Distinct-Congruent spectrum of graphs

T.Rajasulochana ${ }^{1}$ \& Dr.M.Kamaraj ${ }^{2}$
${ }^{1}$ Assistant Professor,Department of Mathematics,SFR College For Women,Sivakasi. Mail id: trajasulochana136@gmail.com
${ }^{2}$ Head\&Associate Professor,Department of Mathematics,Government arts and science collegeSivakasi. Mail id: kamarajm17366@gmail.com

Abstract

Let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$.A function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{A}^{*}$ is called a labeling of G . Any labeling induces a map $\mathrm{f}^{+}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum f(u, v)=$ distinct, where $u, v \in \mathrm{E}(\mathrm{G})$.In this paper, weexamine,theDC-magic spectra of class of graphs such as cycle,star,path, $\mathrm{k}_{1}+\mathrm{P}_{3}, \mathrm{C}_{4} @ \mathrm{~S}_{\mathrm{n}}, \mathrm{C}_{6} @ \mathrm{~S}_{\mathrm{n}}, \mathrm{C}_{10} @ \mathrm{~S}_{\mathrm{n}}, \mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}$, where n is odd.The conjecture that the even cycle $\mathrm{C}_{2 \mathrm{n}} @ \mathrm{~S}_{\mathrm{n}}$ whose distinct magic spectrum is Z_{n}.

Keywords distinct congruent, DC graph, spectrum,

1.Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph, without multiple edges or loops. For any abelian group A (written additively) .Let $A^{*}=A-\{0\}$.A function $f: E(G) \rightarrow A^{*}$ is called a labeling of G. Any labeling induces a map $f^{+}: V(G) \rightarrow A$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum f(u, v)$ where $u, v \in E(G)$.If there exists a labeling f which induces a distinct label c on $\mathrm{V}(\mathrm{G})$, we say that f is an spectrum of distinct magic labeling and that G is an distinct congruence magic graph.We denote by Z_{n} the group of integers $(\bmod n)$.In this paper , we are interested in determining for which values of $k \geq 3$ a graph is DC-magic. The set $\{\mathrm{k}$: G is Z_{n}-magic, $\mathrm{n} \geq 3$ \}is called the Distinct-Congruent spectrum of a graph G and is denoted by DC (G).In this paper,weexamine,the DC-magic spectra of class of graphs.

2.Definition

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph, without multiple edges or loops. For any abelian group A (written additively) .Let $A^{*}=A-\{0\} . A$ function $f: E(G) \rightarrow A^{*}$ is called a labeling of G. Any labeling induces a map $f^{+}: V(G) \rightarrow A$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum f(u, v)$ where $u, v \in \mathrm{E}(\mathrm{G})$.If there exists a labeling f which induces a distinct label c on $\mathrm{V}(\mathrm{G})$, we say that f is an spectrum of distinct magic labeling and that G is an distinct-congruence magic graph.

In the first example the distinct congruence magic spectrum is Z_{3} where as in the second $\mathrm{DC}[\mathrm{G}]=\mathrm{Z}_{7}$

3.Some observations

Theorem 3.1

The odd cycle of order n whose distinct congruence magic spectrum is Z_{n} for all $n \geq 3$

Proof

Claim The cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n}$ is odd has $\mathrm{DC} \mathrm{Z}_{\mathrm{n}}$

Construction

Label all the edges by $1,2, \ldots . n$ clockwise simultaneously. The sum at each vertex is distinct,they are $0,1,2, \ldots n-$ 1.Therefore $\mathrm{DC}\left[\mathrm{C}_{\mathrm{n}}\right]=\mathrm{Z}_{\mathrm{n}}$

