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ABSTRACT

The main purpose of the present paper is to introduce and study the notion of neutrosophic b-metric spaces. In this way,
we generalize both the notion of neutrosophic metric spaces and fuzzy b-metric spaces. Further, the formulation and
proof of neutrosophic b-metric versions of some conventional theorems regarding fixed points via neutrosophic sets are
presented.
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1. Introduction:
Amini-Harandi [1] introduced a new extension of the concept of partial metric space, called a metric-like space.
The concept of b-metric-like space which generalizes the notions of partial metric space, metric-like space, and b-metric
space was introduced by Alghamdi et al. in [2]. They established the existence and uniqueness of fixed points in a b-
metric-like space as well as in a partially ordered b-metric-like space. In addition, as an application, they derived some
new fixed point and coupled fixed point results in partial metric spaces, metric-like spaces, and b-metric spaces.
[7,9,13,14,15]
The first successful attempt towards incorporating non-probabilistic uncertainty,
i.e.uncertainty which is not caused by randomness of an event, into mathematical modelling was made in 1965 by Zadeh
[24] through his remarkable theory on fuzzy sets . A fuzzy set is a set where each element of the universe belongs to it
but with some ‘grade’ or ‘degree of belongingness’ which lies between 0 and 1 and such grades are called membership
value of an element in that set. This gradation concept is very well suited for applications involving imprecise data such
as natural language processing or in artificial intelligence, handwriting and speech recognition etc. Although Fuzzy set
theory is very successful in handling uncertainties arising from vagueness or partial belongingness of an element in a set,
it cannot model all sorts of uncertainties prevailing in different real physical situations specially problems involving
incomplete information. Further generalization of this fuzzy set was made by Atanassov [3] in 1986, which is known as
Intuitionistic fuzzy set (IFS). In IFS, instead of one ‘membership grade’, there is also a ‘non-membership grade’ attached
with each element. Furthermore there is a restriction that the sum of these two grades is less or equal to unity. In IFS the
‘degree of non-belongingness’ is not independent but it is dependent on the ‘degree of belongingness’. In 1999, a new
theory has been introduced by Florentin Smarandache [17] which is known as ‘“Neutrosophic logic’. It is a logic in which
each proposition is estimated to have a degree of truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A
Neutrosophic set is a set where each element of the universe has a degree of truth, indeterminacy and falsity respectively
and which lies between [0- , 1+ ], the non-standard unit interval. Unlike in intuitionistic fuzzy sets, where the
incorporated uncertainty is dependent on the degree of belongingness and degree of non-belongingness, here the
uncertainty present, i.e. the indeterminacy factor, is independent of truth and falsity values. Neutrosophic sets are indeed
more general in nature than IFS as there are no constraints between the ‘degree of truth’, ‘degree of indeterminacy’ and
‘degree of falsity’. All these degrees can individually vary within [0- , 1+ ]. The main purpose of the paper is to
introduce and study the notion of neutrosophic b-metric spaces. In this way, we generalize both the notion of
neutrosophic metric spaces.
2. Preliminaries
Definition: 2.1
A binary operation *: [0,1] x [0,1] - [0,1] is called continuous triangular norm (t-norm) if it
satisfies the following conditions:
1. =« is associative and commutative;
2. = is continuous;
3. ax1=a for all a € [0,1];
4, If a<c and b <d with a,b,c,d € [0,1], then a*b < ¢ = d.
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Example: 2.2
Three basic t-norms are defined as follows:
(1) The minimum t-norm, a * b = min(a, b)
(2) The product t-norm,a*b =a.b
(3) The Lukasiewicz t-norm a * b = max(a + b — 1,0).
Definition: 2.3
A binary operation o: [0,1] x [0,1] — [0,1] is called continuous triangular
conorm (t-conorm) if it satisfies the following conditions:
1. o is associative and commutative;
2. o is continuous;
3. ae0=a for all a € [0,1];
4, If a<c and b <d with a,b,c,d € [0,1], then aob < cod.
Example: 2.4
Three basic t-conorms are given below:
(1) aeb =min(a+ b,1);
(2) aeb=a+ b —ab;
(3) aob =max(a,b)
3. Neutrosophic b-Metric Spaces

Definition: 3.1
A T-tuple (%, 5,0,Y,x0,b) is said to be a Neutrosophic b - Metric Space (NbMS), if X is an arbitrary

set, b =1 is a given real number, * is a continuous t-norm, o is a continuous t-conorm, =,® and Y are sets
on X% x[0,) satisfying the following conditions: For all {,n,1 € X,

@ E¢nAD+06¢n)+Y(EnA) <3,

b) 0<EC¢NAD=<L 0<0(nDH<L 0<Y({nD)<T,

(©) E¢n,0 =0;

(d) 2(¢,nA) =1, forallA>0 iff {=n;

(&) 2(,nA) =E(n{A), for all 1> 0;

® 2(6,b@A+w)=E,n ) *EM,6,u), for all A,u>0;

(9) 2(,n,.):[0,0) - [0,1] is left continuous and Ah_r)nwa({,n,/l) =1;

(h) ©(¢,n0)=1;

(i) ©,nA) =0, forallA>0 iff { =n;

(G) e, n,A) =0(n, 1), for all 1> 0;

k) O(¢,86,b(A+w) <0021 *0®,8,u), for all A,u>0;

() ©(,n,.):[0,0) - [0,1] is right continuous and Ah_r)nw@({,n,l) =0;

(m) Y(¢,n,0) = 1;

(n) Y({¢,n,A) =0, forallA >0 iff {=mn;

©) Y¢,nA =Y(n,q A, foral 1>0;

®) Y(3,8,b(A+w) <Y, D) oY(®, 8, ), for all 4,u>0;
lim _n-
N OOY(LU;/D - 0,

Here, E(¢,n,1),0((,n,A) and Y({,n,A) denote the degree of nearness, the degree of non-nearness and the
degree of neutralness between ¢ and n with respect to A respectively.
Example: 3.2

