 02U + )Yk — 2)Y2j — 2kYap, 1)
< u(2j(Yjrk — ¥2j),1/2) © w(2k(yjsx — ¥2x), 1/2) < 1 —a,
for each j, k € N. Thus £, is a-approximately Jensen type.
By our assumption, there exists §, > 0, n, € N and an additive mapping T,: N — X such that
w(T,(n) — f,(n),6,) > a,9(T,(n) — f,(n),6,) <1—aand w(T,(n) — f,(n),6,) <1—a,foralln=n,.
Since T, is additive, therefore T, (n) = nT,(1).
Hence we have u(T, (1) — y,, 6,/n) > a, 9(T,(1) — y,,6,/n) <1 —a and w(T,(1) — y,,6,/n) <1 —q,
for all n € N. Let € > 0, there exists some ny = n, such that u(x, —xn,€/2) = a, 9(x, — %, €/2) <1 —a and
Wy, — X, €/2) <1 —a, foralln,m = n,.
Take some k, € N such that k, > ng and 6,/ko < &/2. It follows that ny, > ko = ng = ng, S0
u(Ty (1) — x5, €) = (3 — Xy, €/2) % (i, — To(1),€/2) = a,
(T, (1) — xp, ) < (% — Xy, €/2) S Iy — Tu(1),€/2) <1 —a and
w(Ty(1) —x,,8) < a)(xn — xnk,s/Z) O oWk, —Te(1),e/2) <1 —a,foralln = ny,.
This means that (x;,) is a-convergent to T, (1). Let « # . Then, for each £ > 0 and sufficiently large n,
#(Ta (D) = Tp(1), 2¢) 2 u(Te(1) = xn, &) * u(xy = Tp(1), 8) 2 @ B,
9(T, (1) — T3(1),2¢) < I(T,(1) = x,€) (2, — Tp(1),6) < (1 — ) ¢ (1 — B) and
w(T, (1) — Tp(1), 2¢) < w(Ty(1) — x5,8) © w(x, —Tp(1),6) < (1 —a) O (1 - ).
By (3.4.3), T,(1) = Tg(1). Putx = T,(1). Then for each « € (0,1) and ¢ > 0,
ulx —xp,e) =z a,9(x —x,,6) <1 —aand w(x — x,, &) <1 — a, for sufficiently large n.
Hence (i, 9, w) — rllgrgo X, = X.
Example 4.4:
Let X be athe set of all real sequences (x,,) such that x,,’s are zero for all but finitely many n’s.
For x = (x,,) € X and t > 0, define p(x,t) to be min p;_; ,, (x5, t), 9(x, t) to be max 9/, (x,, t) and
w(x,t) to be max wq /, (xy, t), Where

0 if t<o0, 1 if t<0,
uy(x,t) = {r if 0<t< ||x||,], 9,.(x, t) = {1 —r if 0<t< ||x||,} and

1 if t = |xl|; 0 if t = |lx]|l;
1 if t<0,
w ) ={ == if 0<t<lxl,
0 if t=>|x]|;

Then (X, 4,9, w) is a NNS which is not pseudo-definite since, for example, u((O,l,O, )y t) >1/2, 19((0,1,0, )y t) <
1/2 and w((0,1,0, ...,),t) < 1/2. This space is not complete.

1 ifn <m,
0 ifn>m;
€ > 0and§ > 0, there exists k € N such that 1/k < . Thus for m; > m, > k, we have

To see this, we consider the sequence (x™) in X, where x,(™ = { } which is a Cauchy sequence. Given

p(xm —xMm2) §) =  min  p (16)>1—1>1—1>1—£
’ my+lsnsmy 1=1/mi o8 = n k '
I(xm) —xM2) §) =  max  9;,,(1,8) < : < 1 < eand
’ myp+lsnsmy /i n k
w(x(ml) — x(m2) 6) = max wq/,(1,6) < l < l < &.
! my+1snsmq A n k

But the sequence is not convergent. On contrary, suppose that there exists some x € X such that
lim u(x™ —x,t) =1, lim 9(x™ —x,t) =0and lim w(x™ —x,t) =0.
m—oo m—oo

m-oo

Since x € X, there exists n, € N such that x,, = 0 for all n > n,,. Thus for m > n,, we have
1-1/n, = #1—1/n0(1, 1/2) = Hi-1/n, (xno(m)’ 1/2) = u(x(m) - X, 1/2);

1/ng = 91/ny(1,1/2) = 91y (30, ™, 1/2) < 9(x™ —x,1/2) and

1/ng = W1/n,(1,1/2) = @y, (x,™,1/2) < 0(x™ —x,1/2).