Verification

Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$
$\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} / 1 \leq i \leq \mathrm{n}\right\}, \mathrm{v}_{\mathrm{i}+1}=\mathrm{v}_{1}$
Define f on $\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{i}, 1 \leq i \leq \mathrm{n}-1$, then the induced vertex labeling f^{+}on $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)$ by
$\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)(\bmod \mathrm{n})$
$=\mathrm{i}+\mathrm{i}-1(\bmod \mathrm{n})$
$=2 \mathrm{i}-1(\bmod \mathrm{n})$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1397-1404
https://publishoa.com
ISSN: 1309-3452

Therefore $\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1(\bmod \mathrm{n})$ for all $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)$

Theorem 3.2

The star graph whose distinct congruence magic spectrum is Z_{n} for all $\mathrm{n} \geq 3$

Proof

ClaimThe star $\mathrm{S}_{\mathrm{n}}, \mathrm{n}$ is odd has $\mathrm{DC} \mathrm{Z}_{\mathrm{n}}$

Construction

Label the pendant edges by $1,2, \ldots \ldots . n-1$, The sum at each vertex is corresponding to the edges $1,2, \ldots . . n-1$ respectively.Thecentre vertex whose sum is zero

Verification

Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$
$\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{n}} \mathrm{V}_{\mathrm{i}} / 1 \leq i \leq \mathrm{n}-1\right\}$
Define f on $\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq i \leq \mathrm{n}-1$, then the induced vertex labeling f^{+}on $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)$ by
$\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq i \leq \mathrm{n}-1 ; \mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{n}}\right)=\sum_{i=1}^{n-1} f\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{i}}\right)=1+2+\ldots \ldots+\mathrm{n}-1$

$$
\begin{aligned}
& =\frac{(n-1) n}{2}(\bmod n) \\
& \equiv 0(\bmod n)
\end{aligned}
$$

Theorem 3.3

The path graph whose distinct congruence magic spectrum is Z_{n} for all $n \geq 3, n$ is odd.

Proof

ClaimThe path $\mathrm{P}_{\mathrm{n}}, \mathrm{n}$ is odd has $\mathrm{DC} \mathrm{Z}_{\mathrm{n}}$

Construction

Label all the edges of path by $1,2,3, \ldots . . n$,the sum at each vertex is distinct,such as $0,1,2,3, \ldots . . n-1$. Therefore $D C\left[P_{n}\right]=Z_{n}$

Verification

$$
\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{i}, 1 \leq i \leq n-1 .
$$

The sum at each vertex is $f^{+}\left(v_{1}\right)=1, f^{+}\left(v_{i}\right)=f\left(v_{i}, v_{i+1}\right)+f\left(v_{i-1}, v_{i}\right)$

$$
\begin{aligned}
& =\mathrm{i}+\mathrm{i}-1 \\
& =2 \mathrm{i}-1,(\bmod \mathrm{n}) \quad 1 \leq i \leq n-1 \\
\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{n}}\right) & =\mathrm{n}-1
\end{aligned}
$$

Theorem 3.4

The cycle attached with star graph that is $\mathrm{DC}\left(\mathrm{C}_{4} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd

Proof

Claim The graph $\mathrm{C}_{4} @ \mathrm{~S}_{\mathrm{n}}$ has distinct magic spectrum.

Construction

Label the cycle edges by $1, \mathrm{n}, 2, \mathrm{n}-1$ and star edges by $3,4,5, \ldots . . \mathrm{n}-2$ in the clockwise direction.

Verification

$\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1397-1404
https://publishoa.com
ISSN: 1309-3452
$\mathrm{E}(\mathrm{G})=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right),\left(\mathrm{v}_{4}, \mathrm{v}_{\mathrm{i}}\right) /, 5 \leq i \leq n\right\}$
Define f on $E(G)$ by $f\left(v_{1}, v_{2}\right)=1$;
$\mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=\mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)=2$;
$\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)=\mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i} ; 5 \leq i \leq n$
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)=1+\mathrm{n}-1=\mathrm{n} \equiv 0(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=1+\mathrm{n}=\mathrm{n} \equiv 1(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=\mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)=\mathrm{n}+2 \equiv 2(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=\mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)+\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)+\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{\mathrm{i}}\right)$
$=2+n-1+3+4+\ldots . n-2=2+3+4+\ldots . n-1+n-2$

$$
\begin{aligned}
& =1+2+3+4+\ldots . . n-2+n-2 \\
& =(n-2(n-1) / 2)+n-2
\end{aligned}
$$