(@ Y(,n,.):[0,0) - [0,1] is right continuous and 1

Let (X,d,b) be ab-metric space and a*b = min{a,b}, a b = max{a,b} for all a,b €[0,1] and let
24,04 and Y, be fuzzy sets on X2 x [0,), defined as follows:

, a@gm @
£, = {A+d@n)’ iyA=0 0, = {A+dCm Y A>0 ond yd={ S A>0
0, if A=0 1L, if 1=0 1L, if 1=0

We check only axioms (f), (k) and (p) of definition (3.1), because verifying the other
Conditions are standard. Let ¢,n,6 € ¥ and A,u > 0. Without restraining the generality, we assume that
Ea@n D) <Eq(®,6,1) 040,14 204, 6,1) and Y4((,n,2) = Ya(n,0,1)
Thus 2 < U , a¢.mn) > a(.6) d a.m > a(.6) _
A+d(Cm) — p+d®,0)  A+d(@n) — p+d(,0) A U
ie. Ad(n,0) < ud(g,n). On the other hand
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b+ - b+ _ A

2a(6,050+ W) =50rice 2 Sormmieyans] — mpmagysane A
4(c.6) DA +d(0,0)] A +d00)

= < =

©a(8,0,b0+ 1) BDHIC) = Bt ACD Q] Tt d0e) and
__d.e b[d(¢m)+d(n,6 __d(¢n)+dn,0

Yd (f, 9, bO" + H)) - b(O+p) = b(A+p) - Ap ’

We will prove that

o S A _dGnrda8)  _ dGw 4 dGnas) _ dGn
A0S © ArdGn) T dEmrng) e x

Hence, we will obtain that
Ed((: g,b(}\, + H)) = Ed(z' 77'/1) = Ed({' TI'A) * Ed(nv 9! M)
04(3,6, b+ W) < 0,4(5,n,4) = 04(¢,7,4) © ©,4(,6,1) and
Yd((, G,b(k + H)) < Yd(q' 77'/1) = Yd({v 77'1) ° Yd(nv 9! ll)
What had to be verified . We remark that

A+ - A
A+p+d@n)+dm,6) — 1+d(,n)
S AP+ A+ Ad(,n) +pd@n) =A%+ Au+Ad(,n) + Ad(n, 0)
< ud(¢,n) =d(n,8), which is true. Also,

d@m +dm6) _ d@mn)
A+p+d@n)+dn6) ~ A+dln) , .
& Ad(Gn) +2d(M, 6) + d({,ndm,0) + (d(¢,m)" < Ad@n) + pd@n) + d(G,7)d(M, 0) + (d(¢, 7))
< Ad(M,0) < ud(C,n) and
d@n) +dm,8) _d¢mn)
A+ -2

& Ad(@Gn) +Ad(M,60) < Ad(Gn) + pd(@Gn)
< Ad(m, 8) < ud(g,n), which is true. Hence (Z,Z4, 04, Yy,*,0,b) is (standard) NbMS.
Definition: 3.3

Let b>1 be a givenreal number. A function f:R —- R will be called b-nondecreasing if A<y
implies that f( A1) < f(bu) and f is called b-nonincreasing if A < u implies that f( 1) = f(bu).
Proposition: 3.4

In a NbMS (3,5,0,Y,*,0,b), Z({,n,.):[0,0) - [0,1] is b-nondecreasing, ©({,n, 4): [0,) - [0,1] is b-
nonincreasing and Y({,n,4): [0,0) — [0,1] is b-nonincreasing for all {,n € X.
Proof :

Fix 0 <A< u, we have
E(¢,n,bpw) =E({n,b(u—A+2) = EQG,{u—A)*EQ,nA) =1xE(,n,1) = E(,n2).
Also, ©({,n,bu) = O({,n,b(u—2+2)) <O, qu—21)00((n1) =000((,n1) =0(nA2) and
Y, bw) =Y({nb(u—=A+2) <Y Lu—-D oY nA) =001 =Y nA) .
Definition: 3.5

Let (Z,E,0,Y,x0,b) be a NbMS.

(@) A sequence {{,} in T is said to be convergent if there exists { € £ such that

lim _ lim _ lim _ . -
"o oou((n,(,l) =1, "o oO(B(Zn, ,A)=0 anq "o OOY((n,(,A) =0, for all A > 0. In this case ¢ is called
the limit of the sequence {{,} and we write nh_)moog‘n =¢ or {, ~> (.

(b) A sequence {C,} in (Z,E,0,Y,%0,b) issaid to be a Cauchy sequence if for
every € € (0,1), there exists n, € N such that (¢, {A) > 1 —€, 0(,, (1) < € and
Y(¢, G, A) <€, for all myn=n, and 1> 0.
(c) The space X issaid to be complete if and only if every Cauchy sequence is
convergentand itis called compact if every sequence hasa convergent subsequence.
Definition: 3.6
Let (Z,%,0,Y,*%0,b) be a NbMS. We define an open ball B({,r,A) with centre { € £ and radiurs r,
0<r<1 A>0aBrA)={nez: E,n)>1-r0nt)<r and Y({,nA) <r}
Definition: 3.7
Let (%,E,0,Y,*0,b) be a NbDMS and A be a subset of X. A is said to be open if, foreach ¢ € %,
there is an open ball B({,r,A) contained in A.
Result: 3.8
Let (%,2,0,Y,%0,b) be a NobMS. Define 1zg9y aS: tzpy = {A © Z:{ € A iff there exists 2> 0 and
r€(0,1): B({1rA) c A}, then 77y is a topology on X, where P(Z) is the power set of Z.
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4, Main Results
Theorem: 4.1 (Neutrosophic b- Metric Banach Contraction Theorem)
Let (%,5,0,Y,%0,b) be a complete NbMS. Let T:X — X be a mapping satisfying

E(T¢,Tn, kA) = E(¢,n, ) (4.1.1)
O(T¢, Ty, kA) < O(¢,n, 1) and (4.1.2)
Y(T¢,Tn, kA) < Y(¢,n,4) (4.1.3)
for all {,n €X where 0 <k < 1. Then T has a unique fixed point.

