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ABSTRACT

The formation of more complex structures from the well-known simplest structures is a general way of thought
in all endeavours, and the extension of the live properties of easiest structures to the toughest structures is an usual
attempt. In this paper, a - domination number of the Cartesian product of elementary semigraphs with several edges and
two middle vertices are discussed.
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1. Introduction

A a — dominating set is that, subset C of A in which if for every b € A—C there exists a € C such that a
and b are adjacent. The minimum cardinality of such a set C is called @ —domination number of the semigraph P .
It is denoted as 7, (P).

In 1990, S. T. Hedetniemi et.al [3] discussed some basic definitions of domination parameters. In 2003, E. S. S.
Kamath and R. S. Bhat [2] studied domination in semigraphs. In [4, 5, 6] N. Murugesan and D. Narmatha studied
domination number of Cartesian product of path semigraphs.

2. Definition

Consider two path semigraphs P, and P, with vertex set A and A, and edge set B, and B, respectively. The

Cartesian product of P, and P, ie., P,o P, is defined as
PoP,=( A xA,,B, xB,)suchthat A, x A, = {(ai,aj)/ai €A, a; e Az} and

i. Any vertex a € A, and any edge B = (b,,b,,....,.b,) in B, ((a,b,),(a,b,).......,(a,b,)) is an element of
B, x B, and also
ii. Anyedge B= (al, a, ,....,ar) in B, and for any vertex b € A, ((al, b), (a2 , b), ...... ,(ar , b)) is an element
of B, xB,.

Dominations in semigraphs was discussed in [1].

2.1 Theorem

Yal Ps(lm(l)) o Ps(nm(l))] =3
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Proof:
Let Pjyma) be a path semigraph with single edge having only one middle vertex. When n =1, P )

becomes Py ).

ap ag a3 b, b, b3
O ® ¢ o ®
Flg 2.1 Ps(lm(l)) Flg 2.2 Ps(lm(l))

The following figure represents Py q)) 0 Pyama)

&
Q00—

bs

Flg 2.3 Ps(lm(l)) a Ps(lm(l))

In the above figure, if we select any three vertices from each row otherwise in each column forms a minimal a-
dominating set. i.e., from the above fig., the semigraph which contains minimum number of vertices that vertices are

enough to dominate all the other vertices in that graph. Hence vya [ Ps(lm(l)) o Ps(lm(l))] =3.
Next put N = 2 s Ps(lm(l)) ] Ps(nm(l)) becomes Ps(lm(l)) O Ps(2m(l)) .

by

1€

b, Ol

Fig.2.4 Ps(lm(l)) o Ps(Zm(l))

From the above figure (triangles) it can be easily observed that
Ya [ Ps(lm(l)) ] Ps(2m(l))] =3. Slmllarly Ya [ Ps(lm(l)) ] Ps(nm(l))] =3.

2.2 Note

i. Ya [ Ps(nm(l)) O Ps(lm(l))] =3.
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uy,a[P DP 1= Ya[Prm DP yl=rifr<n.
2.3 Lemma

i val Ps(Zm(l)) o F’s(2m(1)):I =4
ii.  va [Ps(2m(2)) = Ps(2m(1))] =4

6—;+1 if n=3p
6(n-1 .
iii. Ya [ Pyam(n)) © Psamay 1= (3 )+2 if n=3p+1
6(”3_2)+4 if n=3p+2

where p=123.....