$=\left(n^{2}-3 n+2 / 2\right)+n-2$
$\equiv 1+n-2(\bmod n)$
$\equiv n-1(\bmod n)$
$\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-2,5 \leq i \leq \mathrm{n}$
Therefore the sum at each vertex is distinct. Therefore $\mathrm{DC}\left(\mathrm{C}_{4} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd.

Theorem 3.5

The cycle attached with star graph that is $\mathrm{DC}\left(\mathrm{C}_{6} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd

Proof

ClaimThe graph $\mathrm{C}_{6} @ \mathrm{~S}_{\mathrm{n}}$ has distinct magic spectrum.

Construction

Label the cycle edges by $1, n-2,2, n-1, n, n-3$ and star edges by $3,4,5, \ldots . n-4$ in the clockwise direction.

Verification

$V(G)=\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right),\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right),\left(\mathrm{v}_{5}, \mathrm{v}_{\mathrm{n}}\right),\left(\mathrm{v}_{5}, \mathrm{v}_{\mathrm{i}}\right) /, 6 \leq i \leq n-1\right\}$
$\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=1 ; \mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=\mathrm{n}-2 ; \mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)=2 ;$
$\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right)=\mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{5}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-3 ; 5 \leq i \leq n-1 ;$
$\mathrm{f}\left(\mathrm{v}_{5}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right)=\mathrm{n}-3$
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right)=1+\mathrm{n}-3 \equiv \mathrm{n}-2((\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=1+\mathrm{n}-2 \equiv n-1(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=\mathrm{f}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)=\mathrm{n}-2+2 \equiv 0(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=\mathrm{f}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)+\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right)=2+\mathrm{n}-1+\equiv \mathrm{n}+1 \equiv 1(\bmod \mathrm{n})$
$\mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=\mathrm{f}\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right)+\mathrm{f}\left(\mathrm{v}_{5}, \mathrm{v}_{13}\right)+\mathrm{f}\left(\mathrm{v}_{5}, \mathrm{v}_{\mathrm{i}}\right)$
$=n-1+n+i-3=n-1+n+3+4+5+\ldots \ldots . n-4$
$=3+4+5+\ldots \ldots . n-4+n-1+n$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1397-1404
https://publishoa.com
ISSN: 1309-3452

$$
\begin{aligned}
& =((n-4)(n-3) / 2)-3+n-1+n \\
= & \left(\left(n^{2}-7 n+12\right) / 2\right)-3+n-1+n
\end{aligned}
$$

$\equiv 6-3-1(\bmod n) \equiv 2(\bmod n)$
$\mathrm{f}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-3,6 \leq i \leq \mathrm{n}-1$.
Therefore the sum at each vertex is distinct. Therefore $\mathrm{DC}\left(\mathrm{C}_{6} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd.

Theorem 3.6

$\mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}$ graph whose distinct magic spectrum is Z_{n}

Proof

Let C_{n} be the Cycle graph.
Where $\mathrm{n}=12$
To prove that $\mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}$ graph has magic spectrum.
Next, let us take $n=12$, we get C_{12} graph.
$\mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}$ is a distinct congruence magic graph.
Let the integer set be $\mathrm{Z}_{22}=\{0,1,2,3,4,5, \ldots . \ldots .21\}$

Construction:-

Since by using the definition of labeling, we label the edges by $1,2,3,4,5, \ldots .21$ from Z_{22}