Proof:

Let {, € X be an arbitrary element and let {¢,} be a sequence in T such that,

{n =T"({y(n € N). Then
E(Cn Qa1 k) = E(T™ G, T™ 1 §o, k) = E(T™ 4, T" 5, A) = E({p—1,Cns D)

> &(T"2 40, 7" 40, Yy,) = E(Gnmz G %) 2 E (S0, 60 jones )
Clearly, 1> Z({,, {pi1, k1) = E ((0,(1,/1/](,1_1) -1, when n - oo,
Thus "™ 26 Guen kD) = 1,
9((11’ (n+1'k/1) =0o(T" (O'THH ((Jvk/l) < G(Tn_l (O:Tn (0:/1) = @((n—p{nﬂu

<0(1"2 86,7 0, Y)) = 0(¢a-26n-1Y/j) = 0 (%060 o),
for all n and 2> 0. Clearly, 0 < ©((y, Guy1 k) < 0 ({o, 81,4/ nm1) = 0, When n - oo,
Thus nlimoo@“n' Zon kA) = 0 and
Y((n’ Cn+1s kA) =y(T" Y T Y kA < Y(Tn_l Y ™ (0#1) = Y((n—l: {n:/l)

<Y(1"2 60, T 40, ) = V(a2 Camr i) =Y (80,60 jnma),
for all n and 2> 0. Clearly, 0 <Y (¢, {nvs, k) < Y (30,01, ns) = 0 when 1 > oo,
Thus nh_)mooY(Zn, o k2) = 0.

Let a,(1) = E((n, Gy D)y Brn(D) = 0(n, Gnvr, A and v, (1) = Y(p, {ns1, 4), for all n € NU {0}, 2> 0.
Next, we show that the sequence {,} is a Cauchy sequence. If it is not, then there exists 0 < e <1 and two
sequences u(n) and v(n) such that for every n e NuU {0}, A >0, u(n) > v(n) = n,

E((u(n)’(v(n)'l) <1- €, Q(Zu(n)t(v(n)'l) > ¢ and Y((u(n)r(v(n)'l) > e and
E((u(n)—l'(v(n)—l' A) >1-¢ E((u(n)—lr(v(n): /1) >1-—c¢,
9((u(n)—1'(V(n)—1"1) < E'e((u(n)—b(v(n): /1) <€ and

Y((u(n)—l' (V(n)—l"l) < E'Y((u(n)—lt (v(n):’l) < €.

Now, 1€ = E(qum), Somy 4) = E(Q(n)—p Su(ny ’1/21,) * E(Q(n)—p fu(n)'A/Zb)
> au(n)—l(/l/zb) *(1—e),
€ < 0(Cutny Sotnyr A) < O(Cuty-1- Suty ) © O(Gutw-1, Gotmy Y/
u(n) Sv(n), u(m)-1v5um) /2p u(m)-1vSv(n) /2p
< Bu(n)—l(/l/zb) o€ and
€ < Y(Zutmy Soer A) < Y(Cuny-1 Cur o) © Y(Cuony-1r Sony Y/
u(n) Sv(n), u(m)-1v5u(n) /2p um)-15vn) /2p
< Yu(n)—l(A/Zb) o E.
Since “u(n)—1(/1/2b) -1, Bu(n)—1(’1/2b) — 0 and Yu(n)—l(A/Zb) -0 as n - oo, for every 4, therefore for n —

o, we havel—¢€ > E({u(n)t(v(n)' A) >1—-¢€6€< e(iu(n)r(v(n)’l) <eand e < Y(cu(n)!cv(n)'l) <eE€.

Clearly, this leads to a contradiction. Hence {, is a Cauchy sequence in X. Since £ is complete so there exists a
. . lim _

point 1 in X such that "o oo{n =1.

Now, E(n,Tn,4) = E(TI, Cn+1'/1/2b) * 5(<n+1' T”'A/Zb)

= E(’I' Cn+s A/Zb) * E(TZn' TUIA/Zb) = E(r/, Zn+1:/1/2b) * E((n,rl'l/Zbk)'
The case when n —» o, we have £(n,Tn,A) =11 =1.

O, 70,2 < 0 (m.Guss, Y/5,) 0 0 (Gass, Tn.A/,)

=01 Suen M) © © (TG0 0. 2/5,) < © (0 Grn Y/ y) © 0 (6015 1)
on n— o, we have 0(n,Tn,1) <0¢0 =0 and
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Y0, T ) <Y (0,6 Y)Y (Guans T Y/z,)

= Y (T’l €n+1' A/Z#) 4 Y (T(n; TT’I /1/2’“) S Y (nl (n+1’/1/2‘u_) 4 Y ((n’ 7]; }l/zﬂk)l

on n— o, we have Y(n,Tn,A) <000 =0.
By (c¢) and (h) of definition (3.1), we have, n = Tn.
For uniqueness of fixed point, let n,0 be two fixed points of the mapping T, then n =Ty and 6 =T6 and
12 8(0,6,0) = E(Tn, 76,2 2 8(n,0,/) = =(10,76,%/,,) 2 £ (n.6.%/2)

> 2E(06,Yn) 185 n> o,
Also, 0 < 0(1,8,4) = 0(Ty,TH, 1) < @(n, e,ﬂ/k) = @(Tn, 70, l/k) <0 (n. 0, l/kz)

<< @(U'G'A/kn) -1 as n— o and

0<Y(,6,0) =Y(T1,76,2) <Y(1,6,%/,) =¥(Tn,70,%/,) <Y (1,6,%/,2)
<o < Y(n,@,)‘/kn) -1 as n— .