Taking limitm — oo, we get 1 — 1/n, > ,Liirlo“(x(m) -x,1/2) =1,

1/mo < lim 9(x™ —x,1/2) =0,1/n, < Jim w(x™ —x,1/2) = 0, which is a contradiction.
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Now, show that (X, u, 9, ) satisfies the hypothesis of the above theorem, of course except that being pseudo-definite.
First, we find a criterion for a mapping f:m € N » (f,,(im)) € X to be a-approximately Jensen type.

Given a € (0,1), there existsny € Nsuchthat1 —1/ng<a<1-1/(ny + 1).

A mapping f:m € N (f,(m)) € X is a-approximately Jensen type if and only if there exists 8 > 0 such that
ul—l/n(fn(m + k) - fn(zm) - fn(Zk)' .8) >a, ﬁl/n(fn(m + k) - fn(zm) - fn(Zk)' ﬁ) <1-aand

w1 (fu(m + k) — f,(2m) — £,(2k), ) <1 —a,foralln € N.

This is satisfied if and only if p;_y ;,, (f,(m + k) — f,(2m) — £,(2k),B) # 1 — %

O n(f(m + k) = fo(2m) = £,(2K), B) # = and @,/ (fo(m + k) = fu(2m) — £,(2K), B) # =, for n=12,...,ng or
equivalently |f,(m + k) — f,(2m) — f,(2k)| < B forn =1, ..., n,.
Thus we can say that given a € [1 —1/n,,1 —1/(ny + 1), mapping f is a-approximately Jensen type if and only if
first n, coordinate mappings, f;(1 < i < ny), are Jensen bounded.
Since R is complete, for a-approximately Jensen type mapping f there exist additive mappings S,,: N — R such that
fn(m) — S, (m) is bounded for all m € N.

. . _ (Sp(m) ifn < ny,
DefineT:N - X by T,,(m) = { 0 if n>n, }
Then T is an additive mapping. Let B,, = sup|f,, — Sp| forn =1, ...,n,and By = max f,.

1<ns<ngy
Then u(f(m) —T(m), By > a, 9(f(m) —T(m),By) <1 —aand w(f(m) —T(m),By) <1—aforallmeN.
The above arguments show that for each a € (0,1) and each a-approximately Jensen type mapping
fa: N = (X, 1,9, w) there exists a number §, > 0 and an additive mapping T,,: N — X such that
w(T,(n) - f,(n),8,) > a,9(T,(n) — f,(n),8,) <1—aand w(T,(n) — f,(n),5,) <1—a, foralln € N.
Definition 4.5:

Let (X,u,9,w) beaNNS and f: N — X be a mapping. Let for each a € (0,1), there existsan, € Nand § > 0
such that u(2f(n +m) — f(2n) — f(2m),8) =2 a, 92f(n+m) — f(2n) — f(2m),6) <1 —a and w(2f(n + m) —
f(2n) — f(2m),8) <1 — a, foreach n,m = n,. Then f is said to be an approximately Jensen type mapping.

Theorem 4.6:

Let (X,u,9,w) be a NNS such that for every approximately Jensen type mapping f: N — X, there exists an
additive mapping T: N — X such that u(x,, — x,,, 1/4k) = a;, 9(x,,, — x, 1/4k) <1 — a; and
W (X — X, 1/4k) < 1 — a, for each n,m = n,.

Let y, = xy, foreach k = 1. Define f: N — X by f(k) = ky,, k € N. If a € (0,1), take some m, € N such that a,,, >
a and let n, = m,. Then for each n = m = n,, we obtain
u2f(m+m) —f(2n) — f(2m), 1) = u2(M + M)Yn4m — 2NY2p — 2MY21, 1)
= ,u(zn(yn+m - YZn): 1/2) * M(zm(yn+m - yZm): 1/2)
= Unsm = Yo 1/40) * y(Vnym — Yom, 1/4m) = @y * ay > @,
Y2f(n+m)—f(2n) — f(2m),1) = IC2M + M)Ypim — 2NY2n — 2MY3, 1)
< 1-9(271(yn+m - yZn): 1/2) g ﬁ(zm(}’rwm - yZm)' 1/2)
=9 Ynam — Yon, 1/41) & 9 Ynsm — Yam, 1/4m)
<l-a)¢(1-ayp)<1l-a and
w2f(n+m)—f2n) — f(2m), 1) = w2 + M)Ynim — 2NY2p — 2MYy, 1)
< w(zn(yn+m - yZn): 1/2) @ w(zm(:)/n+m - yZm): 1/2)
= WVnem — Yo 1/41) © @ Ynam — Yom, 1/4m)
<-a,)00-a,) <1l-a.
Therefore f is an approximately Jensen type mapping. By our assumption, there is an additive mapping T: N — X such
that rlll_r»go w(Tm) — f(n),t) =1, Tlll_r)rolo I(T(n) — f(n),t) = 0and 7111_{2 w(T(n) — f(n),t) =0.
This means that rlll_)rg u(T@) =y, t/n) =1, 7111_r)r010 I9(T(1) — y,, t/n) =0and
Tlll_r)‘{)lo w(T(1) — y,, t/n) = 0. That is, the subsequence (y,,) of the Cauchy sequence (x,) converges to x = T(1) and