Verification:-

$f\left(v_{1} v_{2}\right)=3, f\left(v_{2} v_{3}\right)=18, f\left(v_{3} v_{4}\right)=4, f\left(v_{4} v_{5}\right)=19, f\left(v_{5} v_{6}\right)=5, f\left(v_{6} v_{7}\right)=20$,
$f\left(\mathrm{v}_{7} \mathrm{v}_{8}\right)=21, \mathrm{f}\left(\mathrm{v}_{8} \mathrm{v}_{9}\right)=15, \mathrm{f}\left(\mathrm{v}_{9} \mathrm{v}_{10}\right)=1, \mathrm{f}\left(\mathrm{v}_{10} \mathrm{v}_{11}\right)=16, \mathrm{f}\left(\mathrm{v}_{11} \mathrm{v}_{12}\right)=2, \mathrm{f}\left(\mathrm{v}_{12} \mathrm{v}_{1}\right)=17$,
$f\left(v_{7} v_{13}\right)=6, f\left(v_{7} v_{14}\right)=7, f\left(v_{7} v_{15}\right)=8, f\left(v_{7} v_{16}\right)=9, f\left(v_{7} v_{17}\right)=10, f\left(v_{7} v_{18}\right)=11$,
$\mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{19}\right)=12, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{20}\right)=13, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{21}\right)=14$
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=20, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=21, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=22, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=23$,
$\mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=24, \mathrm{f}^{+}\left(\mathrm{v}_{6}\right)=25, \mathrm{f}^{+}\left(\mathrm{v}_{7}\right)=131, \mathrm{f}^{+}\left(\mathrm{v}_{8}\right)=36$
$\mathrm{f}^{+}\left(\mathrm{v}_{9}\right)=16, \mathrm{f}^{+}\left(\mathrm{v}_{10}\right)=17, \mathrm{f}^{+}\left(\mathrm{v}_{11}\right)=18, \mathrm{f}^{+}\left(\mathrm{v}_{12}\right)=19$
$\mathrm{f}^{+}\left(\mathrm{v}_{13}\right)=6, \mathrm{f}^{+}\left(\mathrm{v}_{14}\right)=7, \mathrm{f}^{+}\left(\mathrm{v}_{15}\right)=8, \mathrm{f}^{+}\left(\mathrm{v}_{16}\right)=9$
$\mathrm{f}^{+}\left(\mathrm{v}_{17}\right)=10, \mathrm{f}^{+}\left(\mathrm{v}_{18}\right)=11, \mathrm{f}^{+}\left(\mathrm{v}_{18}\right)=12, \mathrm{f}^{+}\left(\mathrm{v}_{20}\right)=13$
$\mathrm{f}^{+}\left(\mathrm{v}_{21}\right)=14$,
Therefore all are distinct

Congruency:-

$20 \equiv \underline{\mathbf{2 0}}(\bmod 21)$
$21 \equiv \underline{\mathbf{0}}(\bmod 21)$
$22 \equiv \underline{1}(\bmod 21)$
$23 \equiv \underline{\mathbf{2}}(\bmod 21)$
$24 \equiv \underline{\mathbf{3}}(\bmod 21)$
$25 \equiv \underline{4}(\bmod 21)$
$131 \equiv \underline{\mathbf{5}}(\bmod 21)$
$36 \equiv \underline{\mathbf{1 5}}(\bmod 21)$
$16 \equiv \underline{\mathbf{1 6}}(\bmod 21)$
$17 \equiv \underline{\mathbf{1 7}}(\bmod 21)$
$18 \equiv \underline{\mathbf{1 8}}(\bmod 21)$
$19 \equiv \underline{\mathbf{1 9}}(\bmod 21)$
$6 \equiv \underline{\mathbf{6}}(\bmod 21)$
$7 \equiv \underline{\mathbf{7}}(\bmod 21)$
$8 \equiv \underline{\mathbf{8}}(\bmod 21)$
$9 \equiv \underline{\mathbf{9}}(\bmod 21)$
$10 \equiv \underline{\mathbf{1 0}}(\bmod 21)$
$11 \equiv \underline{\mathbf{1 1}}(\bmod 21)$
$12 \equiv \underline{\mathbf{1 2}}(\bmod 21)$
$13 \equiv \underline{\mathbf{1 3}}(\bmod 21)$
$14 \equiv \underline{\mathbf{1 4}}(\bmod 21)$
Therefore the sum at each vertex is distinct. Therefore $\mathrm{DC}\left(\mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd.