By (d), (i) and (n) of definition (3.1), n = 6.
Corollary: 4.2

Let (%,d) be a complete metric space and T:X — X be a map which satisfies the following condition
forall {,neXand 0 <k <1:
d(T{,Tn) < kd({,7n) (4.2.1)
Then T has unique fixed point in Z.
Proof:

We consider the corresponding NbMS (%, &, ©,Y,*,0, b) where

= _ A __4¢m _ aim

\-‘({; n’ A) - Z,+d(§,71), G(Z; n’ l) l+d({.11) and Y((! n; /1) 2

(4.2.1) = (4.13)

d(Tg,Tn) < kd(S,m) , “B2 < d(g,n) (42.2)

a(Tq,Tn) < a(gmn)

kA A
Y(T¢, Tn k) <Y(,n,A)
(4.21) = (4.1.2)

d(1¢,Tn) < kd(¢,m), "B < d(g,n), From inequality (4.2.2).
Note that for a,&,c,d >0, if 2 << then —— < - It follows that,
pig d a+b d+c
a(T¢,Tn) - aig,mn)
kA+d(T¢,Tn) — A+d(,n)

Hence O(T{,Tn,kA) < 0({,n,A).
(4.2.1) = (4.1.1) from inequality (4.2.2)
k 1 kA yl

a(T¢,Tn) = agm kA+d(TE,Tn) — A+d(Cn)
Hence E(T{, Tn,A) = E((,n,A) .
In support of above theorem we furnish the following example.
Example: 4.3
Let = =1[0,1] and Z,0,Y: 22 x [0,) — [0,1] be fuzzy sets on X2 x [0, ).

A .
For all ¢,n €% and 4 € [0,00), define £ n,3) = Jeien” L 270
0, if \=0

gl . ol
@(Z,n,x)={x+|c—n|’ if A>0 T if A>0

and Y(¢,n,A) ={
1, if A=0 1, if A=0
Clearly, (Z,E,0,Y,x9,b) is a Complete Neutrosophic b-Metric Space, (CNbMS), where
a*b =min(a, ), a b =max(a,&), for all a,& € [0,1].
Let T:X —» X besuchthat T = g Then for k = %,

A 2 A A
5(TeTn3) = = = 25 = S,
FHIT - Z+053 n
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1= lg=nl
M_Ime™l_ 5 _ "3 - &=l _
G(TZ' Tn'”‘) L T W LT 0(@n.A) and
[g=l 1g—nl
A\ _ ITg-Tn| Z=n
R R e (AP

4 4
Hence T satisfies the contractive condition of theorem (4.1.1) to obtain a fixed point.
Theorem: 4.4
Let (%,5,0,Y,*0,b) is a CNbMS with * t-norm and o conorm defined as a * b = min{a,b} and a o
b = max{a, b} respectively. Also suppose that Z({,n,.) is strictly increasing, ©({m,.) is strictly decreasing and
Y(q,n,.) is strictly decreasing respectively. Let A:Z — X be a self map which satisfies the following conditions
for all {nex

E(AL AnkN) = Z(C ALA) *E(M, An,A) (4.4.2)
O(AY AN kL) < O(TALA) o OM, AN, A) (4.4.2)
Y(AL AnkA) <Y(C,ALA) o Y(M, AN A) (4.4.3)
where A > 0,0 < k < 1. Then A has a unique fixed point.

Proof :

Let {, € X be an arbitrary point. Consider a sequence (, = A{,_, of points in X. Then

E(Cns Gua1, kA) = E(AGy—1, ATy, kA) = E(Gy—1, AGy—1,A) * E(Gy, ATy, A)

= E(Cn-1, G M) * E(Cny Grr1s V),
Since Z({,m,.) isstrictly increasing function, kA < A and if
min{Z(%,—1, 4 A, (€ Gre1, N} = 2@, Gur1, A), then we reach to a contradiction
E(Cn Gna1, KA = E(C, Gy, A)- Therefore,
E(Zn' Zn+1' k7\) = E(Zn—lﬂ Zn' )\) ZAE(Uan—Zr ‘AZn—li )\))\ N N

2 & (o1 AGn-1%) * & (G2 Aln2%) = B (Guon, G ) * B (Guozs G )

- AN A

o] (T A I-{ ( A AP )
Clearly, 1 = E(T,,, (41, kA) = E ((0, (Dkn—x_l) — 1, when n — oo.
Li =
Thus i)mooa(zn, Lo, KN = 1.
NOWv G)(Zn' <n+1' k)\) = G)("qln—llﬂ(n' k)\) < G(Zn—llCAZn—l' 7\) ¢ G(ZnICAZnJ )\)

= 0(Cn-1, 00, D) © O(Cp, Tpy1, M),

since ©({,m,.) is strictly decreasing function, kA < A, by the same argument
0(C,, Cut1r kKA < O(T,, (yeq, A) isnot possible. Therefore,
E‘)(Zn, Zn+1' k}\) < Q(Zn—l' Zn' }\) j G)(CAZTL—Z' d‘lCn—p }\2\ N N

<0 (%1 Alu-1,2) 00 (Guoz Au2%) = 0 (Gao1 Grr) © 0 (Y uos )

A A
=0 (Gn-2%n-17) = 0 (%0 S0
A

Clearly, 0 < 0%y, $ue1, k1) < 0 (0, s,

kn-1

)—>0, when n - oo,
Li
Hence n l)moo 0(T,, Gur1, KV = 0.
AlSO, Y((n' Zn+1' kh) = Y(C’q(n—lﬂ "q(n' k}\) < Y(Zn—lﬂ "q(n—l: )\) ¢ Y(cn: Jl(n, )\)
=Y(Cp-1, G A) © Y(Cp, Gg1, N,
Since Y(g,m,.) is strictly decreasing function, kA < A, by the same argument
Y (@, Cug1r KA < Y(C,p, Cutqr, A) is not possible. Therefore,
Y(Zn' <n+11 k}\) < Y(Zn—ll an }\) =}\Y(°AZn—21 Cﬂ(n—l' )‘)7\ N N
<Y (G AG-17) Y (G2 AGu—2%) =Y (Gt ) © Y (G2 nm )

=Y (G2 n1g) < Y (S0, 805

Clearly, 0 < Y({,,, (i1, kKA <Y ((0, (1,%) — 0, when n — oo,
Li
Thus ;moo Y(Q,,, (yar, KA) = 0.