Proof:

Consider a path semigraph with single edge having exactly two middle vertices, it is denoted as PS(Zm(l)). For
calculating the minimal a-domination number for the Cartesian product graph Py, 1)) and Py, consider the above

mentioned two graphs with labeling @, ,i =1,2,3,4 and b;, j =1,2,3,4 as shown below.

a1 as ag 3z b, by bs by
¢ >, & ® ¢ o -, ®
I:)s(Zm(l)) Ps(2m(l))

Fig. 2.5 Single edge path semigraph with 2 middle vertices

Ps(Zm(l)) o PS(Zm(l)) represents the Cartesian product of the above two graphs. It is also a graph containing the vertex set

v :{(al,bl),(az,bl),(as,bl),(aubl),(al,bz),(az,bz),(as,bz),(aubz), (al,bs),(az,bs),}
(8,0, ). (a4, b; ). (1, b, ). (3,0, ) (3, b, ). (@, b4)

and edge set

[(al,bl),(az,bl),(as,bl),(aubl)],[[(al b,).(8,.b,).(as, )( b,)}

b, )]
) [(a,.b,) (a, b)( )( b, )]
[(a.0,).(a5.b, ). (a3,b5), (25,0, ) } [ (8,0, ). (2, b, ). (24 by ). (24, )

The following figure represents the Cartesian product graphs of the above figure.
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a as as aa
by & & ®
T 7
=l I |
1
by @ ra - 9

Flg 2.6 Ps(Zm(l)) O Ps(Zm(l)) Semigraph

In the above semigraph (a,,b ) (a,,b,)(a,,b,)(a,b,) are end vertices,
(a,,b,).(a;,b, ), (a,,b,).(a,,b, ), (a,,b;).(a,,b;).(a,,b, ), (a;,b,)  are  middle-end  vertices  and
(a,,b,),(a,,b, ), (a,,b;),(a;,b, )are middle vertices.

From fig. 2 any one vertex taken in each row or any one vertex taken in each column ie., 4 vertices form a minimal a-
dominating set.

o ValPsam@) B Psamay 1 = 4

Consider the path semigraphs

ap az a3 ag as s as b, b; b3 by
[ & = @ ) ) ® °® 8 o
Flg 2.7 Ps(Zm(l)) Flg 2.8 Ps(2m(l))
The Cartesian product of the above two graphs is given below.
b1 1 2 3 4 jf ; 7
S SO W Y S G
bs : I I Jo¥ I j:) :
. 1 1 L 1

Flg 2.9 Ps(2m(2)) O Ps(2m(1))
In the above graph the vertex set {(a,,b, ),(a,,b, ), (a,,b,),(a,,b, )} form a minimal a- dominating set.

“+ Va [ Pyom(2)) 0 Po(omaay1 = 4-

To prove (iii), let us assume N =3p, p=12,3,4,.... can be noted that the semigraph P, ;)0 P51y is of order
36 p +4and of size 21p +1.

Consider the path semigraph with 2 edges and 4 middle vertices.

ay asz as ag as as as

® > & L O o ®
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Fig. 2.10 Py(y(z) Semigraph

In fig.2.10 the vertex &, dominates the adjacent vertices @,, &,, 85, 8z, 8¢, &, Itis noted that the grid Py, 0
Py(2m(x)) containing 40 vertices with exactly 4 copies of Py, ). Therefore (a,,b,).(a,,b,).(a,,b;) (a,,b,) are
the exactly 4 vertices dominating the other adjacent vertices in that edge. Also the semigraph Ps(2m(n)) m PS(Zm(l)),
n=3p,p=1234,... containing p copies of P, o Pyonp - Hence  the  set
U=1{(a,b;)/i=41322,.(p-5)p=12..j=1234/