Theorem 3.7

$\mathrm{C}_{10} @ \mathrm{~S}_{\mathrm{n}}$ graph whose distinct magic spectrum is Z_{n}

Proof

Let C_{n} be the Cycle graph.
Where $\mathrm{n}=10$
To prove that $\mathrm{C}_{10} @ \mathrm{~S}_{\mathrm{n}}$ graph has magic spectrum.
Next, let us take $n=10$, we get C_{10} graph.
$\mathrm{C}_{2 \mathrm{n}} @ \mathrm{~S}_{\mathrm{n}}$ is a distinct congruence magic graph.
Let the integer set be $\mathrm{Z}_{18}=\{0,1,2,3,4,5, \ldots \ldots . .17\}$

Construction:-

Since by using the definition of labeling, we label the edges by $1,2,3,4,5, \ldots 17$ from Z_{18}

Verification:-

$f\left(v_{1} v_{2}\right)=14, f\left(v_{2} v_{3}\right)=3, f\left(v_{3} v_{4}\right)=15, f\left(v_{4} v_{5}\right)=4, f\left(v_{5} v_{6}\right)=16, f\left(v_{6} v_{7}\right)=17$,
$\mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{8}\right)=12, \mathrm{f}\left(\mathrm{v}_{8} \mathrm{v}_{9}\right)=1, \mathrm{f}\left(\mathrm{v}_{9} \mathrm{v}_{10}\right)=13, \mathrm{f}\left(\mathrm{v}_{10} \mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{~V}_{11}\right)=5, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{12}\right)=6$,
$\mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{13}\right)=7, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{14}\right)=8, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{15}\right)=9, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{16}\right)=10, \mathrm{f}\left(\mathrm{v}_{7} \mathrm{v}_{17}\right)=11$,
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=16, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=17, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=18, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=19$,
$\mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=20, \mathrm{f}^{+}\left(\mathrm{v}_{6}\right)=89, \mathrm{f}^{+}\left(\mathrm{v}_{7}\right)=29, \mathrm{f}^{+}\left(\mathrm{v}_{8}\right)=13$
$\mathrm{f}^{+}\left(\mathrm{v}_{9}\right)=14, \mathrm{f}^{+}\left(\mathrm{v}_{10}\right)=15, \mathrm{f}^{+}\left(\mathrm{v}_{11}\right)=5, \mathrm{f}^{+}\left(\mathrm{v}_{12}\right)=6$
$\mathrm{f}^{+}\left(\mathrm{v}_{13}\right)=7, \mathrm{f}^{+}\left(\mathrm{v}_{14}\right)=8, \mathrm{f}^{+}\left(\mathrm{v}_{15}\right)=9, \mathrm{f}^{+}\left(\mathrm{v}_{16}\right)=10$

Volume 13, No. 3, 2022, p. 1397-1404
https://publishoa.com
ISSN: 1309-3452
$\mathrm{f}^{+}\left(\mathrm{v}_{17}\right)=11$
Therefore all are distinct