L?t ano\) = E((nfcn.+1' A, ﬂn(’l) = G(Zn' Z1.1+1: A) and yn(/l) = Y(cn: Tt A), for all ne NU{O},)\ > 0. Clearly,
m

A > oo
sequence. If it is not, then there exists 0 < e <1 and the sequences {u(n)},{v(n)} such that for every n e

NU{0}, A >0, u(n) >v(n) =n, E(Qumy lompr) <1 —¢€, 0(Luwmy QomyA) = € and Y(Tyeny, Loy, A) = € and
E(Zu(n)—lﬂ Zv(n)—lﬂx) >1- €, E((u(n)—lﬂ (v(n))\) >1- €,

1 1 .
a,N) =1, }\l)mooﬂn(/l) =0 and )Ll)mooyn(l) = 0. Next, we show that the sequence {C,} is a Cauchy
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O(Cutm-1 Wwm-1A) < € O(Cum)-1, oy A) < € and
Y(Cum-1 wm-12) < € Y(Gumy—1 Sy A) < €
NoW, 1= € > E(Guuy Sotmr ) 2 E(Gutm1Guonr Mg ) * E(Gutn1 G Yp)
> au(n)—l(k/zb) *(1—e),
€ < 0(Cumy Soimr ) < O(Cumr-nGutnr Map) © (Gt Goimr V)
< ﬁu(n)_l(A/Zb) o€ and
€ < Y(Qumy Sy A) < Y(Zu(n)-p Zu(n)vA/Zb) ° Y((u(n)—lf (v(n)!l/zb)

A
< yu(n)—l( /Zb) €.
Since “u(n)—l()\/Zb) -1, [”u(n)—l(}‘/Zb) - 0 and y”(")—l()\/Zb) — 0asn — oo for every A, it follows that

1—€ = E(Qumy Qo A) > 1 — €, € < 0(Lumy GomyA) < €and € < Y(Qyiny Qo A) < €

Clearly, this leads to a contradiction. Hence C, is a Cauchy sequence in X.

Since ¥ is complete so there exist n € £ such that nl;moo =1,

Assume that n # An, then there exists A > 0 such that 2(n,An,A) #1 or O(M,An,A) #= 0 and Y(m, An,A) # 0.
For this A > 0.

E(ALy,, An, kA) = E(T,, ALy, A) * E(, An, A) by contractive condition (4.4.1).

That is E(<n+115ﬂn' k}\) = E(Zn' <n+1'7\) * E(T]' d‘ln» 7\)

In limiting case as n — oo, E(n, An, kL) = E(n, An, A).

As EZ(n,An,A) = 1, the above inequality yields a contradiction to the fact that Z(,m,.) is strictly increasing.
Moreover,

O(AT,, An, kN) < 0(L,, AL, A) ¢ O(1, An,A), by contractive condition (4.4.2).

That is 9(Zn+1'5ﬂn' k)\) < G(Zn' <n+1'7\) ¢ e(ﬂ» d‘ln» 7\)

In limiting case as n — o, O(M, An, kA) < O(m, An, A).

As O(m,An,A) = 0, the above inequality yields a contradiction to the fact that ©((,n,.) is strictly decreasing.
Also, Y(AL,, An, kA) < Y (T, Aly, A) ¢ Y(, An,A), by contractive condition (4.4.3).

That is Y(Gns1, AN, kA) < Y(Cn, Gpir A © Y(, AN, Q).

In limiting case as n — o Y(n, An, kA) < Y(M, An, A).

As Y(n,An,A) = 0, the above inequality yields a contradiction to the fact that Y(¢,n,.) is strictly decreasing.
Hence, n = An.

For uniqueness, let n and 6 be two fixed points of A. So, n =An and 6 = AH.

Then Z(Mm,AnA) =1,2(60,A6,0) =1,

O, AN, A) = 0,0(8,460,)) =0 and Y(n,An,A) = 0,Y(6,A6,)) = 0, for all A > 0.

Now, 1> E(n,8,1) = E(An, A6, A) > s(n, dqn,l/k) x 5(9,049,7\/,() —1+1=1,
0<0(,0,1) = 0(AN, A, ) < @(n, AN, 7\/k) o @(9,049, 7\/k) =000=0 and

0<Y(n,6,%) = Y(An,A8,1) < Y(n,An Y/, ) 0 ¥(6,440,%/, ) =000 =0.
From (d), (i) and (n) of definition 3.1, we have n = 6.
Corollary: 4.5
Let (Z,d) be a complete metric space and T:X — X be a map which satisfies the following condition
for all {,neX and 0 <k <1:

d(T¢,Tn) < Z[d(,TS) + d(n, Tn)]. (45.1)
Then T has a unique fixed point in Z.
Proof:
We consider the corresponding NbMS (%, E,0,Y,x,0,b) where
A . agm .
=(¢,nN) = {Md(i,n) if A> 0, 0(¢,n,A) = {A+d@m) if A>0 and
0if A=0 1if A=0

agm .
Y(c.n,x)={ A0
1if A=0

Replacing A with T in inequalities (4.4.1), (4.4.2) and (4.4.3)
Now, (4.5.1) = (4.4.1). If otherwise, then from (4.4.1), for some A > 0
E(T¢, Tn, kA) <min{E({,T¢, ), E(n, Tn, M)},
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A . A A
A+2d (T¢,T7) < min {A+d({,T{)’A+d(n,Tn)}'
This implies that A + %d(T{, Tn) >A+d({,T) and A+ %d(T{, Tn) > A+ d(n,Tn)

= Ld(T{,Tn) > [, T¢) +d(n, T)] or d(T,Tn) > [d,TO) +d(n, T,
which is contradiction to (4.5.1).
Now (4.5.1) => (4.4.2)
d(T¢,Tn) <% > [d(¢, T +d(, Tn)] <= max [d(¢,TO), d(n, Tn)]
< kmax[d(( T¢),d(, Tn)]
TEID < max[d((,T¢), d(n, T
Without loss of generality, we assume that max[d({,T{),d(n,Tn)] = d({,TQ).
This implies that “Z < a(¢,79),

a(rgn) _ d1{) a(T{,Tn) d({,T{)
< <
So, KA T A and KA+d(T,Tn) — A+d({,T "

a(Tq¢, ™) d@rg)  dnTn)
Then, kA+d(TZ,Tn) s {x+d(§,rz)'x+d(n,Tn)}'
Hence, O(T{,Tn, kA) < max{0®({,T{,7),0(n, Tn,\)}
Now (4.5.1) = (4.4.3).