hence (x,,) is also convergent to x.

Conclusion

We linked here two different disciplines, namely, the fuzzy spaces and functional equations. We established
Hyers—Ulam—Rassias stability of a Jensen functional equation 2f ((x + y)/2) = f(x) + f(y) in NNS.
We also studied the Neutrosophic Continuity and Completeness through the existence of a certain solution of a fuzzy
stability problem for approximately Jensen functional equation.

1311



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1304-1312
https://publishoa.com

ISSN: 1309-3452

References

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Jpn, 2:64—
6, (1950).

Barros LC, Bassanezi RC, Tonelli PA.. Fuzzy modelling in population dynamics, Ecol
Model, 128:27-33, (2000).

Fradkov AL, Evans RJ. Control of chaos: methods and applications in engineering, Chaos,
Solitons and Fractals, 29:33-56, (2005).

Giles R. A computer program for fuzzy reasoning, Fuzzy Sets Syst,4:221-34, (1980).

Hong L, Sun JQ. Bifurcations of fuzzy nonlinear dynamical systems, Commun Nonlinear Sci
Numer Simul, 1:1-12, (2006).

Hyers DH. On the stability of the linear functional equation, Proc Natl Acad Sci USA,
27:222-4, (1941).

Hyers DH, Isac G, Rassias TM. Stability of functional equations in several variables, Basel:
Birkh&user, (1998).

Jeyaraman M, Mangayarkkarasi AN, Jeyanthi V, Pandiselvi R. Hyers-Ulam-Rassias stability
for functional equation in Neutrosophic Normed Spaces, International Journal of Neutrosophic
Science, Vol.18, N0.1,127-143, (2022).

Jeyaraman M, Ramachandran A and Shakila VB, Approximate fixed point Theorems for
weak contractions on Neutrosophic Normed space, Journal of computational Mathematics,
6(1), 134-158 (2022).

Mohiuddine SA, Danish Lohani QM. On generalized statistical convergence in intuitionistic
fuzzy normed space, Chaos, Solitons and Fractals, 42:1731-7, (2009).

Mursaleen M, Mohiuddine SA. Statistical convergence of double sequences in intuitionistic
fuzzy normed spaces, Chaos, Solitons and Fractals, 41:2414-21, (2009).

Mursaleen M, Mohiuddine SA. Nonlinear operators between intuitionistic fuzzy normed
spaces and Fréchet differentiation, Chaos, Solitons and Fractals, 42:1010-5, (2009).
Mursaleen M, Mohiuddine SA. On stability of a cubic functional equation in intuitionistic
fuzzy normed spaces, Chaos, Solitons and Fractals, 42:2997-3005, (2009).

Parnami JC, Vasudeva HL. On Jensen’s functional equation, Aequationes Math, 43:211-8,
(1992).

Rassias TM. On the stability of the linear mapping in Banach spaces, Proc Am Math Soc,
72:297-300, (1978).

Rassias TM. On the stability of functional equations and a problem of Ulam. Acta Appl Math,
62:23-130, (2000).

Smarandache F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure
Appl. Math., 24, 287-297, (2005).

Smarandache F. Neutrosophy, Neutrosophic Probability, Set, and Logic, Pro Quest
Information & Learning, Ann Arbor, Michigan, USA (1998).

Simsek N, Kirisci M. Fixed point theorems in Neutrosophic Metric Spaces, Sigma J. Eng. Nat.
Sci., 10(2), 221-230, (2019).

Ulam SM. Problems in modern mathematics, Science ed. New York: John Wiley & Sons,
[Chapter VI, Some Questions in Analysis: Section 1,Stability], (1940).

Zadeh. L. A, Fuzzy Sets, Information and Control, 8, 338-353, (1965).

1312