Congruency:-

$16 \equiv \underline{\mathbf{1 6}}(\bmod 17)$
$17 \equiv \mathbf{0}(\bmod 17)$
$18 \equiv \underline{\mathbf{1}}(\bmod 17)$
$19 \equiv \underline{\mathbf{2}}(\bmod 17)$
$20 \equiv \underline{\mathbf{3}}(\bmod 17)$
$89 \equiv \underline{4}(\bmod 17)$
$29 \equiv \underline{\mathbf{1 2}}(\bmod 17)$
$13 \equiv \underline{\mathbf{1 3}}(\bmod 17)$
$14 \equiv \underline{\mathbf{1 4}}(\bmod 17)$
$15 \equiv \underline{15}(\bmod 17)$
$5 \equiv \underline{\mathbf{5}}(\bmod 17)$
$6 \equiv \underline{\mathbf{6}}(\bmod 17)$
$7 \equiv \underline{\mathbf{7}}(\bmod 17)$
$8 \equiv \underline{\mathbf{8}}(\bmod 17)$
$9 \equiv \mathbf{9}(\bmod 17)$
$10 \equiv \underline{\mathbf{1 0}}(\bmod 17)$
$11 \equiv \underline{\mathbf{1 1}}(\bmod 17)$
Therefore the sum at each vertex is distinct. Therefore $\mathrm{DC}\left(\mathrm{C}_{12} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd.
Next, LetC ${ }_{\mathbf{n}}$ be the Cycle graph.
Where $\mathrm{n}=8$
To prove that $\mathrm{C}_{8} @ \mathrm{~S}_{\mathrm{n}}$ graph has magic spectrum.
Next, let us take $n=8$, we get C_{8} graph.
$\mathrm{C}_{8} @ \mathrm{~S}_{\mathrm{n}}$ is a distinct congruence magic graph.
Let the integer set be $Z_{14}=\{0,1,2,3,4,5, \ldots \ldots .13\}$

Construction:-

Since by using the definition of labeling, we label the edges by $1,2,3,4,5, \ldots 13$ from Z_{14}

Verification:-

$\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=2, \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=11, \mathrm{f}\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=3, \mathrm{f}\left(\mathrm{v}_{4} \mathrm{v}_{5}\right)=12, \mathrm{f}\left(\mathrm{v}_{5} \mathrm{v}_{6}\right)=13, \mathrm{f}\left(\mathrm{v}_{6} \mathrm{v}_{7}\right)=9$,
$f\left(v_{7} v_{8}\right)=1, f\left(v_{8} v_{1}\right)=10, f\left(v_{5} v_{9}\right)=4, f\left(v_{5} v_{10}\right)=5, f\left(v_{5} v_{11}\right)=6$,
$f\left(\mathrm{v}_{5} \mathrm{v}_{12}\right)=7, \mathrm{f}\left(\mathrm{v}_{5} \mathrm{v}_{13}\right)=8$
$\mathrm{f}^{+}\left(\mathrm{v}_{1}\right)=12, \mathrm{f}^{+}\left(\mathrm{v}_{2}\right)=13, \mathrm{f}^{+}\left(\mathrm{v}_{3}\right)=14, \mathrm{f}^{+}\left(\mathrm{v}_{4}\right)=15$,
$\mathrm{f}^{+}\left(\mathrm{v}_{5}\right)=55, \mathrm{f}^{+}\left(\mathrm{v}_{6}\right)=22, \mathrm{f}^{+}\left(\mathrm{v}_{7}\right)=10, \mathrm{f}^{+}\left(\mathrm{v}_{8}\right)=11$

JOURNAL OF ALGEBRAIC STATISTICS

Volume 13, No. 3, 2022, p. 1397-1404
https://publishoa.com
ISSN: 1309-3452
$\mathrm{f}^{+}\left(\mathrm{v}_{9}\right)=4, \mathrm{f}^{+}\left(\mathrm{v}_{10}\right)=5, \mathrm{f}^{+}\left(\mathrm{v}_{11}\right)=6, \mathrm{f}^{+}\left(\mathrm{v}_{12}\right)=7$
$\mathrm{f}^{+}\left(\mathrm{v}_{13}\right)=8$
Therefore all are distinct