a(r¢, o) <5 146, T0) +d(n, To)] < 5 max [d(C,T0), G, T)
< kmax[d({,T{),d(n, Tn)]
EEIL < max[d (5, 7¢),d(n, T
Without loss of generality, we assume that max[d({,T¢),d(n,Tn)] = d({,TQ).
This implies that M <d((,TQ,

aeTn) d(iTO

> dk(}%{T ) * ai¢,ry) dm.rm)

An , nin
Then, o < max {T’T}
Hence, Y(T{,Tn, kA) < max{Y({,T{,1),Y(n, Tn,)}.
In support of theorem (4.1.2) we establish an example.
Example: 4.6

Let 2 =10,1] and E,0,Y: X2 x [0,00) — [0,1] by fuzzy sets on 2 x [0,). For all {,n €Z and A €

[0, ), define

=0l .
5¢ ) = {w i T2 ey =i S A0 g
i |f A= 1if A=0
n
A>0
Y@ = { d
1if A=0.
Clearly, (Z,%,0,Y,x0,b) is a CNbMS, where a*b =min(a,b), a¢b=max(a,b) for all a,be[0,1]. Let
T:X — % be such that T(—i Then for k—g
21 21 A
= — ) = 3 = 3 =
= (T(’ TT}, 3) %+|T(—T77| %+(|(_77|)/30 ;d%(%) '
Now, as Cne[Ol]
|( o =[5 =3 5l <3l 5 =5 (1 )
= 3130 30 = 3 30
=20 o2 <) I”" (461)
Note that |f a, b c >0,2a<b+ c then a < Max{b, c}. Otherwise 2a > b + c.
It follows that = | < |29(| or = | < |29'7

Without loss of generallty assume that { =n, then

. A A A 297 297y 297
mln{ 295, 29,7} Mzg( and max { }__

A+=" A+ 30’ 30 30
3|50
2130

1
§|(;|

21 30

29¢
30

1 A A
2 _— = ——— >
2390( M_l( nl 29(

| =
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2\
:—? >min{ A A
2\ A —-T7|’'A -T
+|T( Tn| + ¢ I'A+In ul

H(T( Tn, kA) = E((,T¢, A)ﬂ<~(n.Tn.%)-
Moreover, (T, Tn, kA) = |

sl
As it is assumed that { > n, therefore,

|5‘_”| < E(ﬁ) ’
30 | =3\ 30

(=%

(50 S
2 (1555 +2 o

3 >

2(555) 3—5
2A+W€ ﬁﬂ>x+m—Ta
IT¢—=Tnl  — ¢ —T4|
IT¢=Tnl _ _1¢-T¢I
Brirg—ry KT

O(T¢,Tn, kA) < 0(7,TL,A) o ©(n, Ty, A). Also,

1
Y(1g, Ty, ) = 1650l = 3l

3 3

Now, as {,n € [0,1]
29( 297

|Z INER NN A
3130 30_3 30

=) 2] <[]+ |””

From mequallty (4.6.2)

- 2 29¢ 29
5_”| < -max {—< _n}
30 3

30" 30)°

As it is assumed that ¢ =, therefore,
=<3 (%)
30

(=%
()

G
2\l 30 < 30
< A ¢ A
— 29
30 IT{-Tnl [¢-T¢|
|;£| s 37? ! &n = A

Y(T( Tn, kA) < Y(( TZ,A) o Y(n, Ty, A).

}

From inequality (4.6.1) |( "l < max

3

<55l )

297 2973

{_

30’

30

}.

(4.6.2)
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Hence T satisfies the contractive conditions of Theorem (4.1.3) to obtain a fixed point.
Theorem: 4.7

Let (Z,5,0,Y,%0,b) is a CNbMS with *t-norm and ¢ conorm defined as a * b = min{a, b},
a b = max{a, b}, E((mn,.) is strictly increasing, ©({,n,.) and Y({m,.) are strictly decreasing functions
respectively. Let A:X — X be a self mapping on X. If for all {n€eX 0<k< 1/2b’
A satisfies the following conditions:

E(AL, A, k) = E(, An,A) * E(n, AL D), (4.7.1)
O(AL, A, kX) < (L, An,A) 0 0(n, AL (4.7.2)
Y(AL, A, kA) < Y(, A, N) 0 Y(1, AL N). (4.7.3)
Where A > 0. Then A has a unique fixed point.

Proof:

Let {, €X be an arbitrary point such that {, = A{,_; IS a sequence in X.
E((n' (n+1ﬁk}\) = E(‘Azn—lﬁﬂzn' k)\)
= E((n—lﬁﬂ(n'}\) * E((n"’q(n—l'x)
= E(Zn—l' Zn+1'}\) * E((n' Cns 7\)
Since E((n' (n')\) = 1; E(Z‘m €n+1:k)\) 2 E((n—lv(n+1v7\)-
By using (f) of definition (3.1), we have

E G G KD = E(Gums G M) * E(Gnr Gnens M gp)-
Since Z(m,.) is strictly increasing function and k)\<7\/2b,
if min {E(Q—pfm)‘/z[,)ﬂ(fn' §n+1')\/2b)} = E((n, €n+1')\/2b) then we reach to a contradiction Z({,, (41, KA) =

E(Gw Gnsn M p )
Therefore, E({,, (ni1, kKA) = E(Zn—lv(n:}\/zb), Continuing this process, we have
Ens Gns1r k) = E (G, 60 Y (g pyngen-1):
Clearly, 1=2({,, {hi1, kA = E ((0'{1')\/(2b)"k"—1) — 1, when n - oo,

li o
Thus, n inoo:((n, {n+1, KA) = 1. Moreover,

e((n' Cn+1s k)\) = G(Uq(n—l' Aln, kl)
< e((n—l' ‘A(n' )\) ¢ G(Zn!dq(n—ll )\)
= 0(Gn-1,n+1, D) © 0(Gn, G, M.
Since 0({,, ¢, A) =0, 0(y, Cua1, KA < 0(n—1, {ne1, A). By using (k) of definition (3.1), we have

O, st k) < ©(6u-1,60 M 2p) © ©(Gusnans Mo )

Since ©({,n,.) is strictly decreasing function and kA < )\/Zb* by the same argument
0, {nyr, k) < @((n,(nﬂ,}\/Zb) is not possible.