with 4k (may be end or middle-end) vertices construct a minimal a-dominating set which dominates all the other vertices
in Py(om(n)) o Py(em@) apart from (a9t71’ b, )’ (aQt—l’ b, )’ (agt—l’ b, )’ (a9t—1 , b4) and
(ay,b,).(ag,,b,), (a9t b, (ag,b,) , t=1234,....,p vertices and the vertices
(ay,.,,0,).(ag,.1,0, ), B0y, 0, ), (Bgp,y,D,) . Note that for all t=1,2,34,..p the vertices
( 8ot 1’b1)’( gt )( gt 1'b3)’ (a9t—l’b4) form an edge E, . (say) and (aQt’bl)’ (a9t’b2 )’ (a9t’b3)’ (aQt’b4)
fom an edge E, (say) with (ag,b,)(ay,b,) (@e .0, ) (ag ;,0,) middle-end vertices and
(ay,0,),(ag, b5 ), (ag,_y, b, ), (8, b, ) middle vertices in which any one vertex from the edge E,, , and one vertex
from the edge E,, dominates all the other vertices in that edge. Hence p vertices must be taken i.e., any one vertex from
each edge to dominates the vertices (ag, 4,0, ), (ag,_1,b, ), (Bg 4.0, ), (B 4 ,b,)  and
(g, b, ), (ag, b, ), (ag; . 0;), (B, b, ) » £=1,2,3,4,......,p . At the end if we select only one vertex from
E,.., = ((ay,.1,0,).(ag,.,,0,), (@g,.1,05 ). (ag,.;,b, ) the corresponding set containing 6p+1 vertices, where

N =3p which is a minimal a-dominating set in P ;1)) 0 Pamay - Hence 7, [Psam(n) 2 Psmay1 = 6(2J+1if
n=3k.

Next, n=3p+1 p=1234,....The Cartesian product graph Py ) Psoma) when n'=3p +1 contains all the

vertices of Py(om(n) o Ps(am@) when n=3p and also the vertices

(a9r+2 ' bl )’ (a9r+2 ' b2 )’ (a9r+2 ! bS )’ (a9r+2 ! b4 )' (a9r+3 ' bl )’ (a9r+3 ! b2 )’ (a9r+3 ' b3 )’ (a‘9r+3 ' b4 )’

(a9r+4'bl)! (a9r+4!b2 ), (agr+4,b3 ), (agr+4,b4) . Hence for selecting wvertices from the edges
Egra = ((a9r+1’b1) (a9r+1’b2) (a9r+1’b3) (a9r+1'b4 )) the corresponding set form a minimal a-dominating set.
Hence 7a[Ps(2m(n)) 1] when n = 3p+1is )/a[P DP( )+

Therefore 7, [ Pyom(n) 0 Psamayl = 6P +1+1=6p+2= 6(n31j+2.
Atthe end, let N =3p + 2. It can be observed that 7, [ Py;(n)) © Py(am@))] is same for n =3p,3p+1,3p +2 from

th edge E, = ((3-11 by )’ (al’ b, ), (alv b, )' (a1 0, )) to By, = ((ag p-3 by )’ (ag p-3 b, )’ (ag p-37 b, )’ (a9 p-3 b, )) For

various values of n, ¥, changes based on the remaining edges. The list of remaining edges is given below.
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S.No. n Edges Minimal a- dominating vertices
1 3p E9p—4’ E9p—37E9p—2’ (agp—l’b4)’(agp’b4)’(a9p+1’b4)
E9p—l’ E9p7 E9p+l
2 Eop-srEops: Eopay (a9p+1' bl)'(a9p+1’b2 )’ (a9p+1,b3),(a9p+l, b4)
3p+1 E9p—1’E9p7E9p+l’
E9p+27 E9p+3’ E, p+4
3 3p+2 Egp-arEgpsi Egpan (a9p—1’b4)'(a9p'b4)’(agp+4’b1)’(a9p+4’bz)’
EgptrEopr Egpas (a9p+4’b3)' (a9p+4’b4)
E9p+2’ E9p+3’ E9 p+d
E9 p+57 E9 p+61 Eg p+7

Table: Minimal a-dominating vertices

Therefore from the second and third row of the above table, it can be easily understood that, when n increases by one,
¥ increases by two.

Therefore 7, [ Pyom(n)) O Psam)] when n=3p + 2is

72l Pyom(n)  Psoma) *21=6p+2+2=6p+4 = 6[n;32j + 4. Hence the lemma.

Conclusion

In this research work, va [ Py;m(n)) @ Ps(am(1)) 1 Was discussed briefly.
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