Congruency:-

$12 \equiv \underline{\mathbf{1 2}}(\bmod 13)$
$13 \equiv \underline{\mathbf{0}}(\bmod 13)$
$14 \equiv \underline{\mathbf{1}}(\bmod 13)$
$15 \equiv \underline{\mathbf{2}}(\bmod 13)$
$55 \equiv \underline{\mathbf{3}}(\bmod 13)$
$22 \equiv \underline{9}(\bmod 13)$
$10 \equiv \underline{10}(\bmod 13)$
$11 \equiv \underline{\mathbf{1 1}}(\bmod 13)$
$4 \equiv \underline{4}(\bmod 13)$
$5 \equiv \underline{\mathbf{5}}(\bmod 13)$
$6 \equiv \underline{\mathbf{6}}(\bmod 13)$
$7 \equiv \underline{\mathbf{7}}(\bmod 13)$
$8 \equiv \underline{\mathbf{8}}(\bmod 13)$
Therefore the sum at each vertex is distinct. Therefore $\mathrm{DC}\left(\mathrm{C}_{8} @ \mathrm{~S}_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}}$ where n is odd.

Theorem 3.8

The conjecture that the even cycle $\mathrm{C}_{2 \mathrm{n}} @ \mathrm{~S}_{\mathrm{n}}$ whose distinct magic spectrum is Z_{n}.

Conclusion

The graphs whose distinct magic spectrum is Z_{n}. More general graphs like stars ,cycles,paths,etc., are also discussed.Main applications of this labeling is network theory, coding theory, etc. The conjecture that the even cycle $\mathrm{C}_{2 \mathrm{n}}$ attached with stars whose distinct magic spectrum is Z_{n}.

REFERENCES

[1] A.Ahmed, A. Q.Baig and M.Imran, On super edge-magicness of graphs,Utilitas Math., to appear.
[2] E.T.Baskoro and A.A.G.Ngurah, On super edge-magic total labelings, Bull. Inst. Combin. Appil., 37 (2003), 82-87.
3] E.T.Baskoro, I.W.Sudarsana and Y.M.Cholily, How to construct new super edge-magic graphs from some old ones, J. Indones. Math. Soc. (MIHIM), 11:2 (2005), 155-162.
[4] M.Bǎca, Y.Lin and F.A.Muntaner-Batle, Super edge-antimagiclabelings of the path-like trees, Utilitas Math., 73 (2007), 117-128.
[5] M.Bacca and M.Miller, Super Edge-Antimagic Graphs, Brown Walker Press, Boca Raton, Florida USA, (2008).
[6] H.Enomoto, A.S.Llado, T.Nakamigawa and G.Ringle, Super edge-magic graphs, SUT J. Math., 34 (1980), 105-109.
[7] R.M.Figueroa-Centeno, R.Ichishima, and F.A.Muntaner-Batle, The place of super edgemagiclabeling among other classes of labeling, Discrete Math., 231 (2001), 153-168.
[8] R.M.Figueroa-Centeno, R.Ichishima and F.A.Muntaner-Batle, On super edge-magic graph, ArsCombin., 64 (2002), 81-95.
[9] J.A.Gallian, A dynamic survey of graph labeling, Elec. J. Combin., 17 (2014).
10] M.Hussain, E.T.Baskoro and Slamin, On super edge-magic total labeling of banana trees, Utilitas Math., 79 (2009), 243-251.
[11] M.Javaid, M.Hussain, K.Ali and H. Shaker, Super edge-magic total labeling on subdivision of trees, Utilitas Math., to appear.
[12] A.Kotzig and A.Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461. [13] A.Kotzig and A.Rosa, Magic valuation of complete graphs, Centre de RecherchesMathematiques, Universite de Montreal, (1972), CRM-175.
[14] S.M.Lee and Q.X.Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale, University Southern Illinois, November (2002).
[15] A.A.G.Ngurah, R.Simanjuntak and E.T.Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math., 43 (2007), 127-136.