Therefore, 0({,, (i1, kKA < G)((n_l, Cns 7‘/Zb), continuing this process, we have

O Snsr k1) < (Go0,60, Y (2 yngen-1):

Clearly, 0<0({, {nt, kD) <0 ((O’zl'x/(Zb)"k"‘l) — 0, when n — oo,

Thus, nh_rfloo@({n' Coos kA) = 0.
Moreover, Y({n, $ni1, kA) = Y(A 1, Aln, kA < Y ({1, ALy, D) 0 Y (G A1, M)
= Y((n—l: Cn+1s )\) 4 Y((n' Cns )\)-

Since Y(Zn' {n' )‘) = 01 Y((n' {n+11k}\) < Y((n—lr(n+ll}\)'
By using (p) of definition (3.1), we have

Y (G G 0 < Y (G G M) 0 Y(Gr Gnens M g )-
Since Y({,n,.) is strictly decreasing function and kA < )\/Zb’ by the same argument

Y, {pir, kD) < Y((n,(n+1,7‘/2b) is not possible.
Therefore, Y({y, {ny1, KA) < Y(Zn—lv(nr}\/Zb), continuing this process, we have

Y G0 <Y (80,60, % gpyngen-1):
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Clearly, 0<Y({y, {nan kN <Y (50,51,7\/(2 by kn_l) — 0 when n > oo.

li
Thus, n inooY(zni €n+1'k)\) =0.

Let anO‘) : E(an (n+1' 7\) ' ﬁn(ﬂ-) = 9((nv<n+1')\) and Yn(ﬂ') = Y(Zn: (n+1!)\) fOf a" ne NU{O} and )\ > 0.

Clearly, xlinooa"@) =1, lznoo B,(A) =0 and )\linooyn(/l) = 0. Next, we show that the sequence {{,} is a

Cauchy sequence.

If it is not then there exists 0 < e <1 and the sequences {u(n)},{v(n)} such that for every
n € NU{0}, A >0, u(n) > v(n) =n,

E((u(n):(v(n)r}\) <1-—g¢, Q(Zu(n)'zv(n)vk) > ¢ and Y(zu(n)'zv(n)’)\) > ¢ and

E(Zu(n)—lﬂ Zv(n)—lﬂk) >1- €, E((u(n)—lﬂ Zv(n):x) >1- €,

E')(Zu(n)—li Zv(n)—l')‘) <e§€ G)(Zu(n)—lﬂ Zv(n): 7\) <eand

Y(Zu(n)—l' Zv(n)—l')\) < G'Y(Zu(n)—pzv(n):}\) < E.

Now, 1 —€ = E(Qutm) Qonyr ) 2 E(Zu(n)—l' St/ zb) * E(Zu(n)—v S/ Zb)
2 au(n)—l()\/zb) * (1 —e),
€ < 0(Qumy Sy M) < @(Zu(n)—l. Zu(n)v)\/zb) 0 @(Zu(n)—p Zv(n),)‘/Zb)
< 5u(n)—1(7‘/2b) o€ and
€ < Y(Qumy Gomp A) < Y(Cu(n)_p Suny )\/zb) ¢ Y(Zu(n)—lr (v(n)'x/zb)
< rum-1(V2p) o€
Since “u(n)—l()\/Zb) -1, ﬁu(n)—1(7‘/2b) -0 and Vu(n)—l(x/Zb) — 0 for every 2, it follows that

1—€> E(Zu(n)'Zv(n)'A) >1-—¢€ €< G(Zu(n):Zv(n)v)\) <eand € < Y((u(n)izv(n)xk) <eEe.

Clearly, this leads to a contradiction. Hence, ¢, is a Cauchy sequence in ZX.

Since ¥ is complete so there exists n € £ such that nlinoo =1

Assume that n # An, then there exists A > 0 such that Z(n,An,A) =1 or O(m,An,A) =0 and Y(n, An, L) #
0. For this A > 0,

E(ATL,, An, kX)) = E(T,, An,A) * E(m, AL, A), by inequality (4.7.1).

That is E(Q4q, AN, kA) = E(G,,, AN, A) * E(M, ALy, A).

In limiting case asn — oo, E(1, An, kA) = E(m, An,A) * E(M, An,A) = E(m, An, A).

As E(m,An,A) = 1, the above inequality yields a contradiction to the fact that Z(g,m,.) is strictly increasing.
Moreover, O(AL,, An, kA) < 0(L,, An,A) ¢ O(m, AL, A), by inequality (4.7..2).

That is (41, AN, kA) < O(Ly, AN A) © O(1, ALy, A).

In limiting case asn — oo, O(M, AN, kA) < O(1, An,A) ¢ O(M, AN, A) = O(m, An, A).

As O(n,An,A) = 0, the above inequality yields a contradiction to the fact that ©(¢,n,.) is strictly decreasing.
Moreover,Y (AT, An, kA) < Y(Q,, AN, A) ¢ Y(m, AL, A), by inequality (4.7.3).

That is Y (41, AN kA) < Y(G,, AN A) 0 Y(M, ALy, A).

In limiting case asn — oo, Y(1, An, kA) < Y(n, An,A) ¢ Y(M, AN, A) = Y(, AN, A).

As Y(n,An,A) # 0, the above inequality yields a contradiction to the fact that Y({,n,.) is strictly decreasing.
Hence n = An.

For uniqueness, let n,0 be two fixed points of A. So, n = An and 6 = A6.

Then E(n, An,A) = 1,E(0, A0, kX)) =1, (1, An,A) = 0,0(0,A0,kA) = 0 and

Y(n,An,A) = 0,Y(6,A0,kA\) = 0.

Now, 1> E(n,0,) = E(An, A8, 1) = &(n,A0,%/, ) + 5(6, 40,/ )
=2(n.0.y) <2(6.0y) = 2(n.0.%/y) = 2(an 46,1/,
>E (n,c/lé),l/kz) * E(Q,o‘ln,}‘/kz) > > E(n,@,}\/kn> —>1 as n-o oo
0<0(,6,%) = 0(AN, A6, < 0(n,A8,%/,) 0 0(6, 40,7/, )
- o(103,) - 0(0m3y) - o(n.0y) - o(an 0.3y
<0(nA8,%,.)°0(6,4n%,.) < <0(n,6,%n) 0 as n- oo and
0 < Y(, 0,1 = Y(An, A0,1) < Y(n,cﬂa,l/k) o Y(a,cﬂn,l/k)

A
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=¥(n6.Yy) e Y(0n Yy ) = Y(n.0.) = ¥(n, 40,7/, )

< Y(n,a‘l@,)‘/kz) OY(Q,CAT],)‘/kZ) <. < Y(n, Q,A/kn) -0 as n - .
Now from (d), (i) and (n) of definition (3.1), we have n =26.
Corollary: 4.8
Let (%,d) be a complete metric space and A:X — X be a map which satisfies the following condition
for all {neX and 0 <k <1:
d(AG, AN) < Z[d(G An) +d(n, AY)] (4.8.1)
Then A has unique fixed point in Z.
Theorem: 4.9
Let (Z,5,0,Y,%0,b) be a CFOMS. Let T:X —> X be amapping on Z. If for {nn € X and A > 0, any one
of the following condition is satisfied:
(M) E@TC T, kA) = E(,n,A) for 0<k <1 and * is any continuous t-norm;
(i) 2(T¢, T, kD) = E(G,TLA) * E(m, Tn,A) ,for 0 <k <1, A>0, a*b =min{a, b}, for
all a,b €[0,1] and Z({,n,.) is strictly increasing function;
(iii) 2T, T, kA) = Z((,Tn,A) *EM,TLA) for 0 <k < 1/2b’ A>0, ax*b=min{a,b}
for all a,b €[0,1] and Z({m,.) is strictly increasing function;
Then T has a unique fixed point in X.
Proof: (i), (ii) and (iii) are respectively special cases of Theorem (4.1.1), (4.1.2) and (4.2.1)
Conclusion:
In this paper, we have proved results on Complete Neutrosophic b-Metric Space.

References:

1. Amini-Harandi A. Metric-like spaces, partial metric spaces and fixed points, Fixed Point
Theory and Applications,2012, article 204.

2. Alghamdi MA, Hussain N, Salimi P. Fixed point and coupled fixed point theorems on b-
metric-like spaces, Journal of Inequalities and Applications,2013, article 402

3. Atanassov.K, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20 (1986), 87-96.

4. Atanassov. K, Stoeva. S, Intuitionistic L fuzzy sets, Cybernetics and System research,
2(1984),539-540.

5. Bakhtin, I.A. The contraction mapping principle in almost metric spaces, Funct. Anal., 30,
1989, 26- 37.

6. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ, Ostra., 1,1993, 5- 11.

7. Dosenovic. T, Javaheri. A, Sedghi. S, Shobe. N, Coupled fixed point theorem in b-fuzzy
metric spaces, 47(1), 2017, 77-88.

8. George. A, Veeramani. P, On some result in fuzzy metric spaces, Fuzzy Sets and Systems,
64, 1994, 395-399.

9. Jeyaraman. M, Poovaragavan. D, Fixed point theorems in generalized b-fuzzy metric spaces
for proximal contraction, Advances in Mathematics Scientific Journal, 8(3), 2019, 43-47.

10. Kramosil. I, Michalek. J, Fuzzy metric and statistical metric spaces, Kybernetica, 11,
1975, 326 - 334.

11. Matthews SG. Partial metric topology, Annals of the New York Academy of Sciences:
General Topology and Applications, 1994;728:183-197.

12. Parvaneh V, Roshan JR, Radenovic S, Existence of tripled coincidence point in
ordered b-metric spaces and application to a system of integral equations, Fixed Point
Theory and Applications, 2013, article 130.

13. Roshan JR, Parvaneh V, Altun I, Some coincidence point results in ordered b-metric
spaces and applications in a system of integral equations, Applied Mathematics and
Computation, 2014; 226:725-737.

14. Sedghi. S, Shobe. N, Common fixed point Theorem in b-fuzzy metric space, Nonlinear
Functional Analysis and Applications, 17(3), 2012, 349 - 359.

15. Sedghi. S, Shobe. N, Common fixed point Theorem for R-Weakly commuting Maps in b-
fuzzy Metric Space, Nonlinear Functional Analysis and Applications, 19(2), 2014, 285-295.

16. Smarandache, F., A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability,Set and Logic.
Rehoboth: American Research Press (1999).

17. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic; ProQuest Information and Learn- ing:
Ann Arbor, MI, USA, 1998;.

1341



JOURNAL OF ALGEBRAIC STATISTICS
Volume 13, No. 3, 2022, p. 1330-1342
https://publishoa.com

ISSN: 1309-3452

18. Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter J Pure Appl Math.2005,
Vol 24, 287- 297.

19. Smarandache,F. Neutrosophic Fixed point theorems in Cone metric spaces, Neutrosophic Sets and
Systems,2020, Vol 31, 250-265.

20. Simsek N, Kirisci M, Fixed Point Theorems in Neutrosophic Metric Spaces, Sigma J Eng and Nat Sci. 2019, Vol
10(2),221-230.

21. Sowndrarajan. S, Jeyaraman. M., Fixed Point theorems in neutrosophic metric spaces, Neutrosophic Setsand
Systems, Volume 36, 251-268, 2020.

22. Shukla S. Partial b-metric spaces and fixed point theorems, Mediterranean Journal of
Mathematics, 2013 .

23. Vinoba. V, Jeyaraman. M, Results on fixed point theorems in generalized fuzzy metric
spaces, Malaya Journal of Mathemaik, S(1), 2019, 167-170.

24. Zadeh. L. A, Fuzzy Sets, Inform and Control, 8, 1965, 338-358.

1342



